2203.16069v1 [math.NA] 30 Mar 2022

arxXiv

A UNIFIED ANALYSIS FRAMEWORK FOR ITERATIVE
PARALLEL-IN-TIME ALGORITHMS *

MARTIN J. GANDER!, THIBAUT LUNET#, DANIEL RUPRECHT!, AND ROBERT
SPECK?

Abstract. Parallel-in-time integration has been the focus of intensive research efforts over
the past two decades due to the advent of massively parallel computer architectures and the scaling
limits of purely spatial parallelization. Various iterative parallel-in-time (PinT) algorithms have been
proposed, like PARAREAL, PFASST, MGRIT, and Space-Time Multi-Grid (STMG). These methods
have been described using different notations and the convergence estimates that are available for
some of them are difficult to compare. We describe PARAREAL, PFASST, MGRIT and STMG for
the Dahlquist model problem using a common notation and give precise convergence estimates using
generating functions. This allows us, for the first time, to directly compare their convergence. We
prove that all four methods eventually converge super-linearly and compare them directly numerically.
Our framework also allows us to find new methods.

Key words. Parallel in Time (PinT) methods, PARAREAL, PFASST, MGRIT, space-time
multigrid (STMG), generating functions, convergence estimates.

AMS subject classifications. 65R20, 45105, 65120

1. Introduction. The efficient numerical solution of time-dependent ordinary
and partial differential equations (ODEs/PDEs) has always been an important re-
search subject in computational science and engineering. Nowadays, with high-
performance computing platforms providing more and more processors whose indi-
vidual processing speeds are no longer increasing, the capacity of algorithms to run
concurrently becomes important. As classical parallelization algorithms start to reach
their intrinsic efficiency limits, substantial research efforts have been invested to find
new parallelization approaches that can translate the computing power of modern
many-core high-performance computing architectures into faster simulations.

For time-dependent problems, the idea to parallelize across the time direction
has gained renewed attention in the last two decades.! Various algorithms have been
developed, for overviews see the papers by Gander [11] or Ong and Schroder [33].
Four iterative algorithms have received significant attention, namely PARAREAL [28]
(426 citat. since 2001)?, PFASST [8] (228 citat. since 2012), MGRIT [10] (238
citat. since 2014) and a specific form of Space-Time Multi-Grid (STMG) [17] (122
citat. since 2016). Other algorithms have been proposed, e.g. the parallel implicit
time-integrator PITA [9] (264 citat. since 2003) which is very similar to PARAREAL,
the diagonalization technique [30] (50 citat. since 2008), RIDC [5] (108 citat. since
2010), PARAEXP [12] (89 citat. since 2013) or REXT [36] (23 citat. since 2018).

PARAREAL, PFASST, MGRIT and STMG have all been benchmarked for large-

*Submitted to the editors DATE.

Funding: This project has received funding from the European High-Performance Computing
Joint Undertaking (JU) under grant agreement No 955701. The JU receives support from the Euro-
pean Union’s Horizon 2020 research and innovation programme and Belgium, France, Germany, and
Switzerland. This project also received funding from the German Federal Ministry of Education and
Research (BMBF) grant 16HPC048.

TUniversity of Geneva, Switzerland.

*Hamburg University of Technology, Germany (thibaut.lunet@tuhh.de).
§Forschungszentrum Jillich GmbH, Germany.

LSee also https://www.parallel-in-time.org

2Number of citations since publication, according to Google Scholar in February 2022.

1

mailto:thibaut.lunet@tuhh.de
https://www.parallel-in-time.org

2 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

scale problems using large numbers of cores of high-performance computing sys-
tems [25, 27, 29, 38]. They represent the solution process in time as a large linear
or nonlinear system which is solved by iterating on all time steps simultaneously.
Since parallel performance is strongly linked to the number of iterations, understand-
ing convergence mechanisms and obtaining reliable error bounds for these iterative
PinT methods is crucial. Individual analyses exist for PARAREAL [1, 13, 18, 34, 39],
MGRIT [6, 24, 37], PFASST [2, 3], or STMG [17]. There are also a few combined
analyses showing equivalences between PARAREAL and MGRIT [14, 18] or connec-
tions between MGRIT and PFASST [31]. However, no systematic comparison of
convergence behaviour let alone efficiencies between these methods exists.

There are at least three obstacles to comparing these four methods: first, there is
no common formalism or notation to describe them; second, the existing analyses use
very different techniques to obtain convergence bounds; third, the algorithms can be
applied to many different problems in different ways with many tunable parameters,
all of which affect performance [20]. Our main contribution is to address, at least for
the Dahlquist test problem, the first two problems by proposing a common formalism
to rigorously describe PARAREAL, PFASST, MGRIT and STMG using the same
notation. Then, we obtain rigorous comparable error bounds for all four methods by
using the Generating Function Method (GFM) [26]. GFM has been used to analyze
PARAREAL [13] and was used to relate PARAREAL and MGRIT [14]. But our use of
GFM to derive common convergence bounds across multiple algorithms is novel.

2. The Generating Function Method. We consider the Dahlquist equation

d
(2.1) dit‘ =M, AeC, te[0,7], u(0)=umeC.
The complex parameter A allows us to emulate problems of parabolic (A < 0), hyper-
bolic (A imaginary) or mixed type.

2.1. Blocks, block variables, and block operators. We decompose the
time interval [0,7] into N time sub-intervals [t,,t,+1] of uniform size At with n €
{0,...,N —1}.

DEFINITION 2.1 (time block). A time block (or simply block) denotes the dis-
cretization of a time sub-interval [t,, tn41] using one or several grid points,

(22) Tn,m = tn + AtTma m € [[13 M]])

where the T, € [0,1] denote normalized grid points in time used for all blocks.

We choose the name “block” in order to have a generic name for the internal steps
inside each time sub-interval. A block could be several time steps of a classical time-
stepping scheme (e.g. Runge-Kutta, ¢f. Section 2.1.1), the quadrature nodes of a
collocation method (¢f. Section 2.1.2) or a combination of both. But in every case,
a block represents the time domain that is associated to one computational process
of the time parallelization. A block can also collapse by setting M :=1 and 7, := 1,
so that we retrieve a standard uniform time-discretization with time step At. The
additional level provided by blocks will be useful when describing and analyzing two-
level methods which use different numbers of grid points per block for each level,
cf. Section 2.2.3.

DEFINITION 2.2 (block variable). A block variable is a vector

(2.3) Up = [Un1,Un 2, -- ,unJ\/[]T7

GENERATING FUNCTION METHOD 3

where Uy, m 15 an approrimation of U(Tmm) on the time block for the time sub-interval
[tn, tnt1]. For M =1, this reduces to a scalar approximation of u(Tn ar) = w(tny1)-

Some iterative PinT methods like PARAREAL use values defined at the interfaces
between sub-intervals [t,,t,+1]. Other algorithms, like PFASST, update solution
values in the interior of blocks. In the first case, the block variable is the interface
value with M = 1 and thus 7; = 1 while in the second it consists of the volume values
in the time block for [t,,t,41] with M > 1. In both cases, PinT algorithms can be
defined as iterative processes updating the block variables.

Remark 2.3. While the adjective “time” is natural for evolution problems, PinT
algorithms can also be applied to recurrence relations in different contexts like deep
learning [21] or when computing Gauss quadrature formulas [16]. Therefore, we will
not systematically mention “time” when talking about blocks and block variables.

DEFINITION 2.4 (block operators). We denote as block operators the two linear
functions ¢ : CM — CM and x : CM — CM for which the block variables of a
numerical solution of (2.1) satisfy

(2.4) é(u1) = x(uwo), @(uni1) = x(un), n=12,....,N—1,

with M :=[1,...,1]T. The integration operator ¢ is bijective and x is a transmission
operator. The propagator updating w, to w,y1 is given by

(2.5) Yi=¢ lox.

2.1.1. Example with Runge-Kutta methods. Consider the numerical inte-
gration of (2.1) with a Runge-Kutta method with stability function

(2.6) R(z) =~ e*.

Using ¢ equidistant time steps per block, there are two natural ways to write the

method using block operators:
1. The volume formulation: set M := { with 7,, := m/M, m = 1,..., M.
Setting 7 := R(AAt/¢)~1, the block operators are the M x M sparse matrices

r 0 ... 01
(2.7) p=|"1 7 . ox = | © 0
2. The interface formulation: set M := 1 so that
(2.8) ¢ := ROAt/O)™F x:=1.

2.1.2. Example with collocation methods. Collocation methods are special
implicit Runge-Kutta methods [40, Chap. IV, Sec. 4] and instrumental when defining
PFASST in Section 4. We show their representation with block operators. Starting
from the Picard formulation for (2.1) in one time sub-interval [t,, t,41],

(2.9) u(t) = u(ty) +/t Au(T)dr,

n

we choose a quadrature rule to approximate the integral. We consider here only
Lobatto or Radau-II type quadrature nodes where the last quadrature node coincides

4 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

with the right sub-interval boundary. This gives us the nodes 7, ,, of Definition 2.1
and we can approximate the solution u(7, ,) at each node by

M o
(2.10) Un,m = Un,0 + AAL Z Gm,jUn,j With @ j = / l;(s)ds,
0

j=1
where [; are the Lagrange polynomials associated with the nodes 7,. Combining all
the nodal values, we form the block variable u,,, which satisfies the linear system
Un,0 0 ... 01
(2.11) I-Qu,= : =|: Do gy = Huy g,
Un,0 0 ... 01
with the quadrature matrix Q = AA¢(gy, ;), I the identity matrix, and H some-

times called the transfer matrix®. The integration and transfer block operators from
Definition 2.4 then become ¢ := (I — Q), x := H.

2.2. Block iteration. Having defined the block operators for our problem, we
write the numerical approximation (2.4) of (2.1) as the all-at-once global problem

() uy X (uoT)
— 0
(2.12) Au = X d) . U:2 = : =:f.
-X ¢/ |un 0

Iterative PinT algorithms are iterative methods solving (2.12) by updating a vector
uf = [u’l‘7 . ,u’f\,]T to u**! until some stopping criterion is satisfied. Furthermore,
if the global iteration can be written for each line of the system separately, we call

the update formula for one line a block iteration.

DEFINITION 2.5 (Primary block iteration). A primary block iteration is an up-
dating formula for n > 0 of the form

(2.13) ubtl =Bj(up,) + B (ul™) + Bj (uf),

where By, BY and B are linear operators from CM to CM that satisfy the consistency
condition*

(2.14) (B{ —Id) o + B} + Bl =0.

Figure 1 (left) shows a graphical representation of a primary block iteration using a
kn-graph to represent the dependencies of ufljﬁ on the other block variables. The z-
axis represents the block index n (time), and the y-axis represents the iteration index
k. Arrows show dependencies from previous n or k indices and can only go from left
to right and/or from bottom to top. For the primary block iteration, we consider only
dependencies from the previous block n and iterate k for uftfl More general block
iterations [14] can also be considered for the study of MGRIT with FCF-relaxation;

see also the discussion in Section 2.2.4.

3This specific form of the H matrix is induced by the use of Lobatto or Radau-II rules, which count
the right interface of the time sub-interval as node. If one uses Radau-I or Gauss-type quadrature
rules that do not use the right boundary as node, we get a denser matrix that extrapolates the
interface value using interior volume values.

4 Condition (2.14) is necessary for the block iteration to have the correct fixed point.

GENERATING FUNCTION METHOD 5

n n+1 n n+1

F1G. 1. kn-graphs for a generic Primary Block Iteration (left) and PARAREAL (right).

2.2.1. Example with Parareal. Consider the interface formulation (2.8) and
define a coarse block operator ¢pa = R(AAt)~! that approximates the fine block
operator ¢ := R(AAt/f)~*. Here ¢ corresponds to a coarse grid in time, but nothing
prevents the use of a lower order time integration method instead, or a combination
of both. Then, we define as coarse and fine propagators

(2.15) G=¢rx, F=0¢ 'x
so that the PARAREAL update formula [28] yields
(2.16) Up b1 = Fug, + Gup™ — Guy = (671 — ¢l)xup + p xu

We recognize a primary block iteration with B(l) =0, B(1) ;=G and B! .= F — G. Its
kn-graph is shown in Figure 1 (right). Furthermore, the consistency condition (2.14)
is satisfied, (0 —Id) o F + G+ (F —G) = 0. If we subtract u¥_ in (2.16) and multiply
both sides by ¢ and rearrange terms, we can write PARAREAL as the preconditioned
fixed point iteration

¢
(2.17) WP =k MUY - AuF), M= | —9%ax @

This is a formulation of PARAREAL as approximate Gauss-Seidel preconditioning (with
approximated lower diagonal) for solving (2.12).

2.2.2. Example with a block Jacobi relaxation. A damped block Jacobi
iteration for the global problem (2.12) can be written as

(2.18) uFtt = b WD — Aub),

where D is a block diagonal matrix constructed with the integration operator ¢, and
w > 0 is a relaxation parameter. For n > 0, the corresponding block formulation is

(2.19) WhE = (1 w)uk, + gl

which is a primary block iteration with BY = 0. Its kn-graph is shown in Figure 2
(left). The consistency condition (2.14) is also satisfied, ((1 —w)Id — Id) o ¢~ 1x +
0+woplx =0.

2.2.3. Example with coarse correction. As a last example, we consider the
coarse correction only® of a two-level multi-grid method [23] applied to (2.12). Let

5The coarse correction is not convergent by itself without smoother.

6 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

TF~—1~TC'
k+1]o cP X Fo

k+1
I-T{6 TG

k| o o

n n+1 n n—+1

FI1G. 2. kn-graphs for the block Jacobi relazation (left) and the coarse correction (right).

1 be a coarse block variable on the coarse time block (7)<, <7 With M < M and
consider the associated coarse problem o

é _ Uy TP (uo)
i e i 0 3
(2.20) Ai—| X ¢ § uf _ : = f
X &/ lav 0

built from (2.12). Here, T% is a block restriction operator, i.e. a transfer matrix from
a fine (F) to coarse (C) representation. Similarly we also have a block prolongation
operator T, i.e. a transfer matrix from a coarse (C) to a fine (F) representation. A
coarse correction step applied to (2.12) can be represented as

(2.21) ubtt = uP + TEATITY(f — Aub),

where TE denotes the block diagonal matrix formed with TE on the diagonal, and
similarly for T%. When writing (2.21) in two steps,

(2.22) Ad = TS(f — Aub),

(2.23) ubt = b + TEd,

the coarse correction (or defect) d appears explicitly. Expanding the two steps for
n > 0 into a block formulation and inverting ¢ leads to

(2.24) dni1 = ¢ ' TExul — ¢ TGPul | + 7' xd,,
(2.25) uply = up iy + Todps.

Now we need the following simplifying assumption.

Assumption 2.6. The successive application of prolongation Tg followed by re-
striction T4 leaves the coarse block variables unchanged, i.e.

(2.26) TG o TE = 1d.

This condition is satisfied in many situations (e.g. restriction with standard injection,
and polynomial interpolation)®. Using it in (2.25) for block index n yields

2.27 d, = TS (uft1 — k).
() F(n

n

SIn some situations, e.g. when the transpose of the prolongation is used for restriction, we do
not get the identity but an invertible matrix. The same simplification can be done, except one must
take into account the inverse of (TS TE).

GENERATING FUNCTION METHOD 7

Inserting d,, into (2.24) on the right and the resulting d,, 1 into (2.25) leads to
(228) wlh =T TE@ ' TRg)uyy, + TEG XTRuy ! + TEG™ Ay,

with Ay = T%x — xT$. To simplify further, we make the following assumption.
Assumption 2.7. We consider operators TF, x and x such that

(2.29) A, =TSx — xTS =0.

This holds for classical time-stepping methods when both left and right time sub-
interval boundaries are included in the block variables, or for collocation methods
using Radau-IT or Lobatto type nodes.

This assumption is important to define PFASST (c¢f. Section 4.3 and see Bolten et
al. [2, Remark 1] for more details) and simplifies the analysis of STMG (¢f. Section 5),
as both methods use this block iteration. Then, (2.28) reduces to

(2:30) uitl = (1 -TEG ' TEp)ub, + TEG Toxul

Again, we recognize a primary block iteration for which the kn-graph is given in
Figure 2 (right). It satisfies the consistency condition” (2.14), (I — TE¢~'TG¢) —

Dog¢ 'x+TES ' TGx =0.

2.2.4. General remarks. We can represent many existing iterative PinT algo-
rithms (PARAREAL, MGRIT with F-relaxation, PFASST, STMG with two-levels,
..) as primary block iterations. However, some methods can not be written like
this, e.g. MGRIT with FCF-relaxation, PARAREAL with overlap or methods with
more than two levels. For those, the block iteration does not only link two successive
block variables with time index n 4+ 1 and n, but more than two, with time indices
n+1,n,n—1,.... The generating function method can be extended to such cases [14],
but we focus here on primary block iterations and leave extensions for future work.
Some iterative PinT algorithms can also consist of combinations of two or more
block iterations, as it is the case for PFASST (cf. Section 4.3) and STMG (cf. Sec-
tion 5). But we also show in those analyses that it is possible to reduce combinations
of several block iterations into one primary block iteration. In this paper, we therefore
only focus on primary block iterations for simplicity.

2.3. Generating function and error bound for a block iteration.

DEFINITION 2.8 (Generating function). The generating function associated
with a primary block iteration is the power series

o0
(231) Pr(Q) =D enn ¢!
n=0
where eﬁH = ||u7}2+1 = UnHH is the difference between the k" iterate uﬁﬂ and the

exact solution w, 1 for one block of (2.4) in some norm on CM.

Since the analysis works in any norm, we do not specify a particular one here. In the
numerical examples we use the L> norm on CM.

"Note that the consistency condition is satisfied even without assumption 2.7.

8 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

LEMMA 2.9. The generating function for the primary block iteration (2.13) satis-

fies

7+ag
(2.32) Pe+1(C) < - /BCpk(C)’
where o := HB% , 8= HB(I) , Y= HB% , and the definition of the operator norm is

induced by the chosen vector norm.

Proof. We start from (2.13) and subtract the exact solution of (2.4),
(233wt - we = Bhub) + BY (uhH) + B (u) — p(un).
Using the linearity of the block operators and (2.14) with w,,, this simplifies to
(234) wbt] —wpp = Bi(uf) —upp) + BY (ubT —w,) + B (uk —w,,) .

We apply the norm, use the triangle inequality and the operator norms defined above
to get the recurrence relation

(2.35) efLill < VefLH + ﬂe’ffl + aeﬁ

for the error. We multiply this inequality by ¢"*! and sum for n € N to get

(2.36) i erti¢mtt <oy i ek (" B i ebrientt 4 q i ek¢ntl,
n=0 n=0 n=0 n=0

Using Definition 2.8 and that ef = 0 for all k we find

(2.37) pr+1(C) < px(€) + B¢ i enti¢" + a¢ i end™

n=1 n=1

Shifting indices leads to

(2.38) (1= BO)pr+1(¢) < (v + af)pr+1(¢)

and concludes the proof. 0

THEOREM 2.10. Consider the primary block iteration (2.13) and let

(2.39) 0= ng[f%)zif]] Hug — Uy ||

be the mazximum error of the initial guess over all blocks. Then, using the notations
of Lemma 2.9, we have for k > 0

(240) efz—&-l S 9]72,—‘,-1(0‘5 677)57

where Gflﬂ s a bounding function defined as follows:
e ifonly v =0, then

k n—kk—1

(2.41) ok, = ﬁ ST IGa+08,

=0 [=1

GENERATING FUNCTION METHOD 9

e ifonly 8 =0, then

k+1]o §
(y+a)k ifk<n, /”
n i

(2.42) QZH = 5'Ykz (k) <oz) otherwise, ko °

im0\ 7 " nrl
e ifonly o =0, then

kr1lo—F o

n k-1 v

(2.43) 0Z+1 | H (i+0pB k |°o °
i=0 1=1 m a4l

e if neither «, nor 3, nor v are zero, then

o SR)

The proof uses Lemma 2.9, bounds the generating function at iterate k = 0 by
(2.45) po(¢) <6 ¢,

which covers arbitrary initial guesses for defining starting values u? for each block.
For specific initial guesses, po(¢) can be bounded differently, see e.g. [13, Proof of
Th. 1]. The error bound is then computed by coefficient identification after expansion
into power series: the rather technical proof can be found in Appendix A.

In some numerical examples shown below, we find that the estimate from Theo-
rem 2.10 in volume can be not quite sharp, cf. Section 4.2.3. If the last time point
of the blocks coincides with the right bound of the sub-interval, it is helpful to define
the interface error at the right boundary point of the n** block as

(2.46) ey = |ﬂﬁ+1 — U1l
where @ is the last element of the block variable w. We then multiply (2.34) by
et, =10,...,0,1] to get

(2-47) eM(ufzil un-i-l) = b(l)(uﬁiﬁ - un+1) + b(l)(u?_l - un) + b% (uﬁ - un)7

where bj is the last line of the block operator Bg . Taking the absolute value on both
sides, we recognize the interface error eﬁil on the left hand side. By neglecting the

error from interior points and using the triangle inequality, we get the approximation®
(2.48) enin ~ Ven 1 + Pey T+ aey,
where & := [B}], B 1= [B], 5 1= [BQ].

COROLLARY 2.11 (Interface error approximation). Defining for the initial inter-

face error the bound & := maxX,c[1,N] ||ﬂ% — ﬂnH, we obtain for the interface error the
approximation

(249) 4:;;11 ~ 9k+1 - 9n+1(65 ﬁv 5)a
with 0%, defined in Theorem 2.10.

8For an interface block iteration (M = 1,71 = 1), (2.48) becomes a strict inequality and thus
Corollary 2.11 a rigorous convergence bound.

10 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

10! 10!
-, ——- lteration error

101 TSEee) 101 { Original bound

s | TRaL T S —o— New bound
....... N i i i
5 1034 N\ e 5 103 | Norm of iteration matrix
b b
-5 | -5]

o 10 o 10
E £
= 7] b -7
- 10 - 10
> >
5 -9 | 5 -9
g 10 ——- lteration error g 10
w Original bound L

101! { —s~ New bound 10

----- Norm of iteration matrix
1013 L+ T T T T T 1013 L~ "
0 2 4 6 8 10 0 10
Iteration Iteration

Fi1G. 3. Comparison of error bounds for PARAREAL with two different \ values for (2.1). Left:
A =1, right: A = —1; the error is computed with the L norm.

Proof. Result follows as in the proof of Lemma 2.9 using approximate relations.0

3. Writing Parareal as block iteration. In the convergence analysis of PARA-
REAL for non-linear problems in [13, Th. 1], a double recurrence of the form efj& <
aek + Bekt1 is obtained for the error, where o and 3 come from Lipschitz constants
and local truncation error bounds. If we use the PARAREAL setting described in
Section 2.2.1 for the Dahlquist model problem, where o = ||F — G| and 8 = ||G]|, [13,
Th. 1] gives the bound
o

k k
B[[(n+1-10), B =max(1,B).
=1

1 k<6
(3) enJrl =]f

This is different from our new error bound
k n—kk—1

(3:2) e <6 > [J G+ D8

(k —1)! i=0 I=1
when applying Theorem 2.10 with v = 0 to the block iteration of PARAREAL. The
difference stems from an upper bound approximation in the proof of [13, Th. 1] which
leads to the simpler bound in (3.1). The two bounds are equal when 8 = 1, but for
B # 1, the error bound in (3.2) is sharper. To illustrate this, we use the interface
formulation of Section 2.1.1 for PARAREAL from Section 2.2.1. Weset M :=1, 11 :=1
and use the block operators

(3.3) ¢ :=ROAAL/O), x:=1, o¢a :=Ra(M\At/lx) .

We solve (2.1) for A € {i,—1} with ¢ € [0, 27] using L := 10 blocks, ¢ := 10 fine time
steps per block with the standard 4" order Runge-Kutta method for ¢ and fx = 5
coarse time steps per block with Forward Euler for ¢pa”. Figure 3 shows the resulting
error (dashed line), the original error bound (3.1), and the new bound (3.2). We also
plot the linear bound obtained from the L norm of the iteration matrix

¢
—1
(3-4) Rpararear =1 — MilA, M = 7¢¢A X ¢

9This version of PARAREAL can also be seen as a particular two-level method, which is covered
in Section 5.

GENERATING FUNCTION METHOD 11

104 10!
——- lteration error ——- lteration error
Original bound 10—1] Original bound
g 10y _fA=====% —6— New bound g —6— New bound
=l S 103
S 102 5
i B
° ° 10-5 i
£ 104 £
5 g 1071
Z 100 C
S S 1074
« 101 4 LIJ 1011
102 = " ; i i ; 1083 = ;
0 2 4 6 8 10 0 10
Iteration Iteration
Fi1G. 4. Comparison of error bounds for PARAREAL with two different \ values for (2.1). Left:
A = 4i, right: A = —4; the error is computed with the L° norm.

of the global iteration (2.17). For both values of A, the GFM bounds coincide with
the linear bound from Rpararear, for the first iteration, and the GFM bound captures
the super-linear contraction in later iterations. For A = 4, the old and new bounds
are similar since 3 is close to 1. However, for A = —1 where [is smaller than one,
the new bound gives a sharper estimate of the error, and we can also see that the
new bound captures well the transition from the linear to the superlinear convergence
regime. On the left in Figure 3, Parareal converges well for imaginary A = ¢ since the
coarse solver uses £o = 50 points per wavelength. Figure 4 shows the same setup for
a four times larger A and we see the well documented deterioration of convergence for
imaginary A/hyperbolic problems [18, 15], also well captured by the bounds, while
Parareal still converges quickly for larger negative real .

4. Writing PFASST and related algorithms as block iteration. Spectral
Deferred Corrections (SDC) [7] are an essential ingredient of PFASST. We provide
a simplified description of SDC for the Dahlquist problem (2.1) and the steps leading
to PFASST.

4.1. Spectral Deferred Correction. SDC can be seen as a preconditioner
when integrating the ODE problem (2.1) with collocation methods, see Section 2.1.2.
Consider the transmission operators

(4.1) ¢=0I-Q), x=H = (I-Q)uyy1 =Hu,.

SDC approximates the quadrature matrix Q by

(4.2) Qa = A (/0 " lA,j(s)ds> :

where [; is an approximation of the Lagrange polynomial /;. Usually, Qa is lower
triangular [35, Sec 3] and easy to invert. This approximation is used to build the
preconditioned iteration

(4.3) uﬁﬁ = uﬁﬂ + I QA]_I (H“n - (I- Q)“ZH)

for solving (4.1). Setting ¢a :=I — Qa, we see that SDC solves the global problem
(2.12) block by block. To invert the ¢ operator in each block, it uses the precondi-
tioned iteration

(4.4) uftl = [I- pa'b] ub | + da xun.

12 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

I1-Qa]"'H

k+1 k+1 o[Qal o
I-Qal™(Q-Qa)

k k |o o

n n+1

F1a. 5. kn-graphs for Block Jacobi SDC (left) and Block Gauss-Seidel SDC' (right).

SDC runs sequentially block by block. The key idea of PFASST is to solve the whole
system (2.12) at once while introducing concurrency via specific global preconditioners
that we describe next.

4.2. Algorithmic components for PFASST.

4.2.1. Approximate Block Jacobi with SDC. Here we solve the global prob-
lem (2.12) using a preconditioner that can be easily parallelized (Block Jacobi) and
combine it with the approximation of the collocation operator ¢ by ¢a as introduced
above. This leads to the global preconditioned iteration

oA
(45) ’u’k+1 = u’k + P_l (f - Auk)7 PJac = (’bA

Jac

This is equivalent to the block Jacobi relaxation in Section 2.2.2 with w = 1, except
that the block operator ¢ is approximated by ¢a. Using the SDC block opera-
tors (4.1) gives the block updating formula

(4.6) ub i =ul, + 1—-Qal™! (Huy — (I-Q)uyy,y),
which we call Block Jacobi SDC. This is a primary block iteration with
(47) By =1-[I-Qa] ' (I-Q)=[-Qa]""(Q-Qa),

' B):=[I-Qa] 'H, BY:=

Its kn-graph is shown in Figure 5 (left). This block iteration can be written in the
more generic form

(4.8) uftl = 1 ¢l p] ul ., + oalxut.

This is similar to (4.4) except that we use the current iterate u* from the previous
block and not the converged solution u,,. Since this block iteration does not explicitly
depend on the use of SDC, we denote it as Approximate Block Jacobi (ABJ).

4.2.2. Approximate Block Gauss-Seidel with SDC. We can also consider
Block Gauss-Seidel type preconditioning

da
(4.9) wbtt = ok + f’é};(f — Auk), Pos= | X da

for the global problem (2.12). Similar to PARAREAL, this is an approximate Block
Gauss-Seidel preconditioner, except that here the diagonal blocks are approximated,

GENERATING FUNCTION METHOD 13

instead of the lower-diagonal blocks as in PARAREAL.!? Using the SDC block opera-
tors gives the block updating formula

(4.10) Uty = tnp + [Qal™! (Huy ™' — (I- QJuy,y)
which we call Block Gauss-Seidel SDC. This is again a primary block iteration with

(1) By:=1-[I-Qa]'I-Q)=[I-Qa]" ' (Q—-Qa)
' B! =0, BY:=[I-Qu] 'H.

Its kn-graph is shown in Figure 5 (right). For generic ¢ and ¢a we get

(4.12) ufbi{ = [I — gbzld)] uﬁJrl + qb;lxuf;"'l.

This formula uses the updated iterate u**! in contrast to (4.4) which uses the con-

verged solution w,, or (4.8) which uses the old iterate uk. Since this block iteration
does not explicitly depend on the use of SDC, we denote it as Approzimate Block
Gauss-Seidel (ABGS).

4.2.3. Analysis and numerical experiments. Since Block Jacobi SDC can
be written as primary block iteration, we can directly apply Theorem 2.10 with 8 =0
to get the error bound

S(y+a)ifk<n

4.1 ko< "k !
(4.13) Cnt1 = 57’“5 (> <a> otherwise,
)
i=0

v

with v := [|[[I - Qa]7'(Q — Qa)||, @ := ||[I — Qa]"'H||. Note that is proportional
to AAt through the Q — Qa term and for small A¢, o tends to ||H|| which is constant
in our case. We can identify two convergence regimes: for early iterations (k < n),
the bound does not contract if v+ o > 1 (which is generally the case). For the later
iterations (k > m), a small-enough time step leads to convergence of the algorithm
through the v* factor.

Similarly, for Block Gauss-Seidel SDC, applying Theorem 2.10 gives with o = 0

n k—1
(4.14) A .

k .
< gy 2 LG +D8"

=0 [=1

where v := ||[I- Qa]™(Q — Qa)||, 8 := ||I- Qa] 'H||. Here the algorithm con-
tracts already in early iterations if = is small enough. Since the v coefficient is the
same for both Block Gauss-Seidel SDC and Block Jacobi-SDC, both algorithms have
a similar convergence rate when they contract.

We illustrate this with the following example. Let A := 4, ug := 1, and let the
time interval [0,7] be divided into L = 10 sub-intervals. Inside each sub-interval,
we use one step of the collocation method from Section 2.1.2 with M := 10 Lobatto
quadrature nodes of a Legendre distribution [19]. This gives us block variables of size
M = 10 and we chose Qa as the matrix defined by a Backward Euler step to build
the ¢a operator. The starting value u® for the iteration is initialized with random
numbers starting from the same seed. Figure 6 (left) shows the numerical error for
the last block using the L* norm, the bound obtained with the GFM method and

14 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

—[3- Block Jacobi
10! 1071 Block Gauss-Seidel
S S
5 10 S 10
E 2
2 107 ¢ 107
9 v
> 10-10 i > 10-10 4
s s
W03 | W o10-13 |
—=- Block Jacobi =
Block Gauss-Seidel =
1016 1~ ; : : : 1016 - . : . :
0 5 10 15 20 0 5 10 15 20
Iteration Iteration

Fic. 6. Comparison of numerical errors with GFM bounds for Block Jacobi SDC and Block
Gauss-Seidel SDC. Left : error on the block variables (dashed), GFM bounds (solid), linear bound
from the iteration matriz (dotted). Right : error estimate using the interface approximation from
Corollary 2.11.

the linear bound using the norm of the global iteration matrix. As for PARAREAL in
Section 3, the GFM bound is similiar to the iteration matrix bound for the first few
iterations, but much tighter for the later iterations. In particular, the linear bound
cannot show the change in convergence regime of the Block Jacobi SDC iteration
(after k = 10) but the GFM bound does. Also, we observe that while the GFM
bound overestimates the error, the interface approximation of Corollary 2.11 gives a
very good estimate of the error at the interface, see Figure 6 (right).

4.3. PFASST. We give a simplified description of PFASST [8] applied to the
Dahlquist problem (2.1). While we consider only the two-level variant, the algorithm
can use more levels [8, 38]. In a nutshell, one PFASST iteration is the combination of
a block Jacobi SDC iteration on the fine level followed by a block Gauss-Seidel SDC
iteration on the coarse level [8, Sec. 3.2].'' In particular, this corresponds to doing
only one SDC sweep on the coarse level. To write PFASST as a block iteration,
we first describe the coarse level as in Section 2.2.3. From that we can form the Q
quadrature matrix associated to the coarse nodes and the coarse H matrix. This
leads to the definition of the ¢ and x operators for the coarse level, combined with
the transfer operators TS and TE. Then, we approximate Q by a Qa matrix, which
allows us to define an approximate operator ¢~>A for q~5 on the coarse level.

First, we use the iteration formula for Block Jacobi SDC from Section 4.2.1 as
update for the intermediary solution (denoted with iteration index k + 1/2),

(4.15) wp) = [1-Qal™HQ - Qa)ul; + [I— Q] 'Hul.

Then, as described in [3, Sec. 2.2], the block Gauss-Seidel iteration applied to the

10Note that an exact Block Gauss-Seidel preconditioner for (2.12) uses the original block triangular
matrix A, and thus converges in one iteration by integrating all blocks with ¢ sequentially.

11 A different order is given in [3, Sec. 2.2] (first Block Gauss-Seidel, then Block Jacobi), but both
can be seen as the same iteration, only differing by the associated initialization process. Here we use
the order that is more convenient for analysis.

GENERATING FUNCTION METHOD 15

coarse level can be written as a preconditioned iteration for the global system (2.12)
(416) Wbt = W2 L TEPCLTO(F - Aubt?), Bas= |~X éa

This is the same iteration as we obtained for the coarse grid correction in Section 2.2.3,
except that the coarse operator ¢ has been replaced by ¢a. Assumption 2.7 holds,
since the use of Lobatto or Radau-II nodes leads to the specific form of the H matrix
n (2.11), which implies

(4.17) A, =T%H-HTE =0.

Using similar computations and the block operators defined for collocation and SDC
(¢f. Section 2.1.2 and Section 4.1) we obtain the block iteration

(418) wfl} = [[- TEI - Qa) ' TEI - Quy Y + TEI - Qa) ' THHuf
by substitution into (2.30). Finally, the combination of the two gives
up i = (1= TEHA TEG)I - Qal ™ (Q — Qa)uryy

(4.19) +(I—-TEL-Qal ™' TE(I - Q))[I - Q] 'Huj,
FTE(I- Qu) M HTGUA.
Using the generic formulation with the ¢ operators gives
upfy = [[= TEGR TEANI — ¢a' P)usis
+ (I~ TEPA TEG) PR xup + TEGR TExus .

This is again a primary block iteration, but in contrast to the previously described
block iterations, all block operators are non-zero.

(4.20)

4.3.1. Analysis and numerical experiments. Applying Theorem 2.10 to
(4.19) gives for PFASST the error bound

e EEO() (@)

1=0 =

with 7 := [|(I - TEGZ TER)(I - ¢a'@)l, B = I TE — Qa)~'HTE][, and o :=
|(I-TE[I-QA] ' TS(I-Q))[I—Qa] 'HJ|. We compare this bound with numerical
experiments. Let A := 4, up := 1. The time interval [0, 27] for the Dahlquist problem
(2.1) is divided into L = 10 sub-intervals. Inside each sub-interval we use M := 6
Lobatto-Legendre nodes on the fine level and M := 2 Lobatto nodes on the coarse
level. The Qa and Qa operators are defined with Backward Euler. Figure 7 (left)
compares the measured numerical error with the GFM bound and the linear bound
from the iteration matrix. As in Section 4.2.3, both bounds overestimate the numeri-
cal error, even if the GFM bound shows convergence for the later iterations, which the
linear bound from the iteration matrix cannot. As shown in Figure 7 (right) we get a
significantly better estimation of the numerical error when we use the interface approx-
imation from Corollary 2.11. For the GFM bound we have («, 8,7) = (0.16,1,0.19),

16 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

102 102
—& - Iteration error
R - —— Interface approximation
c 10 1 - 10 1
.2 o
5 104 S 104
o o
0)
2 107 2 1071
0 v
i 10-10 4 z 10-10 4
s S
W .13 | =& Iteration error ® oo |
10 —— GFM bound \0\& 10
----- Iteration matrix ©-0-0
10-16 ! ! : : : 10-16 : : : : :
0 5 10 15 20 0 5 10 15 20
Iteration Iteration

Fia. 7. Comparison of numerical errors with GFM bounds for PFASST. Left : error bound
using volume values. Right : estimate using the interface approzimation.

while for the interface approximation we get (&, 3,%) = (0.16,0.84,0.02). In the sec-
ond case, since 7 is one order smaller than the other coefficients, we get an error
estimate that is closer to the one for PARAREAL in Section 3 where v = 0. This
similarity between PFASST and PARAREAL will be discussed in more detail in the
next section.

5. Writing two-level time multi-grid as block iteration. The idea of time
multi-grid goes back to the 1980s and 1990s [4, 22, 32]. PARAREAL itself can be inter-
preted as a time multi-grid method [18], and this insight inspired various developments
of multi-level methods, in particular MGRIT and STMG. In this section, we show
how to write two-level algorithms applied to the Dahlquist problem as block itera-
tions. Since we do not consider spatial dimensions, we refer to this class of methods
as Time Multi-Grid (TMG). In particular, we will show that all the other two-level
iterative methods, including PFASST, can be expressed as TMG. The extension of
this analysis to more levels and comparison with multi-level MGRIT is left for future
work.

Gander and Neumiiller introduce STMG for discontinuous Galerkin approxima-
tions in time [17], which leads to a similar system as (2.12). We describe the two-level
approach for general time discretizations, following this multi-level description [17,
Sec. 3]. Consider a coarse problem defined as in Section 2.2.3 and a damped block
Jacobi smoother as in Section 2.2.2 with a given relaxation parameter w. Then, a
two-level TMG iteration requires the following steps:

1. 11 pre-relaxation steps with block Jacobi smoother, see Section 2.2.2,

2. a coarse correction using the exact coarse grid operators,

3. vy steps with the block Jacobi smoother, see Section 2.2.2,
each corresponding to a block iteration. If we combine all these block iterations we
do not obtain a primary block iteration but a more complex expression, of which the
analysis is beyond the scope of this paper. However, a primary block iteration is
obtained when

e Assumption 2.7 is verified, which implies A, =0,

e only one pre-relaxation step is used, v; =1,

e and no post-relaxation step is considered, v = 0.

GENERATING FUNCTION METHOD 17

In this case, the two-level iteration reduces to the two block updates
k+1/2 _

(5.1) w = (1wl +wo xul,

(5.2) ubth = (1= TEG ' TEo) uill/ + TEG ' RTGul

using k + 1/2 as intermediate index. Combining (5.1) and (5.2) leads to the primary
block iteration

(5:3) with = (1= TEGTE6) [(1—wpul, +we~ xul] + TEG TG,

If w # 1, then all block operators in this primary block iteration are non-zero, and
applying Theorem 2.10 leads to a similar convergence bound as the one obtained for
PFASST in Section 4.3.1.

For w =1 we get the simplified iteration

(5.4) ubTh = (¢7'x ~ TEG ™' TEx) ulk + TEGT XTEub,
and the following result:

ProOPOSITION 5.1. Consider a coarse grid correction as in Definition 2.2.3, such
that the prolongation and restriction operators (in time) satisfy Assumption 2.6. If
Assumption 2.7 is also verified and only one Jacobi pre-relaxation step with parameter
w =1 is used before the coarse grid correction, then the two-level TMG is equivalent
to a PARAREAL method, where the coarse solver G uses the same time integrator as
the fine solver F but with larger time steps, i.e.

(5.5) G:=TEd ' TSx.

This is the same result as [18, Theorem 3.1] but presented here in the context of
our GFM framework and the definition of PARAREAL given in Section 2.2.1. In
particular, it shows that the simplified two-grid iteration on (2.12) is equivalent to
the preconditioned fixed-point iteration (2.17) of PARAREAL, if some preliminary
conditions are met and the notation qb;l = Tg(;g’ng is used for the approximate
integration operator'?. However, PARAREAL is usually viewed as an iteration acting
on solution values located at the block interfaces, while the two-grid correction as
defined here acts on values inside the block, namely volume values.

The second important aspect of this analysis lays in the similarity between this
simplified two-level TMG with w = 1, and the PFASST algorithm as described in
Section 4.3. We have the following result:

PROPOSITION 5.2. The two-level (linear) PFASST algorithm is equivalent to a
two-level TMG satisfying the following conditions:
1. Assumptions 2.6 and 2.7 are verified,
2. TMG combines one Jacobi smoothing with a coarse grid correction s.t:
(a) the relazation uses w =1 and an approzimate integration operator @a,
(b) the coarse grid correction uses an approximate integration operator Qa .

This result is equivalent to [2, Theorem 1], but presented here in the GFM framework
context. It puts TMG and PFASST in a common group of elementary two-level
time multigrid methods, which differs on the use (or not) of approximate integration
operators during relaxation or coarse grid correction. We summarize those differences

12Note that, even if ng‘;’ng is not invertible, this abuse of notation is possible as (2.17)
requires an approximation of ¢~ rather than an approximation of ¢ itself.

18 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

Relaxation)
Exact ¢ Approximate ¢pa
Correction
Exact ¢ TMG (w=1) TMG
Approximate ¢a TMG. PFASST
TABLE 1

Classification of the elementary two-level time multigrid methods.

Algorithm Bj (ul) B (u}) BY (ul™)
ABJ I- ¢t Pt x -
ABGS | N - xlx

PARAREAL - (7t —paY)x oA x
TMG (1 -w)I-TES ' TES) w(p™t = TESTITE)x TES ' TEx
TMG. (¢ ' —TES'TE)x TEGA TEx
TMG; | (I-TEP 'TEA)(I— o d) | (da' — TES 'TEIPA)x | TES ' TEX

PFASST | (I-TEGA'TES)(I—dn'd) | (¢a' — TEPA' TEPdA)x | TEPA TEX

TABLE 2
Summary of all the methods we analyzed, and their block iteration operators. Note that TMG
with w =1 and TMG. correspond to PARAREAL with some specific coarsening.

in Table 1, and add also two composite approaches that naturally result from this
distinction:
e a two level TMG where only the coarse correction uses an approximate inte-
gration operator ¢pa (TMG,),
e a two level TMG where only the relaxation on the fine level uses an approx-
imate integration operator ¢a (TMGy).
This gives us then four different two-level algorithms, and we compare their block
iteration and convergence in Section 6. Note that the TMG, algorithm can, similar
to TMG, be described as a PARAREAL algorithm using an approximate integration
operator and larger time step for the coarse propagator, that is

(5.6) G:=TEPA TEx

As a matter of fact, the version of PARAREAL used for numerical experiments in
Section 3 is equivalent to TMG..

6. Comparison of iterative PinT algorithms. We summarize all methods
analyzed in this paper in Table 2. After choosing a given block decomposition and
associated block operators, one just has to define approximate integration operators,
and possibly a coarse block discretization, to build any of the algorithms.

We illustrate this for the Dahlquist problem with A := 2¢ — 0.2, ug = 1 and
decompose the simulation interval [0,27] into N = 10 sub-intervals. We choose a
block discretization with M = 5 points and M = 3 for the coarse block, with Lobatto-
Legendre points for both levels. We use one step of a collocation method on each
block for the fine integrator (see Section 2.1.2) and a Backward Euler discretization
for the approximate block operators on each level, as for SDC (see Section 4.1). In
Table 3, we give the maximum absolute error in time for each possible propagator, if

GENERATING FUNCTION METHOD 19

o' | ea'x | TEGTEx | TEGATEX

Figure 8 (left) | 1.20e™° | 3.57¢™! 1.19¢72 4.87¢71
Figure 8 (right) | 3.14e™* | 6.24¢72 5.14e73 2.67e1
TABLE 3

Maximum error over time for each block propagator, when run sequentialy.

Bo-o-o. Boo -&- ABJ
8 -0 P e’ g-oo-e
101 { Bt e LE PN 107 e N7 - ABGS
c A *\a‘kk\"\(s*e.u c \\k «\\. g =p-- Parareal
o N Vs N S (] % —A- Parareal (TMG,_,)
= 4 A N 2 ~a = 4 | B ¥ w=1
5 10 Ay *\t \'(\ 3 v |5 10 X\\ \& \\\ —<- Parareal (TMG,)
<] NS o Y S —+- TMG
o 7 A AN 0 107 MW 8 y
2 10 N * 2 1074 \\ N X PFASST
= - ABJ P = AR Y ™
% ABGS (IS v Ay]
> 1010] AN > 1020] VAN Y, \
- ~p-- Parareal Sk - VN, a (Y
\ %k \ \
g —A-- Parareal (TMG,,_;) \\ g ANy .
w 1013 —<- Parareal (TMG,) Sk w 10713 | ‘\ \-I' \b \ \
v SR X
—+- TMG; o AT Q\
*
PFASST < ooy NEEPEPYP 'Y
1076 L ‘ COBEFIEFIBFS | el el e 222 = sl =
0 5 10 15 20 0 5 10 15 20
Iteration Iteration

Fic. 8. Comparison of iterative methods convergence using the GFM framework. Left: colloca-
tion as base fine integrator. Right: 4t" order Runge-Kutta method as base fine integrator. PARAREAL
(TMGy=1) and PARAREAL (TMG.) denote a specific coarsening for PARAREAL (see Section 5).

used sequentially (data for Figure 8, left). Then we run all algorithms described in
Table 2, initializing the block variable iterate with the same random initial guess. We
show the error for the last block variable with respect to the fine sequential solution in
Figure 8 (left). In addition, we show the same results, but using the classical 4'* order
Runge-Kutta method as fine propagator, 2" order Runge-Kutta for the approximate
integration operator and equidistant points using a volume formulation as described
in Section 2.1.1 (Figure 8, right).

We observe that the TMG iteration converges fastest, due to the use of the most
accurate block integrator for both levels (see Table 3). Keeping the same coarse grid
correction but approximating the smoother (TMG) allows to improve the first iter-
ations, but convergence for later iterations is closer to PFASST. This indicates that
convergence for later iterations is mostly governed by the accuracy of the smoother
(i.e. ABJ for both TMG; and PFASST). This is corroborated by the comparison
of PFASST and TMG,, which differ only by the type of smoother; while the ex-
act Block Jacobi relaxation induces convergence of TMG, after k = N iterations (a
well known property of PARAREAL), using the ABJ smoother makes it impossible for
PFASST to get this property.

On the other hand, the first iterations are also influenced by the coarse grid
correction accuracy. We see that the iteration error is very similar for PFASST and
TMG. which have the same coarse grid correction. This is more pronounced when
using the 4*" order Runge-Kutta method as base fine integrator, as we see in Figure 8
(right). Early iteration errors are similar for two-level methods that use the same
coarse grid correction (TMG/ TMG/, and PFASST/ TMG.).

A similar behavior can be observed for the pair PARAREAL and ABGS. Looking
at Table 2, we see that both algorithms use the same BY operator. This suggests that

20 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

the error for early iterations is mostly governed by the accuracy of the block operator
BY, especially since this can also be observed for the elementary two-level methods
(TMG and TMG use the same BY operator, as PFASST and TMG, do).

Remark 6.1. From a convergence point of view, PFASST and TMG, appear to
be equivalent for the first iterations. But one should note that the block iteration of
PFASST is cheaper than TMG,, because an approximate block integrator is used
for relaxation. Here we do not compare methods with respect to computational, as
it is not in the scope of this paper. A model for cost, left for future work, could be
combined with these convergence estimates to build a unified model for computational
efficiency.

7. Conclusion. We have shown that the Generating Function Method (GFM)
is an excellent mathematical tool to compare many iterative PinT algorithms, and it
was this tool that led us to write all these algorithms in the same framework, so they
can directly be compared. The GFM also showed that all these methods converge
eventually super-linearly, which is due to the evolution nature of the problems. This
is also observed in our numerical experiments, which were produced with a PYTHON
code that is publically available'3.

Our GFM framework also opens up many further research directions to explore,
for example the study of multi-step block iterations like MGRIT with FCF-relaxation,
and more complex two-level methods without Assumption 2.7. Also an extension of
GFM to the multi-level versions of STMG, PFASST and MGRIT would be very
valuable. Finally, all these methods are used in practice to solve true space-time
problems, and the GFM should be capable to give convergence bounds for all methods
in this situation as well, even for non-linear problems, as was shown for non-linear
systems of ODEs [13].

Appendix A. Error bounds for Primary Block Iterations.

A.1. Incomplete Primary Block Iterations. First, we consider

(A1) (PBL-1): wuit] =B (uf™) + B (uf),
(A.2) (PBL2): ult) = Bi(uh,,) + B (ul).
(A.3) (PBI-3) : wupt) = By(ugy) + BY (up™'),

where one block operator is zero (e.g. (PBI-1) corresponds to PARAREAL, (PBI-2) to
Block Jacobi SDC and (PBI-3) to Block Gauss-Seidel SDC). To simplify notation, let

(A4) o= Bl 5:=[BI. =B}

Then, application of Lemma 2.9 gives the recurrence relations

ag ¢ *
(A5) PBED: pa(©) £ 25 m(O = (@) <0t (15) ml©
k
(A0 (PBED: pa(0) < (-+a0m(0) = p(@) <o (15 2¢) m(©
(AT BBE: Q) <) = (O < A ()

13https://github.com/Parallel-in-Time/gfm

https://github.com/Parallel-in-Time/gfm

GENERATING FUNCTION METHOD 21

for the corresponding generating functions. Setting § := max (e% +1), we find that

po(¢) <6507, ¢"*. By using the binomial series expansion

oo

1 n+k—1 "

n=0

for £ > 0 and the Newton binomial sum, we obtain for the three block iterations

Ln=0 n=0
[k n o0
) K PN (@) ¢n n
(A.10) (PBI-2) : pr(C) < 07"¢C ;::O (n> (7> ¢ 1 l;}ﬁ 1
(A.11) (PBE3): pi(Q) < 37" D (n +S - 1) 5”4 [Z C"] :
Ln=0 n=0

Error bound for PBI-1. We simplify the expression using

(A12) 2 ("5 B”C"*’“] - [i (220 ﬂ"’%”] ,

and then the series product formula

(A.13) i angnl [i an”] = i €, cp = iaibn_i,
Ln=0 n=0 n=0 i=0

with b, =1 and

0ifn <k,
A14 n = _
() “ (n 1)6"7“ otherwise.
n—=k

From this we get
n . n—k ,.
i—1\ ,,_ i+k— i (i 41
(A.15) anz(i—k)ﬂ k:Z< i >6_ZHZI) ,
i=k i=0

using the convention that the product reduces to one when there are no terms in it.
This yields for k& > 0 the error bound

k n—kk—1
(A.16) (PBL-1): ef,, <6 ko‘ o (i +1)B
(k—DH= s
Following an idea by Gander [13], we can also consider the error recurrence eﬁi{ <
ael 4+ Belt! B = max(1,). Using the upper bound Y o7 (" = 1 C < BC’ for the

initial error, we avoid the series product and get px(¢) < da¥ W’ as bound on
the generating function. We then obtain the simpler error bound

(A.17) n+1<573" an+1—l

as in the proof of [13, Th. 1].

22 M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

Error bound for PBI-2. We again use (A.13) with b, = 1 for the series product
and

(A.18) a, = <fl> (j)n if n <k,

0 otherwise.

From this we get ¢,, = er.n:ig("’k) (k) (%)Z , which yields for k£ > 0 the error bound

7

S(y+a)kif k <n,
9): k< - '
(A.19) (PBI2): ey <4505~ (k) (:) otherwise.
1
=0

Error bound for PBI-3. We use (A.13) with b, = 1 again for the series product
and

n+k—1 Ml n+1)
A2 = n _ =1 n
(A.20) o= ("R o Al D e,
which yields for £ > 0 the error bound
n k—1
(A.21) (PBL-3): b, < ’Z [IG+08
=0 [=1

A.2. Full Primary Block Iteration. We now consider a primary block itera-
tion with all block operators non-zero,

(A.22) (PBLFull) : uft) =Bf (uf ;) + B (ul™) + B} (uf),
with «, 8 and v defined in (A.4). Applying Lemma 2.9 leads to

k
2n© = wos () mo.

Combining the calculations performed for PBI-2 and PBI-3, we obtain

(A21) ph(Q) < 8C7 lej (fj) (j)c] [fj <”+ " 1)&"@‘"] lic] ,

(A2) Q<15

(A.25) <o¢ l:z’“;; (i) () 1 LLZ:Z; (Hk')52‘@] '

Then using (A.13) with

k‘ (07 " . n .
(A.26) Oy = <n) <7> ifnsk o <Z+]“,_1)ﬂi,

0 otherwise, i=0

we obtain

[e%S) min(n,k) n—q i
(A27) p(Q) < 8C/* Y enC, with ey = > Z()(”’f) <a> g,
=0 =0

n=0 Y

GENERATING FUNCTION METHOD 23

From this we can identify the error bound

min(n,k) n—i i
(A.28) (PBL-Full) : el <dv% Y > PY(PFR=1) (@ A,
w = i !

(1]

2]

[10]

[11]

[12]

(13]

(17]

(18]

[19]

i=0 =0 v

REFERENCES

G. BAL, On the convergence and the stability of the parareal algorithm to solve partial differ-
ential equations, in Domain Decomposition Methods in Science and Engineering, R. Korn-
huber and et al., eds., vol. 40 of Lecture Notes in Computational Science and Engineering,
Berlin, 2005, Springer, pp. 426-432.

M. BOLTEN, D. MOSER, AND R. SPECK, A multigrid perspective on the parallel full approrima-
tion scheme in space and time, Numerical Linear Algebra with Applications, 24 (2017),
p. €2110.

M. BOLTEN, D. MOSER, AND R. SPECK, Asymptotic convergence of the parallel full approz-
imation scheme in space and time for linear problems, Numerical linear algebra with
applications, 25 (2018), p. €2208.

J. BURMEISTER AND G. HORTON, Time-parallel multigrid solution of the Navier-Stokes equa-
tions, in Multigrid methods III, Springer, 1991, pp. 155-166.

A. J. CHRISTLIEB, C. B. MACDONALD, AND B. W. ONG, Parallel high-order integrators, SIAM
J. Sci. Comput., 32 (2010), pp. 818-835.

V. DoBREV, T. KOLEV, N. PETERSSON, AND J. SCHRODER, Two-level convergence theory for
multigrid reduction in time (MGRIT), tech. report, LLNL-JRNL-692418, 2016.

A. DutT, L. GREENGARD, AND V. ROKHLIN, Spectral deferred correction methods for ordinary
differential equations, BIT, 40 (2000), pp. 241-266.

M. EMMETT AND M. MINION, Toward an efficient parallel in time method for partial differential
equations, Comm. App. Math. and Comp. Sci., 7 (2012), pp. 105-132.

C. FARHAT AND M. CHANDESRIS, Time-decomposed parallel time-integrators: theory and fea-
sibility studies for fluid, structure, and fluid-structure applications, International Journal
for Numerical Methods in Engineering, 58 (2003), pp. 1397-1434.

S. FRIEDHOFF, R. FaLcouT, T. KOLEV, S. MACLACHLAN, AND J. SCHRODER, A multigrid-in-
time algorithm for solving evolution equations in parallel, in Sixteenth Copper Mountain
Conference on Multigrid Methods, Copper Mountain, CO, United States, 2013.

M. J. GANDER, 50 years of time parallel time integration, in Multiple Shooting and Time
Domain Decomposition Methods, T. Carraro, M. Geiger, S. Korkel, and R. Rannacher,
eds., Springer, 2015, pp. 69-114.

M. J. GANDER AND S. GUTTEL, ParaEzxp: A parallel integrator for linear initial-value problems,
SIAM J. Sci. Comput., 35 (2013), pp. C123-C142.

M. J. GANDER AND E. HAIRER, Nonlinear convergence analysis for the Parareal algorithm, in
Domain Decomposition Methods in Science and Engineering, Lecture Notes in Computa-
tional Science and Engineering, O. B. Widlund and D. E. Keyes, eds., vol. 60, Springer,
2008, pp. 45-56.

M. J. GANDER, F. Kwok, AND H. ZHANG, Multigrid interpretations of the Parareal algorithm
leading to an overlapping variant and MGRIT, Computing and Visualization in Science,
19 (2018), pp. 59-74.

M. J. GANDER AND T. LUNET, Toward error estimates for general space-time discretizations
of the advection equation, Comput. Vis. Sci., 23 (2020), pp. 1-14.

M. J. GANDER AND T. LUNET, ParaStieltjes: Parallel computation of Gauss quadrature rules
using a Parareal-like approach for the Stieltjes procedure, Numerical Linear Algebra with
Applications, 28 (2021), p. e2314.

M. J. GANDER AND M. NEUMULLER, Analysis of a new space-time parallel multigrid algorithm
for parabolic problems, SIAM Journal on Scientific Computing, 38 (2016), pp. A2173—
A2208.

M. J. GANDER AND S. VANDEWALLE, Analysis of the Parareal time-parallel time-integration
method, SIAM J. Sci. Comput., 29 (2007), pp. 556-578.

W. GAUTSCHI, Orthogonal polynomsials: computation and approximation, Oxford University
Press, 2004.

24

[20]

21]

22]

23]

24]

[26]

27]

(28]

[29]

M.J GANDER, T. LUNET, D. RUPRECHT AND R. SPECK

S. GOTSCHEL, M. MiINION, D. RUPRECHT, AND R. SPECK, Twelve ways to fool the masses
when giving parallel-in-time results, in Springer Proceedings in Mathematics & Statistics,
Springer International Publishing, 2021, pp. 81-94.

S. GUNTHER, L. RuTHOTTO, J. B. SCHRODER, E. C. CYR, AND N. R. GAUGER, Layer-parallel
training of deep residual neural networks, SIAM Journal on Mathematics of Data Science,
2 (2020), pp. 1-23.

W. HACKBUSCH, Parabolic multi-grid methods, in Proc. of the sixth int’l. symposium on Com-
puting methods in applied sciences and engineering, VI, North-Holland Publishing Co.,
1984, pp. 189-197.

W. HACKBUSCH, Multi-grid methods and applications, vol. 4, Springer Science & Business
Media, 2013.

A. HESSENTHALER, B. S. SOUTHWORTH, D. NORDSLETTEN, O. ROHRLE, R. D. FALGOUT, AND
J. B. SCHRODER, Multilevel convergence analysis of multigrid-reduction-in-time, STAM
Journal on Scientific Computing, 42 (2020), pp. A771-A796.

C. HOFER, U. LANGER, M. NEUMULLER, AND R. SCHNECKENLEITNER, Parallel and robust pre-
conditioning for space-time isogeometric analysis of parabolic evolution problems, STAM
Journal on Scientific Computing, 41 (2019), pp. A1793-A1821.

D. E. KNUTH, The art of computer programming. 1. Fundamental algorithms, Addison-Wesley,
1975.

M. Lecouvez, R. D. FaLcour, C. S. WOODWARD, AND P. Topr, A parallel multigrid reduc-
tion in time method for power systems, in Power and Energy Society General Meeting
(PESGM), 2016, IEEE, 2016, pp. 1-5.

J.-L. LioNs, Y. MADAY, AND G. TURINICI, A ”Parareal” in time discretization of PDE’s, C.
R. Math. Acad. Sci. Paris, 332 (2001), pp. 661-668.

T. LUNET, J. BODART, S. GRATTON, AND X. VASSEUR, Time-parallel simulation of the decay
of homogeneous turbulence using Parareal with spatial coarsening, Computing and Visu-
alization in Science, 19 (2018), pp. 31—44.

Y. MADAY AND E. M. RoNQUIST, Parallelization in time through tensor-product space—time
solvers, Comptes Rendus Mathematique, 346 (2008), pp. 113-118.

M. L. MINION, R. SPECK, M. BOLTEN, M. EMMETT, AND D. RUPRECHT, Interweaving PFASST
and parallel multigrid, STAM J. Sci. Comput., 37 (2015), pp. S244-S263.

S. MURATA, N. SATOFUKA, AND T. KUSHIYAMA, Parabolic multi-grid method for incompressible
viscous flows using a group explicit relazation scheme, Computers & Fluids, 19 (1991),
pp. 33-41.

B. W. ONG AND J. B. SCHRODER, Applications of time parallelization, Computing and Visual-
ization in Science, 23 (2020).

D. RUPRECHT, Wave propagation characteristics of parareal, Computing and Visualization in
Science, 19 (2018), pp. 1-17.

D. RUPRECHT AND R. SPECK, Spectral deferred corrections with fast-wave slow-wave splitting,
SIAM Journal on Scientific Computing, 38 (2016), pp. A2535-A2557.

M. SCHREIBER, P. S. PEixoro, T. HAUT, AND B. WINGATE, Beyond spatial scalability limita-
tions with a massively parallel method for linear oscillatory problems, The International
Journal of High Performance Computing Applications, 32 (2018), pp. 913-933.

B. S. SouTHWORTH, Necessary conditions and tight two-level convergence bounds for Parareal
and multigrid reduction in time, SIAM Journal on Matrix Analysis and Applications, 40
(2019), pp. 564-608.

R. SPECK, D. RUPRECHT, R. KrRAUSE, M. EMMETT, M. L. MINION, M. WINKEL, AND P. GIB-
BON, A massively space-time parallel N-body solver, in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, SC ’12,
Los Alamitos, CA, USA, 2012, IEEE Computer Society Press, pp. 92:1-92:11.

G. A. STAFF AND E. M. R@NQUIST, Stability of the Parareal algorithm, in Domain Decompo-
sition Methods in Science and Engineering, Lecture Notes in Computational Science and
Engineering, R. Kornhuber and et al, eds., vol. 40, Springer, 2005, pp. 449-456.

G. WANNER AND E. HAIRER, Solving ordinary differential equations II, Springer Berlin Heidel-
berg, 1996.

	1 Introduction
	2 The Generating Function Method
	2.1 Blocks, block variables, and block operators
	2.1.1 Example with Runge-Kutta methods
	2.1.2 Example with collocation methods

	2.2 Block iteration
	2.2.1 Example with Parareal
	2.2.2 Example with a block Jacobi relaxation
	2.2.3 Example with coarse correction
	2.2.4 General remarks

	2.3 Generating function and error bound for a block iteration

	3 Writing Parareal as block iteration
	4 Writing PFASST and related algorithms as block iteration
	4.1 Spectral Deferred Correction
	4.2 Algorithmic components for PFASST
	4.2.1 Approximate Block Jacobi with SDC
	4.2.2 Approximate Block Gauss-Seidel with SDC
	4.2.3 Analysis and numerical experiments

	4.3 PFASST
	4.3.1 Analysis and numerical experiments

	5 Writing two-level time multi-grid as block iteration
	6 Comparison of iterative PinT algorithms
	7 Conclusion
	Appendix A. Error bounds for Primary Block Iterations
	A.1 Incomplete Primary Block Iterations
	A.2 Full Primary Block Iteration

	References

