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Abstract. Large and sparse rational eigenproblems where the rational
term is of low rank k arise in vibrations of fluid–solid structures and of
plates with elastically attached loads. Exploiting model order reduction
techniques, namely the Padé approximation via block Lanczos method,
problems of this type can be reduced to k–dimensional rational eigen-
problems which can be solved efficiently by safeguarded iteration.

1 Introduction

In this paper we consider the rational eigenvalue problem

T (λ)x := −Kx + λMx + CD(λ)CT x = 0, (1)

where K ∈ R
N×N and M ∈ R

N×N are sparse symmetric and positive (semi-)
definite matrices, C ∈ R

N×k is a rectangular matrix of low rank k, and D(λ) ∈
R

k×k is a real diagonal matrix depending rationally on a real parameter λ.
Problems of this type arise in (finite element models of) vibrations of fluid–solid
structures and of plates with elastically attached loads, e.g.

Problem (1) has a countable set of eigenvalues which can be characterized as
minmax values of a Rayleigh functional [10], and its eigenpairs can be determined
by iterative projection methods of Arnoldi [8] or Jacobi–Davidson type [2].

In this paper we take advantage of the fact that problem (1) can be in-
terpreted as a rational perturbation of small rank k of a linear eigenproblem.
Decomposing x ∈ R

N into its component in the range of C and its orthogonal
complement, (1) can be rewritten as

T̃ (λ)x̃ := D(λ)−1x̃ + CT (−K + λM)−1Cx̃ = 0, (2)

which is a rational eigenvalue problem of much smaller dimension k.
The eigenproblem (2) retains the symmetry properties of problem (1), and

hence, in principle it can be solved efficiently by safeguarded iteration. However,
every step of safeguarded iteration requires the evaluation of T̃ (λ) for some λ,
i.e. of CT (−K + λM)−1C, which is too expensive because the dimension N is
very large.
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The term CT (−K +λM)−1C appears in transfer functions of time invariant
linear systems, and in systems theory techniques have been developed to re-
duce the order of this term considerably. Taking advantage of these techniques,
namely of the Padé approximation via the block Lanczos method, problem (2)
is replaced by a problem of the same structure of much smaller order. Since this
approximating problem inherits the symmetry properties of the original problem
it can be solved efficiently by safeguarded iteration.

This paper is organized as follows. Section 2 presents the rational eigenprob-
lems governing free vibrations of a plate with elastically attached loads, and of
a fluid–solid structure. Section 3 summarizes the minmax theory for nonover-
damped nonlinear symmetric eigenvalue problems, and recalls the safeguarded
iteration for determining eigenpairs of dense problems of this type in a system-
atic way. Section 4 discusses the reduction of problem (1) to a k dimensional
rational eigenproblem and the application of the Padé–by–Lanczos method to
reduce the order of the rational term. We demonstrate that the eigenvalues of the
reduced problem allow a minmax characterization. Hence, it can be solved in a
systematic way and efficiently by safeguarded iteration. Section 5 reports on the
numerical behaviour of the model–order reduction technique for a finite element
discretization of a plate problem with elastically attached loads. It demonstrates
that for this type of problems the method is superior to iterative projection
methods like Arnoldi’s method [8]. A similar behaviour was observed in [3] for
free vibrations of a fluid–solid structure.

2 Rational eigenvalue problems

In this section we briefly present two examples of rational eigenproblems of type
(1).

Consider an isotropic thin plate occupying the plane domain Ω, and assume
that for j = 1, . . . , p at points ξj ∈ Ω masses mj are joined to the plate by elastic
strings with stiffness coefficients kj .

Then the the flexurable vibrations are governed by the eigenvalue problem

Lu(ξ) = ω2ρdu +

p
∑

j=1

ω2σj

σj − ω2
mjδ(ξ − ξj)u , ξ ∈ Ω (3)

Bu(ξ) = 0 , ξ ∈ ∂Ω (4)

where ρ = ρ(ξ) is the volume mass density, d = d(ξ) is the thickness of the plate

at a point ξ ∈ Ω, and σj =
kj

mj
. B is some boundary operator depending on the

support of the plate, δ denotes Dirac’s delta distribution, and

L = ∂11D(∂11 + ν∂22) + ∂22D(∂22 + ν∂11) + 2∂12D(1 − ν)∂12

is the plate operator where ∂ij = ∂i∂j and ∂i = ∂/∂ξi, D = Ed3/12(1 − ν2) the
flexurable rigidity of the plate, E is Young’s modulus, and ν the Poisson ratio.
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Discretizing by finite elements yields a matrix eigenvalue problem

−Kx + λMx +

p
∑

j=1

λσj

σj − λ
eij

eT
ij

x = 0,

which can be easily given the form (1). Here λ = ω2 and u(ξj) = xij

Another rational eigenproblem of type (1) is governing free vibrations of
a tube bundle immersed in a slightly compressible fluid under the following
simplifying assumptions: The tubes are assumed to be rigid, assembled in parallel
inside the fluid, and elastically mounted in such a way that they can vibrate
transversally, but they can not move in the direction perpendicular to their
sections. The fluid is assumed to be contained in a cavity which is infinitely
long, and each tube is supported by an independent system of springs (which
simulates the specific elasticity of each tube). Due to these assumptions, three-
dimensional effects are neglected, and so the problem can be studied in any
transversal section of the cavity. Considering small vibrations of the fluid (and
the tubes) around the state of rest, it can also be assumed that the fluid is
irrotational.

Let Ω ⊂ R
2 denote the section of the cavity, and Ωj ⊂ Ω, j = 1, . . . , p, the

sections of the tubes. Then the free vibrations of the fluid are governed by (cf.
[4])

c2∆φ + ω2φ = 0 in Ω \ ∪p
j=1Ωj

∂φ

∂n
=

ρ0ω
2

kj − ω2mj

n ·

∫

∂Ωj

φnds on ∂Ωj , j = 1, . . . , p

∂φ

∂n
= 0 on ∂Ω

Here φ is the potential of the velocity of the fluid, c denotes the speed of sound
in the fluid, ρ0 is the specific density of the fluid, kj represents the stiffness
constant of the spring system supporting tube j, mj is the mass per unit length
of the tube j, and n is the outward unit normal on the boundary of Ω and Ωj ,
respectively. Again, discretizing by finite elements yields a rational eigenproblem
(1).

3 Minmax characterization for nonlinear eigenproblems

In this section we briefly summarize the variational characterization of eigenval-
ues for nonlinear symmetric eigenvalue problems of finite dimension.

For λ ∈ J in an open real interval J let T (λ) ∈ R
n×n be a family of symmetric

matrices the elements of which are differentiable. We assume that for every
x ∈ R

n \ {0} the real equation

f(λ, x) := xT T (λ)x = 0 (5)
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has at most one solution λ ∈ J . Then equation (5) defines a functional p on
some subset D ⊂ R

n which obviously generalizes the Rayleigh quotient for linear
pencils T (λ) = λB−A, and which we call the Rayleigh functional of the nonlinear
eigenvalue problem

T (λ)x = 0. (6)

We further assume that

xT T ′(p(x))x > 0 for every x ∈ D (7)

generalizing the definiteness requirement for linear pencils. By the implicit func-
tion theorem D is an open set, and differentiating the identity xT T (p(x))x = 0
one obtains, that the eigenvectors of (6) are stationary points of p.

For overdamped problems, i.e. if the Rayleigh functional p is defined on
R

n \ {0}, Rogers [7] generalized the minmax characterization of Poincaré for
symmetric eigenproblems to nonlinear ones. In this case problem (6) has exactly
n eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn in J , and it holds

λj = min
dim V =j

max
v∈V, v 6=0

p(v).

For the general symmetric nonlinear case this characterization does not hold.
This is easily seen considering a linear family T (λ) = λB − A on an interval J
which does not contain the smallest eigenvalue of Ax = λBx.

The key idea introduced in [11] is to enumerate the eigenvalues appropriately.
λ ∈ J is an eigenvalue of problem (6) if and only if µ = 0 is an eigenvalue of the
matrix T (λ), and by Poincaré’s maxmin principle there exists m ∈ N such that

0 = max
dim V =m

min
x∈V \{0}

xT T (λ)x

‖x‖2
.

Then we assign this m to λ as its number and call λ an m-th eigenvalue of
problem (6).

With this enumeration the following minmax characterization holds (cf. [11]):

Theorem 1. Assume that for every x 6= 0 equation (5) has at most one solution
p(x) in the open real interval J , and that condition (7) holds.

Then for every m ∈ {1, . . . , n} the nonlinear eigenproblem (6) has at most
one m-th eigenvalue λm in J , which can be characterized by

λm = min
dim V =m

D∩V 6=∅

sup
v∈D∩V

p(v). (8)

Conversely, if
λm := inf

dim V =m

D∩V 6=∅

sup
v∈D∩V

p(v) ∈ J, (9)

then λm is an m-th eigenvalue of (6), and the characterization (8) holds.
The minimum is attained by the invariant subspace of the matrix T (λm)

corresponding to its m largest eigenvalues, and the supremum is attained by any
eigenvector of T (λm) corresponding to µ = 0.
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To prove this characterization we took advantage of the following relation

λ







>
=
<







λm ⇔ µm(λ) := max
dim V =m

min
x∈V, x6=0

xT T (λ)x

‖x‖2







>
=
<







0. (10)

The enumeration of eigenvalues and the fact that the eigenvectors of (6)
are the stationary vectors of the Rayleigh functional suggests the method in
Algorithm 1 called safeguarded iteration for computing the m–th eigenvalue.

Algorithm 1 Safeguarded iteration

1: Start with an approximation σ1 to the m-th eigenvalue of (6)
2: for k = 1, 2, . . . until convergence do

3: determine an eigenvector xk corresponding to the m-largest eigenvalue of T (σk)
4: evaluate σk+1 = p(xk), i.e. solve xT

k T (σk+1)xk = 0 for σk+1

5: end for

The following theorem contains the convergence properties of the safeguarded
iteration (cf. [12], [9]).

Theorem 2. (i) If λ1 := infx∈D p(x) ∈ J and σ1 ∈ p(D) then the safeguarded
iteration converges globally to λ1.

(ii) If λm ∈ J is an m-th eigenvalue of (6) which is simple then the safeguarded
iteration converges locally and quadratically to λm.

(iii) Let T (λ) be twice continuously differentiable, and assume that T ′(λ) is pos-
itive definite for λ ∈ J . If xk in step 3. of Algorithm 1 is chosen to be
an eigenvector corresponding to the m largest eigenvalue of the generalized
eigenproblem T (σk)x = µT ′(σk)x then the convergence is even cubic.

4 Order reduction for rational eigenproblems

Let K ∈ R
N×N and M ∈ R

N×N be sparse symmetric matrices where M is
positive definite and K is positive semidefinite, let C ∈ R

N×k be a rectangular
matrix of low rank k ≪ N , and let D(λ) := diag{ λ

κj−λmj
} ∈ R

k×k be a real

diagonal matrix depending rationally on a real parameter λ.
We consider the rational eigenvalue problem

T (λ)x := −Kx + λMx + CD(λ)CT x = 0. (11)

Decomposing x = Cy + z with y ∈ R
k and z ∈ range{C}⊥, and multiplying

equation (11) by CT (−K + λM)−1 one obtains

CT (Cy + z) + CT (−K + λM)−1CD(λ)CT (Cy + z) = 0

which is equivalent to

T̃ (λ)x̃ := −D(λ)−1x̃ + CT (K − λM)−1Cx̃ = 0, x̃ := D(λ)CT Cy. (12)
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This eigenproblem is of much smaller dimension than problem (11), and it re-
tains the symmetry properties of (11). It is easily seen that T̃ (λ) satisfies the
conditions of the minmax characterization in each interval J := (πj , πj+1) where
πj denotes the eigenvalues of the generalized problem Kx = πMx in ascending
order. Hence, (12) could be solved by safeguarded iteration. However, since the
dimension N of the original problem is usually very large, it is very costly to
evaluate CT (K − λM)−1C and therefore T̃ (λ) for some given λ.

The term H(λ) := CT (K − λM)−1C appears in transfer functions of time
invariant linear systems, and in systems theory techniques have been developed
to reduce the order of this term considerably. One way to define such a reduction
is by means of Padé approximation of H(λ), which is a rational matrix function
of the same type with a much smaller order than N .

Let λ0 ∈ C be a shift which is not a pole of H. Then H has a Taylor series
about λ0

H(λ) =

∞
∑

j=0

µj(λ − λ0)
j (13)

where the moments µj are k× k matrices. A reduced-order model of state-space
dimension n is called an n-th Padé model of system (13), if the Taylor expansions
of the transfer function H of the original problem and Hn of the reduced model
agree in as many leading terms as possible, i.e.

H(λ) = Hn(λ) + O
(

(λ − λ0)
q(n)

)

, (14)

where q(n) is as large as possible, and which was proved by Freund [6] to satisfy

q(n) ≥ 2⌊
n

k
⌋.

Although the Padé approximation is determined via a local property (14) it
usually has excellent approximation properties in large domains which may even
contain poles. As introduced by Feldmann and Freund [5] the Padé approxima-
tion Hn can be evaluated via the Lanczos process.

To apply the Padé–by–Lanczos process to the rational eigenproblem we trans-
form T̃ further to a more convenient form. Choosing a shift λ0 close to the
eigenvalues we are interested in problem (12) can be rewritten as

T̃ (λ)x̃ = −
1

λ
D1x̃ + D2x̃ + Hλ0

x̃ + (λ − λ0)B
T (I − (λ − λ0)A)−1Bx̃ = 0 (15)

where M = EET is the Cholesky factorization of M , Hλ0
:= CT (K−λ0M)−1C,

B := ET (K −λ0M)−1C, A := ET (K −λ0M)−1E, and D1 and D2 are diagonal
matrices with positive entries κj and mj , respectively.

If no deflation is necessary the order of BT (I−(λ−λ0)A)B can be reduced by
block Lanczos method, and the following theorem holds. A more general version
taking into account deflation is proved in [6], a different approach based on a
coupled recurrence is derived in [1]. Note that we will consider only real shifts
and therefore all appearing matrices can be assumed to be real.
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Theorem 3. Let Vm ∈ R
N×mk be an orthonormal basis of the block Krylov

space Km(A,B) := span{B,AB, . . . , Am−1B} generated by the block Lanczos
process such that the following recursion holds

AVm = VmAm + [O, . . . , O, V̂m+1βm+1] (16)

where V̂m+1 ∈ R
N×k, βm+1 ∈ R

k×k, and Am ∈ R
mk×mk.

Then with B = V1Φ, and Bm := [Ik, O, . . . , O]T Φ the moments are given by

BAiB = BT
mAi

mBm, i = 0, 1, . . . , 2m − 1, (17)

and it holds

BT (I − sA)−1B = BT
m(I − sAm)−1Bm + O(|s|2m). (18)

Replacing BT (I − (λ− λ0)A)−1B by BT
m(I − (λ− λ0)Am)−1Bm one obtains

the reduced eigenvalue problem

S(λ)x̃ := −
1

λ
D1x̃+D2x̃+Hλ0

x̃+(λ−λ0)B
T
m(I−(λ−λ0)Am)−1Bmx̃ = 0 (19)

which again is a rational eigenproblem with poles π̃0 = 0 and π̃j = λ0 + 1/αj

where αj , j = 1, . . . , km denote the eigenvalues of Am.
Let π̃ν < π̃ν+1 denote two consecutive poles of S, and let Jν = (π̃ν , π̃nu+1).

Then for λ ∈ Jν it holds

x̃T S′(λ)x̃ =
1

λ2
x̃T D1x̃ +

km
∑

j=1

β2
j

(1 − αj(λ − λ0))2
> 0, Bmx̃ = (βj)j=1,...,km,

and hence the conditions of the minmax characterization are satisfied for the
reduced eigenproblem in every interval Jν , and therefore its eigenvalues can be
determined by safeguarded iteration.

Moreover, for every x̃ the Rayleigh quotient of S(λ)

R(x̃;λ) :=
x̃T S(λ)x̃

‖x̃‖2
2

is monotonely increasing in Jν with respect to λ. Hence, if µj(λ) denote the
eigenvalues of S(λ) ordered in decreasing order, then every µj(λ) is monotonely
increasing, and it follows immediately from (10)

Theorem 4. For two consecutive poles π̃ν < π̃ν+1 of S(·), and π̃ν < ξ < ζ <
π̃nu+1 let

µℓ1(ξ) ≤ 0 < µℓ1−1 and µℓ2(ζ) < 0 ≤ µℓ2−1(ζ).

Then the reduced eigenvalue problem (19) has ℓ2 − ℓ1 eigenvalues

ξ ≤ λℓ1 ≤ λℓ1+1 ≤ · · · ≤ λℓ2−1 ≤ ζ

which can be determined by (the cubically convergent version of) safeguarded
iteration.
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5 Numerical results

We consider a clamped plate occupying the region Ω = (0, 4) × (0, 3), and we
assume that 6 identical masses are attached at the points (i, j), i = 1, 2, 3,
j = 1, 2.

Discretizing with Bogner–Fox–Schmid elements with stepsize h = 0.05 one
gets a rational eigenvalue problem

T (λ)x := −Kx + λMx +
1000λ

1000 − λ
CT Cx = 0

of dimension N = 18644 and k = 6 governing free vibrations of the plate which
has 32 eigenvalues in the interval J = (0, 2000).

For m = 12 with shift λ0 = 1000 all 32 eigenvalues are found requiring
103.5 seconds on an Intel Centrino M processor with 1.7 GHz and 1 GB RAM
under MATLAB 6.5. For m = 6 only 27 eigenvalues are found in 50.8 sec. For
comparison, the nonlinear Arnoldi in [8] requires 227.1 seconds

Figure 1 demonstrates the approximation properties of the reduced problem.
The eigenvalues are marked as vertical bars at the top of the picture, crosses
indicate the relative errors of the eigenvalue approximations obtained for m = 12,
and plus signs the errors for 27 eigenvalue approximations obtained for m = 6.

0 500 1000 1500 2000

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

eigenvalues

re
la

tiv
e 

er
ro

rs

References

1. Z. Bai and R.W. Freund. A symmetric band Lanczos process based on coupled
recurrences and some applications. SIAM J. Sci. Comput., 23:542 – 562, 2001.



Solving a rational eigenproblem by model-order reduction techniques 9

2. T. Betcke and H. Voss. A Jacobi–Davidson–type projection method for nonlinear
eigenvalue problems. Future Generation Computer Systems, 20(3):363 – 372, 2004.

3. F. Blömeling and H. Voss. Exploiting model–order reduction techniques for solv-
ing symmetric rational eigenproblems. In J.J. Dongarra, K. Madsen, and J. Was-
niewski, editors, Extended abstracts of PARA’04: State of the Art in Scientific

Computing, pages 175 – 181, Lyngby, 2004.
4. C. Conca, J. Planchard, and M. Vanninathan. Fluid and Periodic Structures,

volume 24 of Research in Applied Mathematics. Masson, Paris, 1995.
5. P. Feldmann and R.W. Freund. Efficient linear circuit analysis by Padé approxima-
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