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Efficient simulation of heterogeneous materials with the finite cell method
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The finite cell method (FCM) represents a combination of high-order finite elements with the fictitious domain approach. Due
to it’s simple mesh generation the FCM reduces the pre-processing effort. For heterogeneous problems of solid mechanics
however, discontinuities occur at the material interfaces, which cannot be captured by the smooth shape functions of the FCM
anymore, whereby the convergence deteriorates. Thus, to recover the optimal convergence rate, we extend the FCM ansatz
by specially designed shape functions, which are able to capture discontinuities at the material interfaces. To get more insight
into the problem, we study the performance of the proposed method by means of a two-dimensional example.
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1 Local enrichment for problems with heterogeneous materials

The finite cell method (FCM) is a numerical method for solving problems in solid mechanics. Unlike the finite element method
(FEM), it uses a Cartesian mesh for the discretization of the problem and introduces the geometry of the problem by means
of an indicator function during the integration of the weak form. The FCM exhibits high convergence rates for problems with
smooth solutions, e.g. for a plate with a circular hole [1].

If the problem is heterogeneous, i.e. it consists of multiple domains with different materials, discontinuities will occur at
the material interfaces. For problems in solid mechanics these discontinuities correspond to kinks in the displacement field
and jumps in the strain field. For such problems the standard FCM is not sufficient anymore, because it approximates the
discontinuity by high-order smooth shape functions, which leads to oscillations [2]. Therefore, the ansatz is extended by
discontinuous shape functions, which capture the non-smooth part of the solution and are only applied in locally defined
regions. This extension of the FCM - called local enrichment - exhibits high convergence rates, while the additional number of
degrees of freedom is kept low [2]. In this paper, we perform further simulations with the aim of getting a deeper understanding
of the problem and it’s solution method. In this context, we also investigate the influence of the numerical integration. For
our simulations, we utilize the high-order partition of unity (PUM) approach combined with the hp-d concept, which results
in the hp-d/PUM-FCM [2]. The main idea is to extend the ansatz as follows
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where the first term (denoted as base) captures the smooth part of the solution using n high-order shape functions NV, of order
p and is applied in the whole domain. In contrast, the second term (denoted as enrichment) is only applied in local regions,
where the solution is discontinuous. Here, n* high-order smooth shape functions N of order p. are used, which build a
partition of unity. Their corresponding additional degrees of freedom are denoted as a;. The non-smooth part of the solution
is captured by the enrichment function F'(x), which is constructed through the modified abs-enrichment [3]
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Here, M; are partition of unity functions of order pr and ¢(x) is the level-set function describing the material interface. This
enrichment function has the advantage that it captures the material interface as well as vanishes at the boundary of the local
regions. Finally, we only enrich cells which are cut by the material interface, mentioned as the cell-wise approach.

2 Numerical example

A plate with a circular inclusion, as depicted in Fig. 1 (a), is subjected to prescribed displacements. The structure is in plain
strain condition and has a radius of @ = 3 and a side length of 2¢ = 16. A linear elastic material model is used, where the plate
has a Young’s modulus of Fpjate = 10* and a Poisson’s ratio of Uplate = 0.3, while the inclusion has a Young’s modulus of
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Fig. 1: Plate with a circular inclusion. (a) Setup. (b) Analytical solution o, . (c) Convergence study withp =p. =1, ..., 8.

Eine = 10 Eplate and a Poisson’s ratio of Vi, = Vplate. This benchmark, which was motivated by [4], provides an analytical
solution of the displacement field, from which the stresses are derived. The o, -component of the stress results in
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where A = 1.992031872509961 - 104, B = 6.205945448973371 - 10* and C = A + a'% = 2.681581366840209 - 10%. As it
can be seen in Fig. 1 (b), o, is continuous at the points (0, +a), while it exhibits a jump at the points (+a, 0). The reason
is that for the stress field, continuity must be maintained only in normal direction, not necessarily in tangential direction.
Note that the inclusion is ten times stiffer than the plate, therefore the stress inside the inclusion is higher. The structure is
discretized using 4 x 4 finite cells, on which the numerical integration is performed using a quadtree with tree-depth R and
Nint integration points in every unit direction. Since the circular inclusion can be described by a quadratic level-set function,
pr = 2 is sufficient for the enrichment function. Boundary conditions are applied using the weak penalty method with a
penalty factor of 3 = 1020 [5]. The results are shown in Fig. 1 (c), where in a p-refinement the error in energy norm is plotted
over the number of degrees of freedom. The reference strain energy is given as

Urer = 4.959409735463204 - 10° . @)

While the standard FCM exhibits a very poor convergence (red curve), the hp-d/PUM-FCM - first with a low integration
accuracy (R = 5, nint = p + 1) - significantly improves the convergence behavior (light blue curve). Since the relative error
stagnates for npor > 1000, the integration needs to be further improved. By doing so, the hp-d/PUM-FCM with a high
integration accuracy (R = 9, nint = p + 10) converges very fast (dark blue curve). The corresponding stress component o,
is presented in Fig. 2 (a) - (c). The FCM alone is not able to capture the jump in the stress and thus, oscillations occur. In
comparison, the hp-d/PUM-FCM captures the jump very precisely, but with the low integration accuracy, there are still some
fluctuations. Further rising the accuracy of the integration, the fluctuations vanish and the solution quality is improved.

Fig. 2: Stress oy, for p = pe = 8. (a) FCM. (b) hp-d/PUM-FCM (R = 5, nint = p + 1). (¢) hp-d/PUM-FCM (R = 9, nint = p + 10).
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