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Abstract

This thesis studies the modelling, distributed identification and control of spatially-
distributed systems. The development of light-weight piezoelectric materials enables
sensing and actuating distributed systems without significantly changing the dynamics
of the original system. In this work, a flexible structure – a 4.8 m long aluminium
beam equipped with 16 pairs of collocated piezo actuators and sensors – is constructed
for experimental study. The piezoelectric finite element method that accounts for both
the flexible structure and the distributed piezo pairs is applied to physically model the
coupled electric and elastic dynamics. As an alternative to exploring the physical prop-
erties of the actuated structure, a local linear parameter-varying (LPV) identification
approach is extended from lumped to spatio-temporal systems to identify the frequency
response function (FRF) matrix (or the transfer function matrix) by directly modelling
its input/output behaviour.

It is well-known that spatially-distributed systems are typically governed by partial dif-
ferential equations (PDEs). After spatially discretizing the governing PDE, the system
can be considered as the interconnection of subsystems, each interacting with its near-
est neighbours and equipped with actuating and sensing capabilities. A two-dimensional
input/output model, which defines the system dynamics on a single subsystem of small
order, is employed as the mathematical model for the distributed identification of both the
parameter-invariant and parameter-varying systems, where the dynamics of the parameter-
varying systems can be captured by temporal/spatial LPV models.

To apply the well-developed state-space based synthesis conditions, the experimentally
identified input/output models are converted into their multidimensional state space rep-
resentations that lead to an efficient, linear matrix inequality (LMI)-based synthesis of
distributed controllers. It is desired that the controller inherits the interconnected struc-
ture of the plant. Therefore, a linear time- and space-invariant distributed controller and
a temporal/spatial LPV controller are used to control the parameter-invariant and the
parameter-varying systems, respectively. To reduce the conservatism caused by the use of
constant Lyapunov functions in the LPV controller design, analysis and synthesis condi-
tions using parameter-dependent Lyapunov functions are proposed by extending previous
results on lumped systems. The designed controllers are tested experimentally in terms
of suppressing the disturbances injected to the actuated beam.

Actuator saturation is usually not taken into account when solving the controller syn-
thesis problem. To overcome the performance degradation caused by the constrained
actuator capacity, a distributed anti-windup scheme is proposed. The nonlinear satura-

vii



Chapter 0. Abstract viii

tion/deadzone operator is characterized in terms of LMIs using integral quadratic con-
straints (IQCs) with a suitable choice of multiplier. The performance of the distributed
anti-windup scheme is compared with that of a decentralized anti-windup scheme.
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Chapter 1

Introduction

Spatially-distributed systems, a class of distributed-parameter systems as opposed to
lumped parameter systems, arise in various engineering problems. Examples include ve-
hicular platoons [1], modern paper-making machines [2], the distribution of heat or fluid
in a given region [3], smart materials and structures [4], etc. Variables in lumped systems
are functions of time alone, whereas a common feature of distributed-parameter systems
is their underlying independent temporal and spatial dynamics, i.e. all involved signals
are functions of time and space. Thus, this class of systems is often addressed in the
framework of spatio-temporal systems.

The modelling, analysis and control of one typical spatially-distributed system – flexible
structures – have been extensively studied in structural engineering since decades. This
thesis addresses these issues in a newly developed framework developing theoretical meth-
ods, as well as evaluating them experimentally. This introduction should motivate the
problems to be considered in this work. Main contributions and an outline of this thesis
are provided at the end of this chapter.

1.1 Spatially-Distributed Systems

Flexible structures are spatially-continuous systems whose mass and stiffness are functions
of spatial variables. The distributed nature of these systems can be captured using partial
differential equations (PDEs). Due to the spatial continuum, this class of systems is often
referred to as infinite-dimensional systems, indicating the infinite dimension of the state
space. The well-developed semigroup theory [5] has been widely employed for a precise
mathematical treatment of the internal dynamics of an infinite-dimensional system, which
is significantly more difficult than the finite-dimensional theory [6].

The active vibration control of flexible structures often involves a large number of spatially-
distributed actuators and sensors. Instead of preserving the continuous nature in space,
the attachment of actuators and sensors induces a spatial discretization, so that the overall
structure can be treated as a physical interaction between spatially-discretized subsystems
on one or multidimensional discrete lattices. A one-dimensional flexible structure after

1
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the spatial discretization is shown in Fig. 1.1. The dynamics of the spatially-discretized
subsystems can be modelled by a finite number of coupled ordinary differential equations
(ODEs) [7]. Assumed here are the convergence of finite-dimensional approximation, and
sensing and actuating capabilities on each subsystem.

Figure 1.1: Subsystems on one-dimensional lattices after the spatial discretization

The fast development of the microelectromechanical system (MEMS) and light-weight
piezoelectric materials makes the manufacturing of large arrays of actuators and sensors
feasible and economical. Meanwhile, attaching or embedding microscopic devices on the
structural surface enables the spatially-discretized subsystems being equipped with actu-
ating, sensing, and even computing and telecommunication capabilities, without changing
its nominal dynamics significantly.

1.1.1 Control Architectures

When it comes to the control of these large-scale systems, the choice of the control architec-
ture determines the involved computation effort, as well as the closed-loop performance; it
thus plays a crucial role. With each subsystem equipped with collocated or non-collocated
actuators and sensors, three prevalent architectures are the centralized, the decentralized,
and the localized or so-called distributed control schemes, as shown in Fig. 1.2.

flexible structure

flexible structure

flexible structure

(a)

(b)

(c)

computation unit actuator/sensor

Figure 1.2: Three control architectures for a large-scale system: (a) centralized scheme;
(b) decentralized scheme; (c) distributed scheme. Red arrows denote the information flow
between actuators/sensors and computation units; blue arrows denote the information
flow between computation units.
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• Centralized scheme: A centralized control scheme, as shown in Fig. 1.2 (a), treats
the distributed system as a lumped system with multiple-input and multiple-output
(MIMO). The computation unit – often a central computer – requires the connection
with all sensors and actuators. A centralized controller normally possesses a large
system order. In many cases it fails to realize an effective control due to a high level
of connectivity and computational burden. It is more sensitive to actuator/sensor
failures and transmission errors.

• Decentralized scheme: Instead of communicating with a central computer, each
subsystem in a decentralized control scheme as shown in Fig. 1.2 (b) is equipped with
an independent computation unit executing controller algorithms. It receives the
sensing information from its located subsystem, and actuates at the same location.
The controller of a decentralized scheme handles the dynamics of a single subsystem
of a significantly smaller order compared to that of a centralized system.

• Distributed (localized) scheme: It has been shown in [6], that a spatially-distributed
system exhibits some degrees of localization. A distributed control scheme inherits
the spatial structure of the plant, where the computation units interact with nearest
neighbours as shown in Fig. 1.2 (c). It is different from the decentralized scheme in
the sense that the distributed controller exchanges information with the subsystem
where it locates, as well as with neighbouring subsystems. In both decentralized
and distributed schemes, none of the controller subsystems has the information of
the complete system, whereas the communication among subsystems in Fig. 1.2 (c)
enables an improved overall performance compared to Fig. 1.2 (b). Thus, the dis-
tributed scheme is considered superior to the other two architectures.

1.1.2 Construction of a Distributed System

Inspired by the works [6] [8], an actuated flexible structure as shown in Fig. 1.3 has
been constructed to study the behaviour of a spatially-distributed system. The flexible
structure—an aluminium beam measuring 4.8 m in length, 4 cm in width, and 3 mm in
thickness, is equipped with 16 paris of piezoelectric actuators and sensors in collocated
pattern. A zoomed-in collocated piezo pair is shown in Fig. 1.4, where the piezo patch on
the top functions as actuator, the one at the bottom as sensor.

In order to approximate a free-body suspension condition, where the resonant frequencies
of the rigid body modes are at least half of that of the first bending mode [9], 17 soft
springs are used to suspend the structure in parallel. A schematic drawing of the test bed
is shown in Fig. 1.5.

The attachment of distributed actuators and sensors virtually divides the structure into
16 spatially-interconnected subsystems, each equipped with actuating and sensing capa-
bilities. This thesis is meant to experimentally test the distributed control scheme in
Fig. 1.2 (c) due to its superiority. However, constructing 16 physically parallel computa-
tion units requires a large amount of expense and effort. Instead, a much cheaper solution
as shown in Fig. 1.6 has been employed by using a centralized real-time system to real-
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(a) (b)

Figure 1.3: The experimental setup: (a) downward view of 16 actuators; (b) upward view
of 16 sensors

Figure 1.4: One collocated piezo actuator/sensor pair

Figure 1.5: A schematic drawing of the experimental setup

ize the computation tasks of 16 parallel units, with the distributed nature of controllers
still preserved. The main hardware and software components are listed in Table C.1 (see
Appendix C).

1.1.3 Linear Parameter-Varying in Distributed Systems

After the spatial discretization, the resulting subsystems may exhibit identical or varying
dynamics. Analogous to the definition of linear time-invariant (LTI) systems, let G be
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flexible structure

real-time system

Figure 1.6: Distributed control scheme employed in this work, where the computation is
centrally executed via a real-time system.

a two-dimensional operator that maps signal u(t, s) into y(t, s), i.e. y(t, s) = Gu(t, s),
where all involved signals are multidimensional with respect to time t and space s. A
spatially-distributed system is said to be linear time- and space-invariant (LTSI), if the
system is linear and invariant under temporal and spatial translations [6] as defined as
follows:

• Operator G is linear, if ∀α, β ∈ R

G(αu(t, s) + βv(t, s)) = αGu(t, s) + βGv(t, s). (1.1)

• Operator G is time- and space-invariant if ∀t0, s0 ∈ R

y(t− t0, s− s0) = Gu(t− t0, s− s0). (1.2)

If condition (1.2) is violated, the distributed system is said to be linear time/space-varying
(LTSV).

The framework of linear parameter-varying (LPV) systems was first introduced in [10] to
analyse and control nonlinear systems, whose system matrices vary either explicitly with
respect to time, or with respect to a temporal-scheduling parameter θ, i.e.

ẋ(t) = A(θ(t))x(t) +B(θ(t))u(t), (1.3)

y(t) = C(θ(t))x(t) +D(θ(t))u(t). (1.4)

In general, the scheduling parameters can be exogenous signals, states, inputs or out-
puts. If the system matrices depend on the scheduling parameters, the LPV state space
model (1.3)-(1.4) captures the nonlinear dynamics with a collection of LTI models on the
scheduling trajectory.

A heuristic approach to control LPV systems is to design a series of LTI controllers at
each frozen point on the scheduling trajectory. The overall control law is realized via
controller interpolation. The drawback of such schemes is no guarantee of stability and
performance along all possible trajectories. With the extension of H∞ control theory
for LTI systems, the design of gain-scheduling controllers guarantees the stability and
certain performance specification along the scheduling trajectories; it has become an active
research area in control engineering since 1970s. When the dependence of the plant
matrices on scheduling parameters is linear fractional, the LPV model can be written
in a linear fractional transformation (LFT) form. Based on the small gain theorem, the
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existence of a gain-scheduled controller is fully characterized in terms of linear matrix
inequalities (LMIs) [11] [12], via searching for Lyapunov functions that establish stability
and performance of the closed-loop system. The use of constant Lyapunov functions
(CLFs) allows for arbitrarily fast parameter variations, thus resulting conservatism in
the case of slowly varying parameters. To reduce the conservatism caused by the use of
CLFs, an improvement can be expected by exploiting the concept of parameter-dependent
Lyapunov functions (PDLFs), which allows to incorporate the knowledge on the rate of
parameter variations in the derivation of analysis and synthesis conditions [13] [14] [15].
A more detailed overview regarding LPV systems and LPV controller design can be found
in [16] [17] [18] [19] [20].

Although the LPV framework was first introduced to deal with time-varying systems,
it can be extended in a straightforward way to solve analogous problems in distributed
systems with varying parameters. If the system matrices can be parametrized as functions
of temporal- and/or spatial-scheduling parameters, a temporal/spatial LPV model can be
used to capture the structural dynamics over the multidimensional variation range. The
controller design techniques developed for temporal LPV models can be extended and
applied to LTSV models [21].

1.2 Relevant Work in the Field

Theoretical approaches for the modelling, analysis and control of spatially-distributed
systems have been developed in numerous works. This section reviews some of them
which are relevant to the topics concerned in this thesis, and motivates problems to be
addressed.

1.2.1 Modelling/Identification

Modelling of continuous structures has been a routine topic of research in structural en-
gineering for decades. The finite element (FE) method [22], as a numerical modelling
approach, has been employed extensively in the theoretical analysis of structural be-
haviour in aeronautics, civil and building structures, biomechanical problems, automotive
applications and so on. The standard FE method accounts only for the mechanical energy
dissipation, not taking the bonded piezo actuators/sensors – parts of the experimental
setup in Section 1.1.2 – into consideration. The piezoelectric effect was first incorporated
into the FE modelling in [23] and [24]. The derived piezoelectric FE approach takes care
of coupled piezoelectric and elastic effect, and has been widely applied to the modelling
of intelligent structures in [25] [26], etc.

Modelling using the FE method helps to understand the physical behaviour of the struc-
ture, taking safety and reliability issues into consideration. However, with the increase of
structural complexity, the FE modelling can become expensive and involves large compu-
tation effort. Meanwhile, the obtained FE model treats the structure as a lumped MIMO
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system; the resulting large system order makes it unfavourable for further controller de-
sign.

In contrast, black-box identification out of experimental measurements does not require
a prior knowledge on the principle laws of physics; it thus serves as a fast and efficient
solution. It is well-known, that the dynamics of continuous structures are typically gov-
erned by PDEs. The temporal and spatial discretization of a governing PDE leads to a
two-dimensional input/output model, which could be used as the mathematical model for
black-box identification. Based on the least-squares estimation, a black-box identification
approach for LTSI systems has been developed in [27]. The identified model defines the
dynamics of a single subsystem interacting with its neighbouring subsystems, with the
localized nature of the plant preserved. In the presence of temporal/spatial variations, the
temporal LPV input/output identification techniques proposed in [28] have been extended
in [29] for the identification of temporal/spatial LPV models.

1.2.2 Distributed Control

Since last few decades, the design of distributed controllers that preserve the distributed
structure of the plant as shown in Fig. 1.7 has received extensive attentions. Several
frameworks have been proposed to address this issue from different perspectives [8] [30]
[31] [32], etc. Two common features of these approaches are: 1. the overall system is
treated as the interconnection of small-order subsystems; 2. the controller inherits the
communication topology of the plant.

GGGGGG

KKKKKK

Figure 1.7: Distributed controller designed for a distributed plant

Among them, [8] introduced a novel multidimensional state space model to represent
the interconnected dynamics of an LTSI system. Analysis and synthesis conditions are
formulated in terms of LMIs, using the induced L2 norm as the performance criterion.
To investigate the effectiveness of the framework proposed in [8], a simulation case study
on the distributed control of a flexible beam has been performed in [33]. Accounting for
the boundary conditions, non-uniform physical characteristics of the structure, etc., tools
have been developed in [21] [34] to solve the control problem when the underlying system
dynamics are not invariant with respect to temporal or spatial variables.

The distributed control scheme has been perceived as an effective and computationally
attractive solution to tackle large-scale distributed systems. Among the various developed
approaches, very few of them have been validated experimentally. This thesis is meant to
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fill in this gap by exploring the experimental implementation of the framework proposed
in [8] on the constructed test structure.

1.2.3 Anti-Windup Compensator

In all physical systems, actuator capacities are limited by the inherent physical constraints
and limitations of the actuators. In the presence of actuator saturation, any controller
with slow or unstable dynamics exhibits a windup effect [35]: the established closed-loop
performance suffers from deterioration, or even instability. The design of an effective
anti-windup (AW) compensator for lumped systems has been an active field of research
since 1970s. Only in the last decade, a more formal way with stability and performance
specifications incorporated in the AW design has been established using H∞ optimal
control [36]. In recent years, LMIs are employed as a tool to impose constraints on the
design of an AW compensator [37] [38] [39], which significantly simplifies the computation
of the global optimal solution into a convex optimization problem.

The windup effect can arise in distributed systems as well. Saturation on one actua-
tor could easily lead to saturation on an array of interconnected actuators. Until now,
very few works have addressed this issue thoroughly [40] [41]. Taking the inherent dis-
tributed dynamics of the plant and the controller into consideration, an appropriate AW
scheme could effectively alleviate the degradation of the closed-loop performance caused
by actuator saturation, thus being worth further research.

1.3 Scope and Main Contributions of this Thesis

This thesis focuses on the modelling, distributed identification and control of spatially-
interconnected systems, with an application to an aluminium beam equipped with an array
of collocated piezo actuator and sensor pairs. For a better understanding of the underlying
physical laws of the test structure, it is meaningful to start with the physical modelling
based on the knowledge of its properties and functionalities. Furthermore, the distributed
framework proposed in [8] is employed in this thesis for the system analysis and distributed
controller design. In order to apply the well-developed analysis and synthesis conditions
developed in [8], a distributed model in multidimensional state space form needs to be
identified first. Considered in this thesis are both the LTSI and LTSV systems. By slightly
modifying the hardware, the test structure can realize the configurations required for both
the LTSI and LTSV models. It is desired, that the controller inherits the interconnected
structure of the plant as shown in Fig. 1.7. The distributed control problem of both
the identified LTSI and LTSV models are addressed, and implemented experimentally.
Keeping the physical limitations of the distributed actuators in mind, an appropriate
AW scheme that accounts for the distributed nature of the plant and the controller, can
effectively counteract the windup effect with a bound on the closed-loop performance
guaranteed in the presence of actuator saturation.
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The main contributions of this thesis are summarized as follows:

• The piezoelectric FE modelling approach is applied to model the coupled piezo-
electric and mechanical behaviour of the piezo-actuated beam structure. With the
combined implementation of the experimental modal analysis, an FE model that
captures the structural dynamics of the real plant to a satisfactory degree is ob-
tained.

• Frequency response function (FRF) is a mathematical representation of the rela-
tionship from an excitation at one location to the vibration response at the same or
another location. It is demonstrated, that FRFs of even a homogeneous structure
exhibit spatially-varying characteristics. A local LPV input/output identification
technique for temporal systems is extended to spatio-temporal systems to model the
FRF matrix as a spatial LPV model based on black-box identification.

• The multidimensional black-box identification techniques developed in [27] for LTSI
models and [29] for spatial LPV models are for the first time implemented exper-
imentally. Although the identified models capture the structural behaviour to a
certain extent, dynamics at resonances are hardly identified. A new identification
procedure is proposed to extract a distributed input/output model from the ob-
tained FE model, yielding improved identification results.

• Distributed LTSI and LPV controllers for the LTSI and for the LTSV systems are
designed, respectively, and experimentally implemented to suppress the vibratory
motion of the actuated beam caused by the disturbance injection. To reduce the con-
servatism with the use of CLFs, the LPV controller design technique using PDLFs
is extended from lumped systems to spatially-distributed systems with varying pa-
rameters. The performance of the designed controllers is evaluated experimentally.

• To alleviate the windup effect due to actuator saturation, a distributed AW scheme,
that inherits the distributed pattern of the controlled system is proposed. The
designed AW compensator can be implemented on top of an existing closed-loop
system, with the global stability and a bound on L2 performance of the constrained
system guaranteed.

1.4 Thesis Outline

This thesis consists of eight chapters. A brief overview of the content in each chapter is
given below:

Chapter 2 reviews the framework of spatially-interconnected systems. Definitions on
the multidimensional signal and system norms are given as a preliminary. The multidi-
mensional state space representations, that are employed throughout the work, proposed
in [8] for LTSI systems, in [21] for LTSV systems, as well as their correspondent con-
trollers, which inherit the distributed nature of the plant, are presented. The definitions
of the well-posedness, exponential stability, and quadratic performance in the context
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of distributed systems are discussed. The analysis conditions for an LTSI system to be
well-posed, exponentially stable, and with the imposed performance criteria satisfied are
provided for both continuous and discrete systems.

Chapter 3 takes physical aspects of the experimental structure into consideration, re-
viewing the functionality of piezoelectric patches as actuator and sensor, respectively.
Linear constitutive equations are applied to analyse the linear dynamics of both the piezo
actuators and sensors. The application of a piezoelectric FE modelling approach yields
a theoretical FE model characterized in terms of mass and stiffness matrices, based on
known and assumed knowledge on the physical properties of the actuated beam. To
reduce the deviation between the theoretical FE model and test structure, experimen-
tal modal analysis is performed to update the mass and stiffness matrices at first, then
the proportional-assumed damping matrix. Meanwhile, a direct feed-through effect is
observed from actuators to collocated sensors.

Instead of exploring the inherent physics of a flexible structure using the FE mod-
elling, Chapter 4 identifies a structure through identifying its FRF matrix from the
input/output measurements. It is demonstrated step by step, that even for a structure
comprised of identical subsystems, its FRF matrix exhibits spatially-varying character-
istics. A local LPV identification technique for temporal systems is extended to spatio-
temporal systems to capture the spatially-varying properties of FRFs. Actuating and
sensing at selected locations results in a set of measured FRFs, each being estimated as
an LTI model using a least-squares-based identification technique. The application of the
extended local LPV approach parametrizes the set of estimated LTI models as a spa-
tial LPV model by defining the spatial coordinates of actuating and sensing locations as
spatial scheduling parameters. The proposed approach allows to perform identification ex-
periments at a small number of selected actuating and sensing locations, and parametrize
a spatial LPV model. Then unknown FRFs at other locations can be easily approximated
through interpolation. The proposed approach is tested experimentally.

Both the obtained FE model in Chapter 3 and the identified FRF matrix in spatial LPV
representation in Chapter 4 treat the plant as a MIMO lumped system. Chapter 5 deals
with the identification problem in the context of spatially-distributed systems. A two-
dimensional input/output model induced by the temporal and spatial discretization of
governing PDEs is considered as the mathematical model for identification. It describes
the dynamics of a spatially-discrete subsystem interacting with nearby subsystems. Black-
box identification techniques for the identification of LTSI and LTSV models are briefly
reviewed, and experimentally implemented. To improve the model accuracy, especially at
resonant peaks, a new identification procedure which makes use of the FE model obtained
in Chapter 3 is proposed. Both the identified LTSI and spatial LPV models preserve the
two-dimensional input/output structure, and suggest a better representation of the plant
dynamics than black-box identification.

Based on the input/output models identified in Chapter 5, Chapter 6 solves the con-
troller design problem for both the LTSI and LTSV systems. In order to employ the
well-developed state-space based analysis and synthesis conditions, the experimentally
identified input/output models are first converted into their multidimensional state space
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realizations. The construction of a multidimensional generalized plant for shaping the
mixed sensitivity of the closed-loop system is discussed. The synthesis conditions of a
distributed LTSI controller are briefly reviewed. Both a distributed and a decentralized
controller are designed and implemented, with their performance compared experimen-
tally. The synthesis conditions of temporal/spatial LPV controllers for LTSV systems are
derived with the application of the full block S-procedure (FBSP), using both the CLFs
and PDLFs. The experimental results demonstrate a superior performance of the LPV
controller designed using PDLFs.

Chapter 7 addresses a two-step distributed AW compensator design in the presence of
actuator saturation in physical systems. A lumped AW scheme is first revisited. The
definition of a mathematical tool – integral quadratic constraints (IQCs) [42] – and its
application to the robust analysis of an LFT model with a nonlinear uncertainty is shortly
recapped. Inspired by the lumped setup, a distributed AW scheme, which preserves the
distributed nature of the plant and the controller, is proposed. The stability of the
closed-loop subsystem in LFT form, with the nonlinear deadzone operator as uncertainty,
is analysed using IQCs. The synthesis conditions are derived after applying the elimina-
tion lemma. The performance of the distributed AW compensator is illustrated using a
simulation example, in comparison with a decentralized AW scheme.

In Chapter 8, conclusions to this thesis are drawn; and an outlook for future research is
given.



Chapter 2

Spatially-Interconnected Systems

2.1 Introduction

In this chapter, relevant preliminary materials regarding spatially-interconnected systems
are briefly reviewed. In Section 2.2, signal and system norms and shift operators in the
context of spatially-interconnected systems are extended from their lumped counterparts.
Instead of considering the distributed-parameter system as a large-scale lumped MIMO
system, the distributed framework proposed in [8], where a spatially-distributed system
can be seen as an array of interconnected subsystems, is presented in Section 2.3. The
system dynamics are defined at the subsystem level using a multidimensional state space
representation. Depending on the physical properties of subsystems, such a system can
be either LTSI or LTSV, where subsystems in an LTSI system share identical dynamics,
whereas the varying dynamics of an LTSV system can be captured using temporal/spatial-
LPV models. It is desired that the controller inherits the distributed feature of the plant.
The controller structures for both parameter-invariant and parameter-varying systems
are given in Section 2.4. In Section 2.5, the well-posedness, exponential stability and
quadratic performance are defined for spatially-interconnected systems, respectively. The
analysis conditions that establish well-posedness, stability and performance specifications
are stated in terms of LMIs.

2.2 Relevant Definitions

Unlike lumped systems, whose signals are functions of time only, spatially-distributed
systems are multidimensional systems. For systems in L spatial dimensions, involved
signals are indexed by L + 1 independent variables, e.g. signal u(k, s1, s2, . . . , sL) with
respect to discrete temporal variable k, and discrete spatial variables s1, s2, . . . , sL, where
si indexes the i-th spatial dimension. This work focuses on distributed systems of one
spatial dimension, i.e. u(k, s).

Signal norms for lumped systems measure the size of a signal over time, whereas system
norms measure the gain of a system. These measures apply to multidimensional systems

12
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as well. The normed spaces, the signal and space norms, as well as the shift operators,
have been extended to spatially-distributed systems in [8], accounting for both temporal
and spatial variables.

Definition 2.1 (Inner Product Space [5]) An inner product on a linear vector space
V defined over complex or real filed F is a map

< ·, · >: V × V → F . (2.1)

Definition 2.2 (Hilbert Space [5]) A Hilbert space is an inner product space that is
complete as a normed linear space under the induced norm.

The spaces l2 and L2 are Hilbert spaces under inner products. Provided x(k, s)—a func-
tion of discrete time k and discrete space s, the spaces l2 and L2 are defined by separating
the spatial and temporal parts of the signal as follows:

Definition 2.3 (Space l2 [8]) The space l2 is the set of functions that the following
quantity with fixed temporal variable k = k0

∞∑

s=−∞

xT (k0, s)x(k0, s) (2.2)

is bounded.

The corresponding l2 norm is defined as

‖ x(k0, s) ‖2l2 :=
∞∑

s=−∞

xT (k0, s)x(k0, s). (2.3)

More intuitively, the boundness of space l2 requires a finite shaded area in Fig. 2.1 at any
instant in time. The boundness also implies the completeness of the norm space.

k

s

‖ x(k, s) ‖2l2

k0

‖ x(k0, s) ‖2l2

Figure 2.1: l2 norm of x(k, s) at a fixed time instant k0
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Provided that x(k, s) is in l2, the space L2 assesses the boundness of x(k, s) over the whole
positive time.

Definition 2.4 (Space L2 [8]) The space L2 is defined as the set of functions for
which the following quantity

∞∑

k=1

∞∑

s=−∞

xT (k, s)x(k, s) (2.4)

is bounded.

The corresponding L2 norm is defined as

‖ x(k, s) ‖2L2
:=

∞∑

k=1

∞∑

s=−∞

xT (k, s)x(k, s). (2.5)

Analogous to lumped systems, the induced L2 norm of a multidimensional system mea-
sures the system gain - the maximum ratio from the L2 norm of the output signal to the
L2 norm of the input signal.

Definition 2.5 (System Norm [8]) The induced L2 norm of an operator G is defined
as

‖ G ‖L2
:= sup

x 6=0,x∈L2

‖ Gx ‖L2

‖ x ‖L2

. (2.6)

The operator G is said to be bounded on L2 if ‖ G ‖L2
< ∞ holds.

Definition 2.6 (Shift Operators [8]) The temporal forward shift operator T is de-
fined as

Tx(k, s) = x(k + 1, s), (2.7)

whereas the spatial forward and backward shift operators S and S−1 act on signals in one
spatial dimension as

Sx(k, s) = x(k, s+ 1), S−1x(k, s) = x(k, s− 1). (2.8)

2.3 Interconnected Systems

According to the framework proposed in [8], a spatially-distributed system is comprised of
a number of interconnected subsystems exchanging information with their nearest neigh-
bours as depicted in Fig. 2.2. The subsystems can either be identical or exhibit different
dynamics, due to the physical properties, boundary conditions of the distributed system,
etc. In this section, the multidimensional state space models that describe the dynamics
of both the parameter-invariant and -varying systems are established.
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Figure 2.2: Part of a spatially-interconnected system

2.3.1 LTSI Systems

Distributed systems are considered LTSI, if the system dynamics are invariant under
both temporal and spatial translations [6]. Instead of modelling a distributed system
in a centralized manner, a localized model of small size is much easier to handle. The
dynamics at any subsystem s is represented in a multidimensional state space form
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, (2.9)

which contains the temporal state vector xt ∈ R
m0 , as well as the spatial state vectors

x+
s ∈ Rm+ and x−

s ∈ Rm− in positive and negative directions, respectively, where m0, m+

and m− denote the size of temporal, and spatial state vectors in positive and negative
directions, respectively. Subsystems communicate information with each other through
spatial states, e.g. the spatial states x+

s (k, s) and x−
s (k, s) are the information sending

from neighbours s − 1 and s + 1 to s, respectively. The disturbance signal d ∈ Rnd

and fictitious output z ∈ Rnz are the input and output of the performance channel,
respectively, whereas y ∈ Rny and u ∈ Rnu are the measured output and exogenous input,
respectively. The sizes of the respective signals are denoted by nd, nz, ny and nu. The
system matrices are identical for all subsystems in case of LTSI systems.

An ideal exchange of information among subsystems is assumed in (2.9), i.e. no noise is
injected on the communication channel, and no data lost. Thus, the spatial inputs of one
subsystem are the spatial outputs of neighbouring subsystems.

Define ∆m as an augmented operator containing both the temporal shift operator T, and
the spatial shift operators S and S−1 as

∆m :=





TIm0

SIm+

S−1Im−



 , (2.10)

with m = (m0, m+, m−). The state space realization (2.9) can be expressed in a compact
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way as
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xG(k, s)

d(k, s)
u(k, s)



 . (2.11)

The superscript G specifies the plant model. This manner of representing referred systems
will be applied throughout the work.

2.3.2 LTSV Systems

The assumptions of an LTSI system are often violated in real applications. Dynamics
defined on subsystems could vary with respect to time, space, or both. The extended
definition of LPV system provides a powerful framework for the modelling of time/space-
varying systems, with the linear relationship between the inputs and the outputs still
preserved. The multidimensional state space model (2.9), first developed for LTSI systems,
is adapted to time/space-varying systems in [21] by allowing variations of the system
matrices.

Let the temporal scheduling parameters be θt := [θt1 , θt2 , . . . , θtnt
], and the spatial schedul-

ing parameters θs := [θs1 , θs2 , . . . , θsns
], where nt and ns are the numbers of temporal and

spatial scheduling parameters, respectively; both are assumed to be measurable in real
time. Assume a functional dependence of the system matrices on bounded θt and θs.
The state space representation G at subsystem s, that depends explicitly on θt and θs, is
written as
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(2.12)

Further assume that the functional dependence of the system matrices on scheduling
parameters is rational, and that the temporal and spatial variations are decoupled, i.e.
spatial properties of subsystems do not change in time. By pulling out the temporal and
spatial uncertainties, the LPV system (2.12) can be written in an LFT representation
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, (2.13)
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and [
pt(k, s)
ps(k, s)

]

=

[
Θt

Θs

] [
qt(k, s)
qs(k, s)

]

:= ΥG

[
qt(k, s)
qs(k, s)

]

, (2.14)

with pt and qt ∈ R
nΘt , ps and qs ∈ R

nΘs , Θt ∈ Θt and Θs ∈ Θs, where pt and ps,
qt and qs are the inputs and outputs of the temporal and spatial uncertainty channels,
respectively. The decoupled temporal and spatial variations imply zero matrices Dqtps

and Dqspt. Θt and Θs are the structured temporal and spatial uncertainties of sizes nΘt

and nΘs
respectively. Θt and Θs are two compact sets with the uncertainties structured

in diagonal matrices form, i.e.

Θt = {Θt : diag{θt1Irθt1 , . . . , θtnt
Irθtnt

}, |θti | < 1, i = 1, . . . , nt}
Θs = {Θs : diag{θs1Irθs1 , . . . , θsns

Irθsns
}, |θsi| < 1, i = 1, . . . , ns},

(2.15)

where rθti and rθsi denote the multiplicity of scheduling parameters θti and θsi , respectively.

A schematic LFT representation of the time/space-varying distributed system is shown
in Fig. 2.3, where each subsystem can be seen as the interconnection of an LTSI model G
augmented by local feedback with its own temporal and spatial uncertainties.
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ps(k, s+1) qs(k, s+1)

Figure 2.3: Distributed system with time/space-variations in LFT representation

The upper LFT description (2.13) and (2.14) in a compact form writes
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, (2.16)

with
pG(k, s) = ΥGqG(k, s). (2.17)

Assume well-posedness of the interconnection between the LTSI model and uncertainties
[43]. The explicit LPV form of (2.16) and (2.17) takes the form
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It can be recovered from (2.16) and (2.17) by applying the upper LFT definition (see
Appendix C.1)
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2.4 Controller Structure

A distributed controller that inherits the communication topology of the plant as shown
in Fig. 2.4 is considered in this work. The distributed controller itself is a distributed
system, interacting with nearby subsystems. The controller for an LTSI plant is assumed
to be an LTSI system, whereas the stability of an LTSV system can only be guaranteed
when its controller is properly gain-scheduled. This section presents the controller model
structures, as well as the closed-loop state space models, for both the LTSI and LTSV
models.

K KK

xK,+
s (k, s) xK,+

s (k, s+ 1)

xK,−
s (k, s− 1) xK,−

s (k, s)

u(k, s− 1) y(k, s− 1) u(k, s) y(k, s) u(k, s+ 1) y(k, s+ 1)

Figure 2.4: Part of a distributed controller

2.4.1 LTSI Systems

The distributed LTSI controller itself is an LTSI system as well. Its state space model at
any subsystem s admits a description

[

(∆K
mx

K)(k, s)

u(k, s)

]

=

[

AK BK

CK DK

][

xK(k, s)

y(k, s)

]

. (2.20)

The resulting closed-loop system is depicted in Fig. 2.5, with a state space realization of
a controlled subsystem

[

(∆L
mx

L)(k, s)

z(k, s)

]

=

[

AL BL

CL DL

][

xL(k, s)

d(k, s)

]

, (2.21)
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whose state vector is arranged in a way such that the temporal states, and the spatial
states in positive and negative directions of the plant and the controller are grouped as

xL =

[
[
xG
t

xK
t

]T

,

[
xG,+
s

xK,+
s

]T

,

[
xG,−
s

xK,−
s

]T
]T

. (2.22)

The superscripts G, K and L indicate the plant, controller and closed-loop system, re-
spectively.

GGG

KKK

LLL

Figure 2.5: Controlled LTSI system

2.4.2 LTSV Systems

In lumped systems, an LTI controller often fails to realize an effective control if the plant
exhibits varying dynamics. When it comes to distributed systems, a temporally/spatially-
scheduled controller that inherits the distributed nature of the LTSV plant is desired to
guarantee the stability and certain performance specifications of the controlled system.

The compact form of an explicit LPV controller takes the form
[

(∆K
mx

K)(k, s)

u(k, s)

]

=

[

AK(ΘK
t ,Θ

K
s ) BK

y (ΘK
t ,Θ

K
s )

CK
u (ΘK

t ,Θ
K
s ) DK

uy(Θ
K
t ,Θ

K
s )

][

xK(k, s)

y(k, s)

]

. (2.23)

The interconnection of the LPV plant (2.18) and controller (2.23) yields an LPV closed-
loop system

[

(∆L
mx

L)(k, s)

z(k, s)

]

=

[

AL(ΘL
t ,Θ

L
s ) BL

d (Θ
L
t ,Θ

L
s )

CL
z (Θ

L
t ,Θ

L
s ) DL

zd(Θ
L
t ,Θ

L
s )

][

xL(k, s)

d(k, s)

]

. (2.24)

Provided an LFT representation of the plant subsystem (2.16) and (2.17), its LPV con-
troller in LFT form which consists of the interconnection of an invariant system K with
own uncertainties (ΘK

t ,Θ
K
s ) is shown in Fig. 2.6. The compact state space representation

of the LFT LPV controller at any subsystem s is described as






(∆K
mx

K)(k, s)

qK(k, s)

u(k, s)




 =






AK BK
p BK

y

CK
q DK

qp DK
qy

CK
u DK

up DK
uy











xK(k, s)

pK(k, s)

y(k, s)




 , (2.25)
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whose uncertainty channel pK(k, s) =

[
pt,K(k, s)
ps,K(k, s)

]

, qK(k, s) =

[
qt,K(k, s)
qs,K(k, s)

]

, and

pK =

[
ΘK

t

ΘK
s

]

qK := ΥKqK . (2.26)

GGG

KKK

Θt

Θs−1

Θt

Θs

Θt

Θs+1

ΘK
s−1 ΘK

s ΘK
s+1

ΘK
tΘK

tΘK
t

Figure 2.6: Interconnection between LFT plant subsystems and LFT controller subsys-
tems

The interconnection between the plant subsystem (2.16) and (2.17), and the controller
subsystem (2.25) and (2.26), leads to a closed-loop distributed system in LFT form as
shown in Fig. 2.7 with augmented plant and controller uncertainties, where the dynamics
of each controlled subsystem are governed by






(∆L
mx

L)(k, s)

qL(k, s)

z(k, s)




 =






AL BL
p BL

d

CL
q DL

qp DL
qd

CL
z DL

zp DL
zd











xL(k, s)

pL(k, s)

d(k, s)




 , (2.27)

with

pL(k, s) =

[
pL,t(k, s)
pL,s(k, s)

]

=







pG,t(k, s)
pK,t(k, s)

pG,s(k, s)
pK,s(k, s)






=







Θt

ΘK
t

Θs

ΘK
s













qG,t(k, s)
qK,t(k, s)

qG,s(k, s)
qK,s(k, s)







:=

[
ΘL

t

ΘL
s

] [
qL,t(k, s)
qL,s(k, s)

]

:= ΥLqL(k, s). (2.28)

Remark :

• Under certain assumptions, the controller uncertainty can be determined as a copy
of the plant uncertainty, i.e. ΥK = ΥG, at the price of conservatism. The controller
scheduling policy will be discussed in Chapter 6.
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Figure 2.7: Controlled LTSV distributed system in LFT representation

2.5 Well-Posedness, Stability and Performance

Well-posedness, stability and performance are three major issues addressed in system
analysis, which apply to spatially-interconnected systems as well. In [8], the three aspects
are well defined for LTSI systems with continuous temporal and continuous spatial vari-
ables. Nevertheless, the experimentally identified plant models are normally discrete in
both time and space. Meanwhile, most controllers can only be implemented digitally in
practice. Thus, provided the state space realizations in Section 2.3 and 2.4 with discrete
time and space, the bilinear transformation C.3 (see Appendix C) has to be performed to
convert a discrete distributed system to its continuous counterpart, such that the analysis
conditions developed in [8] can be applied. The continuous closed-loop matrices after con-
version are denoted as (ĀL, B̄L, C̄L, D̄L). From here on, the overhead bars above system
matrices indicate a continuous system; otherwise discrete.

In this section, definitions of well-posedness, exponential stability and quadratic perfor-
mance in the context of spatially-distributed systems are discussed. Analysis conditions
for an LTSI system to be exponentially stable and satisfy the desired quadratic perfor-
mance are provided. Conditions for LTSV systems will be discussed in Chapter 6 when
it comes to the LPV controller design.

2.5.1 Well-Posedness

Definition 2.7 (Well-Posedness [44]) A feedback system is considered to be well-
posed if all closed-loop transfer matrices are well-defined and proper. It is equivalent to:
there exist unique and bounded solutions to the system equations when signals are injected
anywhere.

Well-posedness in a spatially-interconnected system implies the existence of bounded out-
puts at all subsystems, given any bounded noise n+ in positive direction, n− in negative
direction and disturbance d injected in the loop as shown in Fig. 2.8.

Theorem 2.1 ([8]) A distributed system in the form of (2.21) is well-posed, if and only
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z(k, s− 1) d(k, s− 1) z(k, s) d(k, s) z(k, s+ 1) d(k, s+ 1)
n+(k, s− 1) n+(k, s)

n−(k, s) n−(k, s+ 1)

LLL

Figure 2.8: Distributed system with noise and disturbance injected

if (∆L
s,m − AL

ss) is invertible on space l2, where ∆L
s,m and AL

ss are defined as

∆L
s,m :=

[

SImL
+

S−1ImL
−

]

, AL
ss :=

[
AL,++

ss AL,+−
ss

AL,−+
ss AL,−−

ss

]

, (2.29)

respectively.

2.5.2 Exponential Stability and Quadratic Performance

Consider again the controlled system (2.21). Definitions of exponential stability, quadratic
performance and structured Lyapunov functions in the context of distributed systems,
as well as conditions for an LTSI system to be exponential stable and fulfil quadratic
performance, are given below.

Definition 2.8 (Exponential Stability) The discrete system (2.21) is said to be ex-
ponentially stable if there exist positive α and β such that

‖ An ‖l2≤ αe−βn, (2.30)

where the operator A is defined [8] as A := AL
tt +

[

AL,+
ts AL,−

ts

]
(∆L

s,m − AL
ss)

−1

[

AL,+
st

AL,−
st

]

;

n is a positive integer.

Readers are referred to [8] regarding the stability condition for continuous systems. Con-
dition (2.30) for discrete systems follows immediately.

Definition 2.9 (Quadratic Performance) A stable closed-loop system (2.21) is said
to have quadratic performance γ, if the induced L2 norm that maps d ∈ L2 to z ∈ L2 is
bounded by γ > 0, i.e. ‖ z ‖L2

< γ ‖ d ‖L2
, which can be expressed in an integral quadratic

form
∞∑

k=1

∞∑

s=−∞

[∗]T
[−γI 0

0 1
γ
I

] [
d(k, s)
z(k, s)

]T

≤ 0. (2.31)

When γ < 1, the system is said to be contractive.
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Remark :

• In this work, the constraint on the induced L2 norm of the performance channel is
of interest. Rather general performance specifications can be imposed as suggested
in [45]

∞∑

k=1

∞∑

s=−∞

[∗]T
[
Qp Sp

ST
p Rp

] [
d(k, s)
z(k, s)

]T

≤ 0. (2.32)

Definition 2.10 (Structured Lyapunov Matrix) The structured Lyapunov matrix
set Xm with decoupled temporal and spatial components is defined as

Xm =

{

X ∈ R
(m0+m++m−)×(m0+m++m−)

∣
∣
∣
∣
X = XT =

[
Xt

Xs

]

, det(X) 6= 0,

Xt ∈ R
m0×m0 > 0

}

. (2.33)

In the following, the Lyapunov matrix set Xm is always labelled with m indexed by a
superscript to specify the involved system, as well as compatible sizes of temporal and
spatial components, e.g. XmL—the Lyapunov matrix of the closed-loop system.

Now we are ready to formulate the LMI conditions that establish both exponential sta-
bility and quadratic performance constraints on a discrete system and its continuous
counterpart as follows.

Theorem 2.2 Assume that the interconnected system (2.21) is well-posed. The system
is exponentially stable, and has quadratic performance γ, if and only if there exists a
symmetric matrix X ∈ XmL, such that

(i) for discrete system:

[∗
∗

]T







−X 0
0 X

−γI 0
0 1

γ
I






















I 0 0 0
0 I 0 0

AL,−
st AL,−+

ss AL,−−
ss BL,−

s,d

AL
tt AL,+

ts AL,−
ts BL

t,d

AL,+
st AL,++

ss AL,+−
ss BL,+

s,d

0 0 I 0

0 0 0 I
CL

t,z CL,+
s,z CL,−

s,z DL
zd
















< 0 (2.34)

(ii) for continuous system:

[∗
∗

]T







0 X
X 0

1
γ
I 0

0 −γI













ĀL B̄L
d

I 0

C̄L
z D̄L

zd

0 I






< 0 (2.35)
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Proof The proof of condition (2.34) is a simplified version of the one in [21], where an LMI
condition that establishes exponential stability and quadratic performance of an LTSV
system is derived. The proof of (2.35) is provided in [8].

2.6 Summary

This introductory chapter has summarized some important definitions and results in the
analysis of spatially-distributed systems. Definitions of signal and system norms in the
context of multidimensional systems have been presented. An interconnected-system
framework considered throughout this thesis has been introduced, where the distributed
system is treated as the interconnection of an array of virtually-divided subsystems. A
multidimensional state space model that defines the dynamics on subsystems has been
provided both for parameter-invariant and -varying models. It is desired in a distributed
control system, that the controller inherits the spatial structure of the plant. The dis-
tributed controllers for both LTSI and LTSV plants have been discussed. Definitions
of well-posedness, stability and performance for spatially-distributed systems have been
given, as well as the LMI conditions that establish the exponential stability and quadratic
performance of an LTSI system.



Chapter 3

Physical Modelling

3.1 Introduction

Experimental structures similar to the one constructed – a long beam equipped with
a large array of distributed actuators and sensors – to the best of the author’s knowl-
edge, have not been reported yet. Due to the lack of prior knowledge and experience,
understanding the physical laws of both the flexible beam structure and attached actua-
tor/sensor pairs individually and altogether provides important insights into the system
behaviour. This chapter deals with the physical modelling of the 4.8 m long actuated
aluminium beam.

Dynamics of multidimensional systems are often governed by PDEs—functions of multi-
variables and their partial derivatives. The governing PDEs of many continuum physics
are available, e.g. the heat equation for the distribution of heat, Euler-Bernoulli equation
for the vibration of beam-like structures, etc. Exact analytic solutions to complex PDEs
may be difficult or even not possible to obtain. For this reason, numerical approaches
are often applied to calculate approximated solutions. Three conventional techniques
for solving PDEs numerically are: the finite difference (FD) method, the finite volume
method and the FE method. One common feature of the three techniques is that PDEs
are solved at discretized spatial locations—a finite approximation to the set of infinite
continuous solutions. The approximated solution converges to the exact solution of a
PDE, as the number of elements is increased.

Without prior knowledge of the governing PDE of the experimental structure, a piezo-
electric FE approach that accounts for the distributed piezoelectric sensors and actuators
is applied in this chapter to model the coupled electric and elastic behaviour, with both
the aluminium beam and the attached piezo patches modelled based on one-dimension
Euler-Bernoulli beam theory. The theoretical FE model is first obtained from known and
assumed physical properties, yet it does not suffice for an accurate representation of the
test structure, owing to the complexity of the structure. An essential step is to apply the
experimental modal analysis to update the FE model using measurements, such that the
discrepancy between the test structure and the obtained FE model is minimized.

25
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The remainder of this chapter is organized as follows: Section 3.2 gives a short intro-
duction to the direct and inverse piezoelectric effect, as well as the linear constitutive
equations when a piezo patch functions as actuator and as sensor, respectively. Section
3.3 presents first the physical profiles of the piezo patches employed in this work. Under
Euler-Bernoulli beam theory, the linear dynamics of a piezo patch as actuator and as
sensor are illustrated in Section 3.3.2 and Section 3.3.3, respectively. In Section 3.4, a
piezoelectric FE modelling approach [23] is applied to model the test structure in terms
of its mass and stiffness matrices, based on given or assumed physical parameters. The
obtained theoretical FE model is updated with the implementation of the experimental
modal analysis in Section 3.5.

3.2 Piezoelectric Effect

Piezoelectric material possesses the ability to convert between mechanical and electrical
energies. The conversion is a reversible process in materials that exhibit both the direct
piezoelectric effect and the inverse piezoelectric effect. The direct piezoelectric effect
– a phenomenon that certain crystalline materials generate an electric charge when an
external force is applied – was first demonstrated by the brothers Pierre Curie and Jacques
Curie in 1880 [46]. The inverse piezoelectric effect induces a deformation of the material
with the application of an electric field parallel to the direction of polarization.

The most commonly used piezoelectric materials are Lead Zirconate Titanate (PZT) and
Polyvinylidene Difluorid (PVDF) [47]. PZT is a ceramic material, composed of negative
and positive ions. Each pair of positive and negative ions can be visualized as an electric
dipole. Before poling, the dipoles are oriented randomly with the crystal exhibiting no
piezoelectric effect. During poling, a strong electric field is applied to the material to force
all dipoles to line up in nearly the same direction. After removing the electric field, the
polarisation remains in the material, giving rise to the piezoelectricity. PZT materials are
widely used as both actuators and sensors. Unlike the crystal structure of PZT, the other
commonly used material PVDF is a polymer of molecule chains CH2−CF2. Depending on
the poled direction, the positive hydrogen atoms are attracted to the negative side of the
electric field, whereas the negative fluorine atoms are attracted to the positive side. PVDF
is mainly used as sensor due to its high piezo-, pyro-, and ferroelectric properties [48]. In
this work, piezoelectric components made of PZT materials are exclusively employed.

Constitutive Equations

Due to the presence of ferro-electricity, pyroelectricity or aging, piezoelectric materials
may exhibit strong nonlinearities and hysteresis effect. Despite of that, the linear theory
is commonly used to determine the piezoelectric properties of the poled ceramic material
under certain conditions. The notations as in the IEEE standard on piezoelectricity [49]
are used here to establish the coupled electrical and mechanical constitutive equations

S = sET + dE (3.1)

D = dT + ǫTE, (3.2)
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where D denotes the electric displacement (electric charge per unit area, Coulomb/m2),
E the electric field (V/m), S the strain and T the stress (N/m2). Under the linear
piezoelectricity theory, all coefficients are treated as constants: the piezoelectric constant
d in (3.1) relates the electric field to the strain without the presence of mechanical stress,
whereas sE denotes the compliance when the electric field is constant; ǫT in (3.2) refers
to the relative permittivity of the material when constant stress is applied. Note that the
superscripts E and T in the context of IEEE standard on piezoelectricity denote that the
applied electric field and stress are constant, respectively.

3.3 Piezoelectric Actuators/Sensors

This section introduces the physical profiles and linear dynamics of the piezo patches
used as actuators and sensors, respectively. The governing equations are derived from the
constitutive equations (3.1) and (3.2) according to the Euler-Bernoulli assumption.

3.3.1 Piezoelectric Patch Profile

The piezoelectric P-876 DuraActTM patch transducers produced by the company Physik
Instrumente (PI) are used to function either as actuators or sensors. The top view and
cross section view of a patch transducer are drawn in Fig. 3.1. The piezoceramic layer
is covered with two layers of electrodes, where positive or negative ions accumulate. The
casing that wraps the electrodes is used for the electrical insulation. The effective area of
a patch is determined by the electrodes, not the casing. Therefore, the width and length
of the electrodes, bp and lp, are considered to be effective.

The poling direction is aligned with the thickness direction, thus defined as axis 3. With
the electric field applied parallel to the poling direction, the material PZT shrinks/expands
along all 3 dimensions, with their shrinkage/expansion amplitudes governed by piezoelec-
tric constants d33, d31 and d32, respectively. The useful directions of shrinkage/expansion
are normal to the direction of the electric field, e.g. axes 1 and 2. An isotropic behaviour
of PZT in plane 1− 2 induces d31 = d32, whereas an anisotropic behaviour in direction 3
indicates d33 > d31 = d32.

1

2

3

1 2

electrodes

piezoceramic layer

electrical insulation

bp

lp

electrical contact

hp

Figure 3.1: Left and right plots show the top view and the cross section view of the piezo
patch, respectively.



Chapter 3. Physical Modelling 28

The data sheet of the piezoelectric patch transducers used as actuators (P-876.A12, PI)
and as sensors (P-876.A11, PI) are listed in Table 3.1 [50]. The patch model chosen for
actuators has a larger voltage span than that for sensors, so that actuators could generate
enough energy to excite the test structure.

Model P-876.A11 P-876.A12
Operating voltage (V) -50 to 200 -100 to 400

Length (Electrodes) lp (mm) 50 50
Width (Electrodes) bp (mm) 30 30

Thickness hp (mm) 0.4 0.5
Young’s modulus cE (GPa) 16.4 23.3
Relative permittivity ǫT 1750 1750

Piezoelectric constant d31 (d32) (10
−12m/V) -180 -180

Table 3.1: Some relevant physical parameters of piezo actuators and sensors

3.3.2 Functionality as Actuator

Consider the configuration in Fig. 3.2, where a piezoelectric patch is bonded on one side
of a beam structure and connected with an input voltage. The longitudinal dimension
of a beam structure (in this case, direction 1) is considerably larger than the other two
dimensions. Assume the thickness of the piezo patch hp much smaller than that of the
beam h, i.e. hp ≪ h, and its width bp constant. Applying a voltage to an actuator
of constant width is equivalent to applying a pair of concentrated moments Mp at the
boundaries of the patch (or electrodes, more precisely) xa and xb as shown in Fig. 3.2.
Thus, the inverse piezoelectric effect enables a piezo patch working as an actuator: when a
voltage φi (or electric field E3) in the direction of polarization is applied, the piezoelectric
material expands/shrinks along the same direction (direction 3), and shrinks/expands
along directions 1 and 2. With the negligence of the movement in direction 2 according
to Euler-Bernoulli beam theory, the bending of the beam structure is caused by the
expansion/shrinkage of the piezo patch in direction 1.

Furthermore, a linear relationship between the electric field φi as input and a pair of
concentrated moments Mp as output writes [51]

Mp = −cEp d31bphφi, (3.3)

where cEp is the Young’s modulus of the piezo patch.

3.3.3 Functionality as Sensor

When a piezo patch is exclusively used as a sensor, the electrodes are short-circuited, so
that a zero electric field is enforced, i.e. φi = 0. Assume again a constant electrode width
bp. The direct piezoelectric effect induces electric charges accumulated on the electrodes,
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3

2
1

MpMp

h

φi

xa xb
x

Figure 3.2: Piezoelectric materials function as an actuator

when the material is subject to deformation. A linear behaviour can be observed between
the generated electric charges q and the deformation as

q = −e31hbp(w
′(xb)− w′(xa)), (3.4)

where w and w′ denote the transverse displacement and slope of the beam, respectively.
xb and xa are the spatial coordinates at electrode boundaries along direction 1.

Depending on the surrounding electric circuits – whether the electrodes are connected to
a charge amplifier or a current amplifier – the measured voltage exhibits different linear
relationships. A general structure of a piezo sensor connected to an amplifier is depicted
in Fig. 3.3. If the impedance Z represents a resistance Re, the surrounding circuits make
a current amplifier, where the output voltage φo is proportional to the difference of the
time derivative of slopes at electrode boundaries as

φo = −Req̇ = Ree31hbp(ẇ
′(xb)− ẇ′(xa)). (3.5)

If the impedance Z represents a capacitor Ca instead, the resulting charge amplifier yields
a linear equation between the output voltage and the difference of slopes at electrode
boundaries [51] as

φo = − q

Ca

=
e31hbp
Ca

(w′(xb)− w′(xa)). (3.6)

h

Z

φo

xa xb

x

Figure 3.3: Piezoelectric materials function as a sensor
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3.4 Piezoelectric Finite Element Modelling

The FE method ([22], [52]), as a computer modelling approach, has been employed ex-
tensively in the theoretical analysis of structural behaviour for decades. Nevertheless,
the standard FE method accounts only for the dissipation of mechanical energy, not for
the ’smart’ structures with integrated piezoelectric sensors and actuators. The piezoelec-
tric effect was first incorporated into the variational principle in [23]. In [24] the same
theorem was derived by applying the principle of virtual displacement to a continuum
under the influence of electrical and mechanical forces, where the tetrahedron serves as
the most basic geometrical unit in modelling arbitrarily shaped continua. However, the
tetrahedron elements are too thick and inefficient to model thin and large structures. A
piezoelectric FE approach using thin piezoelectric solid elements with internal degrees of
freedom (DOFs) was presented in [53]. This section applies the approach developed in
[53] to model the piezo-actuated and -sensed test structure.

3.4.1 FE Discretization

Recall the schematic drawing of the experimental structure in Fig. 1.5. The experimental
setup is constructed with following conditions fulfilled:

• The distances between any two neighbouring piezo pairs are identical, i.e. 250 mm.

• The distances between any two neighbouring springs are identical, i.e. 300 mm.

• The springs are located right in the middle between two neighbouring piezo pairs,
such that the distances between any spring and its nearest piezo pairs are the same,
i.e. 125 mm.

Consider both the locations where 17 springs are attached, and the boundaries of 16
piezo pairs as nodes. The suspended beam is virtually discretized into 48 elements with
49 nodes. Any beam segment between two neighbouring springs can be treated as the
interconnection of three elements with four nodes as shown in Fig. 3.4:

• laminated element e2 (between nodes 2 and 3): includes a pair of collocated piezo
actuator/sensor and the clamped aluminium section.

• aluminium elements e1 (between nodes 1 and 2) and e3 (between nodes 3 and 4):
with a spring attached to the left node of e1 and the right node of e3, respectively.

Due to the uniform configuration, the whole structure can be seen as a series connection
of 16 identical beam segments, each an exact copy of the segment shown in Fig. 3.4. Thus,
the FE modelling problem boils down to the modelling of elements e1, e2 and e3.
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e1 e2 e3

1 2 3 4

x1 x2 x3 x4

Figure 3.4: Beam segment between two neighbouring springs comprised of three elements

3.4.2 Modelling Based on Euler-Bernoulli Beam Theory

It has been suggested in [54] that beam theory is not accurate enough to model systems
with collocated actuators and sensors due to the fact that the one-dimensional beam
theory considers only the bending moment at elemental nodes, and neglects the torsional
movement. Instead, shell theory has been proven to be a more suitable technique to model
such a system. Nevertheless, recall the physical parameters of the structure: the length
of the beam (4.8 m) is significantly larger than its width (40 mm) and thickness (3 mm);
that implies a representative beam structure, whose transverse displacements dominate
the vibratory dynamics. Thus, the one-dimensional beam theory could be appropriate for
the FE modelling of the concerned structure here. Its validity will be examined in Section
3.5.

The simplest Euler-Bernoulli beam theory [55] assumes two DOFs at each node: the
transverse displacement w and its slope w′ = dw

dx
, where axis x is along the longitudinal

direction. An element of two nodes has four DOFs as shown in Fig. 3.5 (a). A vector ue

that collects the nodal displacements at nodes 1 and 2 is denoted as

ue =
[
w1 w′

1 w2 w′
2

]T
. (3.7)

Meanwhile, external loads could act on nodes in form of transverse force f and bending
moment M as shown in Fig. 3.5 (b), denoted as

pe =
[
f1 M1 f2 M2

]T
. (3.8)

M1

f2f1

M2

w1 w2

w′
1 w′

2

11 22

(a) (b)

Figure 3.5: Under Euler-Bernoulli beam theory, each node has 2 DOFs: transverse dis-
placement and slope (a); external loads act on each node in two forms: transverse force
and moment (b).
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The FE modelling of the given structure is realized in the following three steps.

Elemental Formulation of Elements e1 and e3

The FE formulations of elements e1 and e3 follow the classical FE modelling routine [22]
that accounts for only the mechanical energy. Provided the nodal displacements ue (in
this case, ue1 and ue3), the transverse displacement at any continuous location over the
element, w(x), with x1 ≤ x ≤ x2 for element e1, and x3 ≤ x ≤ x4 for element e3, can be
determined through interpolation using a set of pre-chosen shape functions as

w(x) = Nu(x)u
e =

[

Nw1
u N

w′

1
u Nw2

u N
w′

2
u

]







w1

w′
1

w2

w′
2







(3.9)

where Nu(x), or Nu for notational simplicity, denotes the shape functions, and meets the
C1 continuity requirement. The C1 continuity is required, because both the transverse
displacement w and its spatial derivative w′ need to be continuous over the element.
The shape functions often employed for the modelling of a beam element in terms of the
dimensionless coordinate ξ (−1 ≤ ξ ≤ 1) are

Nw1

u =
1

4
(1− ξ)2(2 + ξ) (3.10)

Nw′

1
u =

1

8
le(1− ξ)2(1 + ξ) (3.11)

Nw2

u =
1

4
(1 + ξ)2(2− ξ) (3.12)

Nw′

2
u = −1

8
le(1 + ξ)2(1− ξ), (3.13)

where le denotes the length of the beam element. The four shape functions are shown in
Fig. 3.6.

The FE modelling treats each element as a spring-mass-damper system. The governing
equation of element e1 or e3 takes the form

Meüe + Ceu̇e +Ke
uuu

e = pe, (3.14)

where e = e1 or e = e3. The elemental displacements ue and external loads pe are defined
in the same way as (3.7) and (3.8), respectively. The elemental mass matrix Me and
stiffness matrix Ke

uu are derived from the variational principle [52] as:

Me =

∫

V e
b

ρbN
T
u NudV

e
b (3.15)

Ke
uu =

∫

V e
b

BT
u c

E
b BudV

e
b , (3.16)

where Bu is the spatial derivative of shape functions Nu, i.e.

Bu = N ′
u.
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Figure 3.6: Shape functions used for the modelling of a beam element

The density, Young’s modulus under constant electric field and volume of the aluminium
beam element e1 or e3 are denoted by ρb, c

E
b , and V e

b , respectively. Assume the identical
spring stiffness ks at both elements. The stiffness matrix Ke

uu computed in (3.16) is
modified for e1 and e3 as

Ke1
uu(1, 1) = Ke1

uu(1, 1) + ks (3.17)

Ke3
uu(3, 3) = Ke1

uu(3, 3) + ks, (3.18)

respectively, due to the fact that the left node of e1 and the right node of e3 are attached
to springs. The modelling of the damping matrix Ce will be elaborately discussed in
Section 3.5.

Elemental Formulation of Element e2

The modelling of element e2 involves the mechanical and piezoelectric energy transfor-
mation. As discussed in Section 3.3.2, the application of an input voltage φe

i to a piezo
actuator is equivalent to the application of a pair of concentrated torques at the electrode
boundaries. Thus both the external loads pe and the actuator can generate a mechanical
motion of the element e2. Skipping the derivation procedures [53], the governing equation
that accounts for the conversion from electrical to mechanical energy at element e2 writes

Meüe + Ceu̇e +Ke
uuu

e = pe −Ke
uφφ

e
i , (3.19)

where the coupling stiffness matrix Ke
uφ relates the mechanical and electrical variables in

piezo actuators.

On the other side, due to the direct piezoelectric effect, the mechanical deformation ue

induces electrical charges qe on the electrodes of piezo sensors. The linear dynamics
presented in Section 3.3.3 yields the sensor equation

qe = Ke
φuu

e, (3.20)
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where the coupling stiffness matrix Ke
φu relates the mechanical and electrical variables in

piezo sensors.

Under the assumption that the electric potential is constant over a piezo patch, only one
electrical DOF per patch is defined. More intuitively, φe

i and qe ∈ R at any element. A
charge amplifier is connected to the sensor electrodes to convert the generated electrical
charges to voltage as (3.6). The output equation (3.20) is modified to

φe
o = −

Ke
φu

Ca

ue. (3.21)

The elemental mass matrix Me and stiffness matrix Ke
uu are constructed accounting for

the collective contributions from the actuator, the sensor and the clamped aluminium
beam section as

Me =

∫

Va

ρaN
T
u NudVa +

∫

Vs

ρsN
T
u NudVs +

∫

V e
b

ρbN
T
u NudV

e
b (3.22)

Ke
uu =

∫

Va

BT
u c

E
a BudVa +

∫

Vs

BT
u c

E
s BudVs +

∫

V e
b

BT
u c

E
b BudV

e
b . (3.23)

The shape functions and their derivatives Nu and Bu are defined in the same way as the
FE modelling of elements e1 and e3. The density, Young’s modulus under constant electric
field and volume of the actuator and the sensor are denoted by ρa, ρs, c

E
a , c

E
s , Va and Vs,

respectively, where the subscript a indicates the actuator, s the sensor parameters.

Consider (3.19) as the actuator equation, and (3.21) as the sensor equation. The elemental
coupling matrices Ke

uφ and Ke
φu are computed as

Ke
uφ =

∫

Va

BT
u e

T
aBφadVa (3.24)

Ke
φu =

∫

Vs

BT
φse

T
s BudVs. (3.25)

The piezoelectric coupling coefficients eTa and eTs under constant stress are related to the
Young’s modulus under constant electric field by eTa = d31c

E
a and eTs = d31c

E
s , respectively.

It has been justified in [54] that, the constant electric potential over element e2 yields
Bφa = 1/hpa and Bφs = 1/hps, where hpa and hps are the thicknesses of the piezo actuator
and sensor, respectively.

Globalization

After the elemental formulation of the three fundamental elements in Fig. 3.4, the global
FE model can be subsequently constructed by assembling the contribution from each
element. The resulting global actuator and sensor equations are given by

MÜ + CU̇ +KUUU = P −KUΦΦi (3.26)

Φo = −KΦUU

Ca

, (3.27)
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where U ∈ R98, Φi ∈ R16 and Φo ∈ R16 are the global mechanical variables, input and
output voltage, respectively. Matrices M, KUU , KUΦ, KΦU and C are the global versions
of their elemental counterparts.

Consider now a self-actuating and -sensing ’smart’ system, i.e. P = 0. The actuator
equation (3.26) is rewritten as

MÜ + CU̇ +KUUU = −KUΦΦi. (3.28)

Remarks :

Recall the single actuator equation (3.3) and sensor equation (3.6). To relate (3.3) to
(3.28), and (3.6) to (3.27), the 3-element beam segment in Fig. 3.4 is taken as an example
to avoid the demonstration of vectors of large sizes.

• With the application of an input voltage φe2
i to the actuator of element e2, a pair

of moments Me2
p are generated at nodes 2 and 3. The linear dynamics (3.3) can be

rewritten for simplicity as Me2
p = gaφ

e2
i , where ga is the simplified actuator constant.

The computation of the coupling matrix KUΦ in (3.28) requires the computation
of the actuator constant ga, and mapping the generated moments to the correct
positions in vector KUΦΦ, i.e.

−KUΦΦ =

[
. . . 0 0

︸︷︷︸

node 1

0 gaφ
e2
i

︸ ︷︷ ︸

node 2

0 −gaφ
e2
i

︸ ︷︷ ︸

node 3

0 0
︸︷︷︸

node 4

. . .
]T

(3.29)

=

[
. . . 0 0

︸︷︷︸

node 1

0 Me2
p

︸ ︷︷ ︸

node 2

0 −Me2
p

︸ ︷︷ ︸

node 3

0 0
︸︷︷︸

node 4

. . .
]

.T (3.30)

Note that according to beam theory, nodes are in general subject to external loads
in the form of transverse force and bending moment. On nodes 1 and 4 there are
no external loads applied, whereas the piezo actuator induces zero transverse force
and non-zero bending moments on nodes 2 and 3.

• Accoring to (3.6), output voltage φe2
o is proportional to the slope difference at two

electrode boundaries. i.e. φe2
o = gs(w

′(3)− w′(2)), where gs is the simplified sensor
constant. Analogously, the term KΦU

Ca
in (3.27) picks the slopes at nodes 2 and 3

from the mechanical variable U , computing their difference as

Φo =

[
. . . gs(w

′(3)− w′(2))
︸ ︷︷ ︸

sensor e2

. . .
]T

=

[
. . . φe2

o
︸︷︷︸

sensor e2

. . .
]T

. (3.31)

3.5 Updating the FE Model Using the Experimental

Modal Analysis

Although the FE model – in form of mass matrix, stiffness matrix, and two electrome-
chanical coupling matrices – has been constructed based on given or assumed physical
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properties, it is unrealistic to expect that such a theoretical model accurately represents
the dynamic behaviour of the test structure, owing to the presence of damping and uncer-
tain nonlinearity of the structure. To reduce the discrepancy in between, experiments need
to be designed and performed to extract modal information out of measurements. This
process is called experimental modal analysis, which normally consists of three phases:
test preparation, frequency response measurements, and modal parameter identification
[56]. To measure a frequency response, an excitation is performed at one location on
the structure, while the vibration response is measured at the same or another location.
The dynamic relationship from excitation to response in frequency domain is known as
FRF. A set of FRFs at all possible excitation and response locations constitutes an FRF
matrix. As an example, 16 piezo actuators and 16 piezo sensors yield an FRF matrix of
size 16× 16.

Another important characteristic to describe the inherent structural dynamics are modes.
Modes are a set of harmonic motions, and appear in an FRF as resonant peaks. Theoreti-
cally, the vibratory motion of an LTI structure can be expressed as the linear combination
of an infinite number of modes. Each mode is characterized in terms of its natural fre-
quency, damping factor and mode shape. Mode shapes are the displacement patterns
when the structure vibrates at its natural frequencies. The three elements together – the
natural frequency, damping factor and mode shape – are referred to as modal parameters
or modal data that need to be extracted out of measured FRFs at each mode.

Updating the theoretical FE model based on identified modal parameters leads to a more
accurate and reliable mathematical model. The updating process is realized in the fol-
lowing steps.

3.5.1 Performing Experiments to Obtain FRFs

The time domain data of FRFs is usually obtained by measuring the response to a hammer
impulse or to certain excitation signals. In this work, two of the most common excitation
tools - a hammer and an electromagnetic shaker - are used to produce excitation forces.
The hammer produces an excitation force pulse at one selected location on the structure.
A force transducer attached to the hammer tip feeds the force back to be measured. The
vibratory responses of the structure are measured by 16 attached piezo sensors simultane-
ously. Instead of a wide range of frequencies, the structural behaviour at low frequencies
is of more importance in this case, since the dominant modes of the test structure are
mainly located at low frequencies. Therefore, a hammer tip made of rubber is used, so
that the test structure is fully actuated at the low frequency range.

On the other hand, the electromagnetic shaker enables the excitation with various signals.
The shaker is glued at one boundary (or tip) of the structure through a plastic stinger,
with the applied force measured by a force transducer as shown in Fig. 3.7.

One common property using hammer or shaker excitation is the single-input and multiple-
output configuration. With the actuating point fixed - either the hammer striking at one
selected location on the surface, or the shaker exciting the tip of the beam, its vibratory
motion is measured simultaneously by 16 piezo sensors. The resulting 16 measured FRFs
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force transducer

stinger

shaker

Figure 3.7: An electromagnetic shaker glued to one tip of the beam to generate excitation
signals

fill up a column of the FRFmatrix. Theoretically, those data are considered to be sufficient
for the experimental modal analysis. In practice, in order to minimize the influence caused
by operation errors, noisy measurements, etc., repeating experiments and averaging data
in frequency domain plays an essential role. Fig. 3.8 shows the averaged FRFs at 4 out of
16 piezo sensor locations with the shaker exciting the tip of the beam. 20 loops of noise
and 10 loops of chirp signals, with each loop 30 seconds long and of a bandwidth up to 30
Hz, are applied in sequence as excitation signals. The blue curves are the averaged FRFs
of a 10-loop chirp excitation, whereas the red ones are the averaged FRFs of a 20-loop
noise excitation.

With the measured FRFs available, the next step is to extract modal parameters (resonant
frequencies, mode shapes and damping factors) at each mode. Prior to that, an essential
question needs to be answered: how many authentic modes exist within the frequency
range of interest. On one hand, some modes are difficult to be detected from some FRFs.
On the other hand, not every peak on one FRF counts as a real mode. Those ’fake’
modes may result from the structural nonlinearities, measurement noise, travelling waves,
or other sources. In Fig. 3.8, several peaks but non-authentic modes can be detected, for
example, peaks at 18.31 Hz and 19.65 Hz, yet the ’mode’ shapes at above two frequencies
exhibit the same pattern. A similar phenomenon can also be observed at 11.17 Hz and
12.33 Hz, 23.8 Hz and 25.12 Hz, and so on.

It has been demonstrated in [51], that the geometrical symmetry in a flexible structure
leads to pairs of identical modes. However, due to the imperfection of symmetry or
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Figure 3.8: Measured FRFs from a shaker excitation at the tip of the beam to responses at
4 selected sensor locations. The blue curves are the averaged FRFs given a 10-loop chirp
excitation, whereas the red ones are the averaged FRFs given a 20-loop noise excitation.

measurement errors, those pairs of identical modes become pairs of close modes, and can
be counted only as one mode.

Taking these aspects into consideration, after the analysis of FRFs at various exciting and
sensing locations, the first 10 modes below 30 Hz are finally determined, whose resonant
frequencies are

ωm = [1.221, 1.968, 3.357, 5.249, 8.362, 11.29, 15.37, 19.78, 24.17, 29.95]Hz. (3.32)

3.5.2 Updating the Mass and Stiffness Matrices

Provided known or assumed knowledge of physical properties of the structure, the FE
model is characterised in terms of the mass and stiffness matrices as presented in Section
3.4.2. Consider that the solution of the governing equation (3.28) consists of a linear
combination of mode shapes Ω, i.e. U(t) = Ωx(t), where the vector x(t) weights the
contribution of modes at time t. The characteristic equation of (3.28)

(KUU − ω2M)Ω = 0 (3.33)

1Due to the measurement noises at low frequencies, the first mode is difficult to be identified accurately.
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solves its eigenvalue problem: natural frequencies ω and mode shapes Ω. The purpose
of updating the mass matrix M and the stiffness matrix KUU is formulated as: after the
update, the computed ω and Ω from (3.33) approximate the measured natural frequencies
ωm and mode shapes Ωm.

In past decades, various techniques have been developed in the structural engineering
community to derive modal parameters from measured FRFs, e.g. peak picking, circle
fit, global singular value decomposition (SVD) [57], and so on. The natural frequencies of
the first 10 modes ωm (3.32) have been determined by applying the simplest peak picking
method, which is suitable for lightly damped systems with well-separated modes. The
mode shapes Ωm are the normalized displacement of 16 sensing locations at each picked
natural frequency.

According to (3.22) and (3.23), the knowledge of structural properties determines the
exactness of the computed mass and stiffness matrices. Although its geometrical dimen-
sions (e.g. length, width, and thickness) are well-measurable, certain properties, like the
Young’s modulus of the beam cEb , the actuator cEa , and the sensor cEs , their densities ρb,
ρa, and ρs, and the stiffness of the springs ks, though provided by the manufacturer, are
hardly known accurately. This constitutes the reason for the update.

Let cEb , c
E
a , c

E
s , ρb, ρa, ρs and ks be the parameters to be updated, and arranged as a

vector θ. The cost function is defined as

V (θ) =
1

2N

∑

eT (θ)e(θ), (3.34)

with
e(θ) = [ω(2)− ωm(2), ω(3)− ωm(3), . . . , ω(10)− ωm(10)]

T , (3.35)

where N is the number of selected modes, i.e. N = 9. The error vector e consists of
the deviation between the measured natural frequencies and the ones calculated by (3.33)
from 2nd to 10th modes. Note that the eigenvalue ω computed from (3.33) contains the
natural frequencies of resonant modes, as well as the frequencies of rigid body modes.
The correspondence between ωm and ω in (3.35) can be detected by comparing the shape
similarities between the computed eigenvectors Ω and measured mode shapes Ωm.

After the application of the standard Levenberg-Marquardt algorithm [58] to update the
unknown parameter vector θ by minimizing the cost function (3.34), the comparison
between the measured and updated natural frequencies is shown in Fig. 3.9. The com-
parison of mode shapes is shown in 3.10. The updated FE model demonstrates a good
approximation to the dynamic characteristics of the test structure.

3.5.3 Updating the Damping Matrix

Unlike the mass and stiffness matrices, modelling of the damping matrix is challenging
because the real damping model is not fully understood in the current state of the art [56]
[57]. However, the characterization of damping is important in terms of making accurate
predictions both in time and frequency domains. Proportional damping is a convenient



Chapter 3. Physical Modelling 40

2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

 

 

updated FE model
measured

modes

fr
eq
u
en
cy

(H
z)

Figure 3.9: Comparison between the eigenvalues of the updated FE model (blue circle)
and the measured natural frequencies (red asterisk) from modes 2 to 10

−1

0

1

−1

0

1

−1

0

1

 5  10  15  5  10  15  5  10  15

mode 2 mode 3 mode 4

mode 5 mode 6 mode 7

mode 8 mode 9 mode 10n
or
m
al
iz
ed

am
p
li
tu
d
e

piezo sensors

Figure 3.10: Comparison of normalized mode shapes from modes 2 to 10 between the
updated FE model (blue solid line) and measurements (red dashed line)

but somewhat restricted damping model. Under the assumption of a proportional damp-
ing model, the damped model has the same mode shapes as its undamped counterpart,
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whereas the damped natural frequencies slightly deviate from the undamped ones when
the structure is lightly damped. For a broader view regarding the damping identification
procedure, readers are referred to [59] and [57]. For simplicity, a proportional viscous
damping in the form of

C = αM+ βKUU (3.36)

is assumed here, where the coefficients α and β are to be estimated after updating the
mass and stiffness matrices.

The Levenberg-Marquardt technique is applied again to estimate the unknown parameters
α and β, such that the simulated damped FRFs approximate the measured ones. Fig. 3.11
shows the comparison of the measured and simulated damped FRFs at 4 out of 16 piezo
sensors, with 10 loops of chirp excitations generated by the 8th piezo actuator. It can be
seen that the main structural dynamics up to 30 Hz are well captured by the updated
FE model, both at resonances and anti-resonances. It can also be observed that multiple
peaks are measured at the frequencies where the FE model indicates only a single mode,
e.g. near 20 and 25 Hz. It has been discussed in Section 3.5.1, that it may result from the
structural nonlinearities, imperfect geometric symmetry, interference of travelling waves,
etc. To explore the physical causes of this phenomenon is out the scope of this thesis.
Nevertheless, possible sources that may result in the structural asymmetry are analysed
as following:

• The piezo actuator/sensor pairs may be glued in an imperfect collocated pattern.

• The springs may not be centered exactly between two neighbouring piezo pairs.

Incorporating these subtle aspects into the FE modelling would make the modelling pro-
cess cumbersome and tedious. The FE model after updating is considered to represent
the test structure to a satisfactory degree.

3.5.4 Compensation of the Direct Feed-Through Effect

The FRF comparisons made in Fig. 3.11 are from the excitation at the 8th actuator to
responses at non-collocated sensors. Now take a close look at the FRF from the 8th
actuator to the 8th sensor as shown in Fig. 3.12 (a). It can be observed that a big gap
exists between the measured and simulated FRFs over the whole frequency range, which
may appear as a constant gain at the first sight. Actually, this discrepancy is the result
of the direct feed-through effect (or fast dynamics) from actuators to their collocated
sensors. After compensating the measurements at the 8th sensor with the fed-through
input from its collocated actuator, i.e. y(k, 8) = y(k, 8)+ b0 ·u(k, 8), where b0 denotes the
feed-through constant, the simulation of the FE model is significantly improved as shown
in Fig. 3.12 (b).

Although the existence of the direct feed-through effect within collocated piezo pairs has
been detected, it remains still unknown whether the feed-through constants are identical
at all 16 pairs. For this purpose, an experiment has been performed, where the 16 ac-
tuators are simultaneously actuated by an identical chirp signal up to 20 Hz. Then the
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Figure 3.11: Comparison of simulated and measured FRFs at 4 selected piezo sensors
given chirp excitation at the 8th piezo actuator. The blue curves are simulated FRFs
using the updated FE model, whereas the red curves are the averaged FRFs out of the
10-loop measurements.

measurements at all 16 sensors are compensated with the fed-through input from their
collocated actuators using the same feed-through constant as y(k, i) = y(k, i)+ b0 ·u(k, i),
i = 1, . . . , 16. Fig. 3.13 shows the comparison of measured and simulated FRFs between
collocated actuators and sensors, after the compensation. It can be seen that the chosen
feed-through constant fits quite well at some piezo pairs, e.g. pairs 8 and 15, but is slightly
smaller or larger than its true value at other pairs, e.g. pairs 1 and 7, respectively. It can
be concluded that the collocated actuator/sensor pairs may – due to their locations or
variations in manufacturing – exhibit slightly different feed-through properties. A com-
parison of compensated sensor outputs to 16 (non-identical) noise excitations is shown in
Fig. 3.14.
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Figure 3.12: Comparison of simulated (blue) and measured (red) FRFs at the 8th sensor,
given a chirp excitation at the 8th piezo actuator: (a) without considering the direct
feed-through effect; (b) with the feed-through effect compensated.

3.6 Summary

In this chapter, the physical aspects of the test structure have been taken into account
for physical modelling. The direct and inverse piezoelectric effects, which enable a piezo
patch functioning as sensor and actuator, respectively, have been introduced. Despite of
the presence of nonlinearites, linear constitutive equations that govern the dynamics of
both a piezo actuator and a sensor have been discussed under the one-dimensional beam
theory. Owing to the coupled mechanical and electric effect of the piezo-actuated and
-sensed beam structure, a piezoelectric FE method has been applied to obtain a math-
ematical FE model based on the known or assumed physical parameters. In order to
minimize the deviation between the theoretical FE model and test structure, the experi-
mental modal analysis has been performed to update the FE model in terms of its mass,
stiffness and damping matrices. A direct feed-through effect has been detected from piezo
actuators to their collocated sensors. Experimental results have shown that the collocated
actuator/sensor pairs exhibit slightly varying feed-through properties. The updated FE
model accounting for the direct feed-through effect represents the true structural dynamics
to a satisfactory degree.
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Figure 3.13: Comparison of simulated (blue) and measured (red) FRFs at 4 selected piezo
sensors, given 16 identical chirp signals exciting 16 piezo actuators simultaneously. Mea-
surements at sensors are compensated with the fed-through inputs from their collocated
actuators by using the same feed-through constant for all piezo pairs.
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selected piezo sensors, given 16 noise signals exciting 16 piezo actuators simultaneously.
The feed-through constants employed in the FE model are identical for all piezo pairs.



Chapter 4

Local LPV Identification of an FRF
Matrix

4.1 Introdution

In Chapter 3, an FE-based modelling approach for the actuated structure accounting for
the coupled mechanical and piezoelectricity effect has been presented. However, from a
practical point of view, this approach can involve tremendous experimental work, par-
ticularly when a complex or a large-scale structure is encountered, where experiments
at a large number of actuating and sensing locations need to be performed to capture
the structural dynamics thoroughly. On the other hand, the lumped structure of the FE
model is generally not suitable for a model-based controller design, due to its large system
order.

Considering the combined FE method and experimental modal analysis as a white-box
identification, this chapter addresses the above two issues of physical modelling, treat-
ing the structure as a black box and identifying its FRF matrix by directly modelling
its input/output behaviour, without exploring the physical insights into the structural
dynamics. It will be demonstrated that the FRF matrix of a structure even comprised
of physically identical subsystems exhibits spatially-varying characteristics. A local LPV
identification technique is extended from lumped systems to spatially-interconnected sys-
tems. The FRFs at selected actuating and sensing locations are first identified as a set
of LTI models, then parametrized as a spatial LPV model with the application of the ex-
tended local approach. The FRFs at other locations can then be approximated through
interpolation. In comparison to the physical modelling, the proposed approach facilitates
the experimental work, at the price of a slightly deteriorated accuracy.

This chapter takes over results presented in [60], and is structured as follows: Section
4.2 recaps the black-box identification techniques for both LTI and LPV lumped systems,
whose signals are functions of time. The local approach for a temporal LPV model
identification is extended later in this chapter to spatially-distributed systems. Section 4.3
reviews the problems of current identification techniques and motivates the development of
a new approach. Taking a simple five-spring-mass-damper system as an example, Section

46
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4.4 explores the spatially-varying characteristics of its FRFs, and derives a compact spatial
LPV representation of the FRF matrix. Section 4.5 validates the proposed approach on an
experimental testbed. Two scenarios are implemented to test the accuracy and robustness
of the proposed approach.

4.2 Preliminaries

Black-box identification of the FRF matrix relies on the input/output behaviour of the
test structure. The least-squares based identification techniques for a temporal LPV
model using both local and global approaches are briefly reviewed in this section.

4.2.1 Least-Squares Based Identification

The input/output behaviour of a system is identified by measuring the response of the
plant to an excitation signal, where no physical insights into the plant dynamics are
required. Consider a lumped linear data generating system with a sampling time ∆T as
shown in Fig. 4.1, where G(qt) and H(qt) denote the discrete transfer function of the plant
and of the noise model, respectively, e(k) is a Gaussian white noise signal with zero mean
at time instant k∆T , v(k) is filtered noise, and qt the forward temporal shift operator, i.e.
qtu(k) = u(k + 1). The input/output representations of the plant and the noise model of
an ARX (AutoRegressive with eXogeneous input) structure are:

G(qt) =
B(qt)

A(qt)
, H(qt) =

1

A(qt)
, (4.1)

and

A(qt) = 1 +

na∑

ik=1

aikq
−ik
t , B(qt) =

nb∑

jk=1

bjkq
−jk
t , (4.2)

where na and nb are the pre-chosen output and input orders, respectively.

u(k) G(qt)
y0(k)

e(k)

H(qt)

v(k)

y(k)

Figure 4.1: One-dimensional ARX model structure

The black-box identification problem is formulated as follows: Given an input and output
data sequence {u(k), y(k)}, k = 1, ..., Nk, where Nk is the number of measurements,
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coefficients aik and bjk in G(qt) are to be estimated with the input and output orders na

and nb determined by trial and error, such that the cost function

J =

Nk∑

k=1

(y(k)− ŷ(k))2 (4.3)

is minimized. The measured output is denoted as y(k), and the estimated output ŷ(k) is
computed by

ŷ(k) = −
na∑

ik=1

aiky(k − ik) +

nb∑

jk=1

bjku(k − jk). (4.4)

Restructure the difference equation (4.4) into regressor form

ŷ(k) = φT (k)p, (4.5)

with a regressor vector

φ(k) =

[ [
catik − y(k − ik)

]

ik=1:na[
catjku(k − jk)

]

jk=1:nb

]

, (4.6)

and a parameter vector

p =

[ [
catikaik

]

ik=1:na[
catjkbjk

]

jk=1:nb

]

, (4.7)

where catik and catjk denote the concatenation of the coefficients in A(qt) and B(qt),
respectively. For example, a system of an input order 2 and an output order 1, i.e. na = 2
and nb = 1, gives rise to a parameter vector p = [a1, a2, b1]

T .

After constructing the data matrix Φ by augmenting the past inputs and outputs as

Φ = [φ(1), φ(2), · · · , φ(Nk)]
T

and the output vector
Y = [y(1), y(2), · · · , y(Nk)]

T ,

where Φ ∈ RNk×(na+nb), Y ∈ RNk , the least squares approach solves the estimation prob-
lem by minimizing the cost function (4.3) with

p = (ΦTΦ)−1ΦTY, (4.8)

if Φ has full column rank.
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4.2.2 LPV Input/Output Identification

The advantage of using LPVmodels to represent nonlinear systems is that linear modelling
and control techniques can be extended. The difference equation of an LPV input/output
representation can still be written in the form of (4.4), only that the coefficients a and b
are time-varying and scheduled as functions of varying parameters θt(k), i.e.

ŷ(k) = −
na∑

ik=1

aik(θt(k))y(k − ik) +

nb∑

jk=1

bjk(θt(k))u(k − jk), (4.9)

where the scheduling variable θt(k) ∈ R varies in the interval [θt,min θt,max], and is as-
sumed to be measurable online.

The linear regressor now takes the form

ŷ(k) = φT (k)p(θt(k)), (4.10)

where

p(θt(k)) =

[ [
catikaik(θt(k))

]

ik=1:na[
catjkbjk(θt(k))

]

jk=1:nb

]

. (4.11)

Although p(θt(k)) can be chosen as any smooth function of θt(k), a polynomial function
is often selected for the convenience of system analysis and controller synthesis at a later
stage, i.e.

p̂(θt(k)) = λ0 + λ1θt(k) + λ2θt(k)
2 + · · ·+ λmθt(k)

m, (4.12)

where p̂(θt(k)) denotes the approximated coefficients using a polynomial basis function,
m the polynomial order chosen a priori ; λj ∈ Rna+nb (j = 0, . . . , m) are parameters to be
estimated.

To identify the LPV model in the form of (4.10) with coefficients depending on scheduling
parameters as described in (4.12), both local and global approaches are applicable. In the
rest of this section, both identification approaches are shortly reviewed, with an emphasis
on the local approach.

Local Approach

The local approach relies on the individual excitation at each operating point θit (i =
1, . . . , nθ) with θt,min ≤ θit ≤ θt,max, and nθ is the number of operating points at which a
set of identification experiments are individually performed. The conventional procedure
for identifying a temporal LPV model using a local approach proposed in [61] can be
summarized into the following four steps:

1) Fix the scheduling variable at the first operating point θt(k) = θ1t for all sampling
instants k, and stimulate the system with an appropriately determined input signal.
Given measured input/output data sequence and a pre-defined mathematical model,
an LTI input/output model can be identified using the least squares technique. The
estimated coefficients are denoted as p(θ1t ) ∈ R

na+nb.
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2) Repeat step 1) at operating points θ2t , θ
3
t , . . ., θ

nθ

t individually to obtain the estimated
coefficient vectors p(θit) (i = 2, . . . , nθ).

3) Neglect the error caused by the use of the linear identification experiments, and
assume that the estimated coefficients agree with their true values. The following
LPV model identification problem can be formulated as: compute the polynomial
coefficients λj in (4.12), such that the cost function

J =

nθ∑

i=1

(p(θit)− p̂(θit))
2, (4.13)

which measures the differences between the estimated coefficients p(θit) in step 2)
and the approximated coefficients p̂(θit) using (4.12), is minimized at all chosen
operating points.

Construct a matrix Λ ∈ R(na+nb)×m containing all decision variables λj (j = 0, . . . , m)
as

Λ =
[
λ0 λ1 · · · λm

]
=












λ01 λ11 · · · λm1
...

...
...

λ0na
λ1na

· · · λmna

λ0(na+1) λ1(na+1) · · · λm(na+1)
...

...
...

λ0(na+nb) λ1(na+nb) · · · λm(na+nb)












, (4.14)

a matrix ∆θ∈Rm×nθ depending only on the operating points θit (i = 1, . . . , nθ)

∆θ =








1 1 · · · 1
θ1t θ2t · · · θnθ

t
...

...
...

(θ1t )
m (θ2t )

m · · · (θnθ

t )m








(4.15)

and a matrix P ∈R(na+nb)×nθ by collecting the estimated p(θit) (i = 1, . . . , nθ) from
steps 1) and 2)

P =
[
p(θ1t ) p(θ2t ) . . . p(θnθ

t )
]
. (4.16)

Then the matrix Λ that minimizes the cost function (4.13) can be computed by
solving the regressor form P = Λ∆θ for

Λ = (P∆T
θ )(∆θ∆

T
θ )

−1. (4.17)

4) After the polynomial function (4.12) is determined, the LPV regressor form (4.10)
allows to retrieve the dynamic behaviour at points between the chosen operating
points, i.e. θt(k) ∈ [θt,min θt,max] and θt(k) 6= θit (i = 1, . . . , nθ), through interpola-
tion.

Remark:

• It is demonstrated in [61] that the optimal choice of the polynomial degreem = nθ − 1
avoids over parametrization, and guarantees the accuracy of the LPV model with a
proper size for further controller design.
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Global Approach

Instead of identifying the system dynamics at a set of fixed scheduling parameters using
the local approach, the global approach allows to stimulate the system via one single
experiment with a large number of operating points excited to determine the functional
dependence ([62], [63]). In case of a polynomial dependence, conditions on persistency of
excitation in terms of inputs and trajectories of scheduling parameters are discussed in [28],
where the estimation problem is solved through the recursive least squares algorithms. In
Chapter 5, the global approach will be applied for the identification of a two-dimensional
LPV input/output model.

4.3 Problem Statement

It has been illustrated in Chapter 3 that the FE modelling discretizes a continuous struc-
ture into an array of interconnected subsystems, with the dynamics of each subsystem
captured by a spring-mass-damper system. Consider a system as shown in Fig. 4.2. It
consists of 5 spring-mass-damper systems, each governed by the equation of motion

f = mÿ + cẏ + ky, (4.18)

where m, k, and c are the elemental (in this case, scalar) mass, stiffness and damping,
respectively, f is the exogenous force, and y the mass deflection. The viscous damping c
represents the energy dissipation mechanisms, and it is typically not known exactly. For
simplicity, a proportional damping

c = αm+ βk (4.19)

is assumed, where α and β are tunable coefficients. Let the global mass, stiffness and
damping matrices be denoted as M, K, and C, respectively. The global dynamics of the
interconnected spring-mass-damper system are governed by

F = MŸ + CẎ +KY, (4.20)

where F and Y are the input force vector and the output deflection vector, respectively,
i.e. F = [f1, f2, f3, f4, f5]

T and Y = [y1, y2, y3, y4, y5]
T . A free-free boundary condition is

fulfilled, as no restriction is applied to the boundary subsystems. It is obvious that each
subsystem is capable of actuating and sensing.

f1 y1 f2
y2 f3

y3 f4
y4 f5

y5

k kkk
mmmmm

c ccc

Figure 4.2: Interconnected spring-mass-damper system consisting of 5 subsystems
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Assume that the mass, the stiffness, and the damping are identical for all subsystems.
Let the values be m = 1 kg, k = 10 N/m, α = 10−3 and β = 10−4. The global mass and
stiffness matrices are

M =









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









K =









10 −10 0 0 0
−10 20 −10 0 0
0 −10 20 −10 0
0 0 −10 20 −10
0 0 0 −10 10









, (4.21)

respectively. The appication of the Laplace transform to (4.20) results in

G(s) = [Ms2 + Cs +K]−1, (4.22)

where G(s) is the continuous MIMO transfer function matrix from F to Y , or the so-
called FRF matrix in the field of structural engineering. Its dimension is determined by
the number of inputs and outputs, or in this context the number of spatially discretized
subsystems.

The symmetric mass, damping and stiffness matrices imply a symmetric transfer function
matrix G(s), and further the structural reciprocity ([56], [64]) of a linear system: the
transfer function from a single input at coordinate i to the output at j is the same as the
transfer function from an input at j to output at i. After the temporal discretization, the
continuous and symmetric G(s) is converted into

G(qt) =









G11(qt) G12(qt) G13(qt) G14(qt) G15(qt)
G22(qt) G23(qt) G24(qt) G25(qt)

G33(qt) G34(qt) G35(qt)
sym G44(qt) G45(qt)

G55(qt)









, (4.23)

where the operator Gij(qt) denotes the transfer function, or FRF, from the excitation at
j to response at i (i, j = 1, . . . , 5), ’sym’ the symmetric components in a matrix. When
the coordinates of i and j coincide, i.e. i = j, the FRF is referred to as a point FRF,
otherwise a transfer FRF. In the rest of this chapter, G and Gij are used to denote the
FRF matrix G(qt) and the operator Gij(qt), respectively, for notational simplicity.

Both (4.20) and (4.23) describe the global dynamics of the system in Fig. 4.2. Now suppose
that the elemental m, k, and c are not known accurately, and need to be estimated. The
modelling of (4.20) relies on the knowledge of system physics in terms of its mass, stiffness
and damping matrices, and falls into the FE modelling that has been extensively discussed
in Chapter 3. The obtained FE model is generally not suitable for a model-based controller
synthesis, due to its generally high system order.

The conventional black-box identification of (4.23) relies on the input/output behaviour
of the system. Each operator Gij is treated as an LTI system, and identified individually:
given the single-input and single-output (SISO) data set (uj, yi), Gij is identified by
applying the least-squares method discussed in Section 4.2.1, where na and nb determining
the model structure are chosen a priori. Experiments and identification procedures are
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then repeatedly performed, until all upper triangular operators in (4.23) are estimated.
Despite of its simplicity, the conventional black-box identification of (4.23) fails to be an
effective approach due to the following two reasons:

1) The identification of any operator Gij in the FRF matrix requires the single exci-
tation at subsystem j and measured response of subsystem i. When a large-scale
structure that consists of a large number of inputs and outputs is encountered,
the experimental data acquisition process may become tremendous and tedious, in
terms of repeating the experiments. The same is true for the estimation process.

2) For control engineers, system identification is performed to obtain an accurate math-
ematical model, whose structure is suitable for an effective controller design. It is
desired in control of distributed parameter systems that the controller inherits the
distributed structure of the plant, i.e.

K =









K11 K12 K13 K14 K15

K22 K23 K24 K25

K33 K34 K35

sym K44 K45

K55









. (4.24)

Given the fact that each operator Gij in (4.23) is determined individually, so is
the controller operator Kij in (4.24). The involved work makes the plant structure
unfavourable from a practical point of view.

Driven by the above two drawbacks of the conventional black-box identification technique,
a novel identification approach is needed. The identified model should preserve the accu-
racy achieved by the conventional technique to a certain extent. In addition, the resulting
plant structure should lead to an efficient system identification and controller synthesis
process, which involves a reasonable amount of effort, even when dealing with a complex
or large-scale system.

4.4 LPV Identification of an FRF Matrix

To address the two issues related to the individual identification of the FRFs in (4.23),
a spatial LPV model is proposed to capture the spatially-varying characteristics of the
FRF matrix. To justify this approach, the system in Fig. 4.2 is taken as an example to
demonstrate the varying properties of the FRFs, and how this variation leads to a spatial
LPV representation.

4.4.1 Spatially-Varying Characteristics of FRFs

Due to the interconnection between subsystems through springs and dampers, the dynam-
ics of the 5 subsystems in Fig. 4.2 are clearly not decoupled, but interacting with nearest
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neighbours. This interaction can be observed in terms of mode shapes, where the rela-
tive displacements of subsystems follow a certain pattern at resonant modes. The typical
unforced mode shapes of the 5-node system in Fig. 4.2 at the first 3 natural frequencies
are shown in Fig. 4.3. One important assumption can already be made: The dynamics
of one subsystem have a functional dependence on its location within the interconnected
system. If this assumption is true, the spatially-varying properties can be captured using
an LPV model according to a certain spatial scheduling policy.

−1

−0.5

0

0.5

1

 

 

−1

−0.5

0

0.5

1

 

 

1 2 3 4 5
−1

−0.5

0

0.5

1

 

 

mode 1

mode 2

mode 3

am
p
li
tu
d
e

subsystems

Figure 4.3: First 3 mode shapes of the five-spring-mass-damper system

Consider the diagonal terms in (4.23) at first, the so-called point FRFs, where the actuat-
ing and sensing subsystems coincide. If the spatial LPV characteristics can be established
among the diagonal terms, it should be possible to use an LPV input/output model to
generalize G11, G22, G33, G44, and G55 as functions of the spatial coordinates. Introduce
an extended notion of operating points in contrast to the lumped LPV sense. In this
case, determine the spatial coordinate si, where the response is measured, as the spatial
operating point θis, i.e. θ

i
s = si (i = 1, . . . , 5). Let p̂0(θ

i
s) be a smooth function of θis. The
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diagonal terms can be represented in LPV form as

G =









G(p̂0(θ
1
s)) G12 G13 G14 G15

G(p̂0(θ
2
s)) G23 G24 G25

G(p̂0(θ
3
s)) G34 G35

sym G(p̂0(θ
4
s)) G45

G(p̂0(θ
5
s))









. (4.25)

The spatial LPVmodelG(p̂0(θ
i
s)) differs from (4.9) in terms of the scheduling parameters—

time-varying in a lumped system, time/space-varying in a spatially-distributed system.
The subscript 0 indicates the diagonal terms.

The true values of p0(θ
i
s) can be first estimated by applying the conventional black-box

identification technique to individually identify the LTI operators Gii (i = 1, . . . , 5) as
described in steps 1) and 2) in Section 4.2.2, except that the fixed operating points are
spatial variables here. Approximate p0(θ

i
s) with a polynomial function p̂0(θ

i
s) of θis. An

LPV representation of the 5 diagonal terms in (4.25) can then be easily derived following
step 3) in Section 4.2.2. It is evident that if a solution to (4.17) exists, the approximated
polynomial coefficients p̂0(θ

i
s) agree with the true values p0(θ

i
s) (i = 1, . . . , 5).

To explore the advantages of using an LPV model to generalize the diagonal terms (4.25),
now assume that identification experiments can not be implemented at all operating points
due to certain constraints. For example, the LTI operators G11, G33, G44 and G55 can be
experimentally identified, whereas it is not possible to perform actuating and/or sensing
at subsystem 2, so that G22 needs to be determined without performing an experiment.
This problem can be solved by first constructing an LPV model G(p̂0(θ

i
s)) based on the

information at operating points θ1s , θ
3
s , θ

4
s and θ5s , then interpolating θ2s in G(p̂0(θ

i
s)) to

obtain G22. Fig. 4.4 shows a comparison between two FRFs of G22: one is its true value;
the other one is simulated from G(p̂0(θ

2
s)). Although the interpolated operator is lightly

damped at the 2nd mode, the resonant peaks at other modes are well preserved. The
main dynamics are captured in spite of a degraded accuracy. The modelling error may
be attributed to a functional dependence of p̂0(θ

i
s) on θis of a higher complexity than the

simple polynomial function assumed here.

The 1st off-diagonal terms are the transfer FRFs from the single excitation at subsystem
j = i+1 to measured response at subsystem i (i = 1, . . . , 4). Applying similar procedures
as above to identify operators Gi(i+1) (i = 1, . . . , 4) results in another set of LPV models
G(p̂1(θ

i
s)) (i = 1, . . . , 4)

G =









G11 G(p̂1(θ
1
s)) G13 G14 G15

G22 G(p̂1(θ
2
s)) G24 G25

G33 G(p̂1(θ
3
s)) G35

sym G44 G(p̂1(θ
4
s))

G55









, (4.26)

where the same scheduling policy as for the diagonal terms is employed, i.e., the spatial
operating points are the spatial coordinates where the responses are measured.

The identified spatial LPV model also allows the interpolation of operating points where
the identification experiments are not performed. Suppose that the response at subsystem 1
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Figure 4.4: Comparison between two FRFs of G22: the blue solid curve shows its true
value; the red dotted curve is simulated by interpolating the LPV model G(p̂0(θ

i
s)) with θ2s .

can not be measured. The unknown operator G12 is approximated by interpolating the
LPV model, which is constructed from the identified local LTI systems G23, G34 and G45,
with a polynomial dependence of p̂1(θ

i
s) on θis (i = 1, 2, 3, 4). The comparison between the

true value and the simulation of G12 as shown in Fig. 4.5 suggests a satisfactory accuracy
of the LPV modelling.
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Figure 4.5: Comparison between two FRFs of G12: the blue solid curve shows its true
value; the red dotted curve is simulated by interpolating the LPV model G(p̂1(θ

i
s)) with θ1s .

Repeating the same procedures for the 2nd, 3rd and 4th off-diagonal operators, an-
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other three sets of spatial LPV models are accordingly derived—G(p̂2(θ
i
s)) for i = 1, 2, 3,

G(p̂3(θ
i
s)) for i = 1, 2, and G(p̂4(θ

i
s)) for i = 1, respectively. Finally, the transfer function

matrix G parametrized in a set of spatial LPV models is obtained as

G =









G(p̂0(θ
1
s)) G(p̂1(θ

1
s)) G(p̂2(θ

1
s)) G(p̂3(θ

1
s)) G(p̂4(θ

1
s))

G(p̂0(θ
2
s)) G(p̂1(θ

2
s)) G(p̂2(θ

2
s)) G(p̂3(θ

2
s))

G(p̂0(θ
3
s)) G(p̂1(θ

3
s)) G(p̂2(θ

3
s))

sym G(p̂0(θ
4
s)) G(p̂1(θ

4
s))

G(p̂0(θ
5
s))









, (4.27)

where the operating points are chosen to be the spatial coordinates of the locations where
the responses are measured.

Certainly, (4.27) is not a unique way to explore the spatial-varying properties of the FRF
matrix. Similar characteristics can also be detected when examining the rows of (4.23).

Operators on the first row of (4.23), G1j (j = 1, . . . , 5), denote the transfer function from
a single input at subsystem j (j = 1, . . . , 5) to the response at subsystem 1, respectively.
Define a new scheduling policy as θjs = sj—the spatial coordinate of a subsystem where
an excitation is applied. The first row of (4.23) is represented in a spatial LPV form as

G =









G(p̂1(θ1s)) G(p̂1(θ2s)) G(p̂1(θ3s)) G(p̂1(θ4s)) G(p̂1(θ5s))
G22 G23 G24 G25

G33 G34 G35

sym G44 G45

G55









, (4.28)

where the superscript p̂1(θjs) is used to distinguish it from p̂1(θ
i
s) in (4.26). In Fig. 4.6,

the comparison between the true value of G12 and the approximated one obtained by
inserting θ2s into the LPV model G(p̂1(θis)) calculated fromG11, G13, G14 and G15, confirms
the spatially-varying property among the operators on one row. Repeating the same
procedures to the 2nd, 3rd and 4th rows in a sequel, the FRF matrix of an LPV form
alternative to (4.27) is written as

G =









G(p̂1(θ1s)) G(p̂1(θ2s)) G(p̂1(θ3s)) G(p̂1(θ4s)) G(p̂1(θ5s))
G(p̂2(θ2s)) G(p̂2(θ3s)) G(p̂2(θ4s)) G(p̂2(θ5s))

G(p̂3(θ3s)) G(p̂3(θ4s)) G(p̂3(θ5s))
sym G(p̂4(θ4s)) G(p̂4(θ5s))

G(p̂5(θ5s))









, (4.29)

where the operating points are the spatial coordinates of subsystems at which the actua-
tion is applied.

4.4.2 A Spatial LPV Representation

In Section 4.4.1, two alternative tests with different choices of operating points have
been carried out to validate the assumption, that it is in principle feasible to model the
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Figure 4.6: Comparison between two FRFs of G12: the blue solid curve shows its true
value; the red dotted curve is simulated by interpolating the LPV model G(p̂1(θis)) with θ2s .

input/output behaviour of a spatially-interconnected system as in Fig. 4.2 with a set of
spatial LPV models. In this section, the above two intermediate results (4.27) and (4.29)
are combined to derive a more compact spatial LPV representation of (4.23).

In (4.27), the spatial scheduling parameter is the spatial coordinate of the subsystem
whose response is measured, i.e., θis = si in Gij. On the other hand, the scheduling
parameter in (4.29) is the spatial coordinate of the subsystem at which a single excitation
is applied, i.e., θjs = sj in Gij. Instead of using a scalar – either si or sj – as the scheduling
parameter, it can be expected that an LPV model which integrates both the input and
output information, leads to a more compact model structure. Applying a new scheduling
policy with θijs = [si sj]

T , the spatial operating point determines any combination of
input and output channels. Assume again a polynomial dependence of p̂(θijs ) on θijs , i.e.

p̂(θijs ) = λ0 + λ1θ
ij
s + λ2(θ

ij
s )

2 + · · ·+ λm(θ
ij
s )

m, (4.30)

where λk ∈ R(na+nb)×nθ (k = 1, . . . , m) is a matrix instead of a vector as in (4.14), whose
column size agrees with the size of the vector exponential (θijs )

m. The FRF matrix (4.23)
takes a compact LPV form

G =









G(p̂(θ11s )) G(p̂(θ12s )) G(p̂(θ13s )) G(p̂(θ14s )) G(p̂(θ15s ))
G(p̂(θ22s )) G(p̂(θ23s )) G(p̂(θ24s )) G(p̂(θ25s ))

G(p̂(θ33s )) G(p̂(θ34s )) G(p̂(θ35s ))
sym G(p̂(θ44s )) G(p̂(θ45s ))

G(p̂(θ55s ))









. (4.31)

With the choice of θijs as the scheduling parameter, operator Gij(p̂(θ
ij
s )) uniquely de-

termines the transfer function from an input at subsystem j to an output at i. The
computation of the matrix Λ = [λ0, λ1, . . . , λm] follows the same pattern of (4.17).
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If each subsystem in the interconnected five-spring-mass-damper system in Fig. 4.2 is
equipped with sensing and actuating capability, the system has in total 15 operating points
(by counting only the terms in the upper triangular matrix of (4.31)). Suppose now that
excitation can not be applied at subsystem 2, whereas the responses at all 5 subsystems
are measurable. Excluding two operating points θ12s and θ22s , the spatial LPV identification
is performed at the remaining 13 spatial operating points with polynomial order 12. The
computation of Λ is realized according to (4.17), where P =

[
p(θ11s ) . . . p(θijs ) . . . p(θ

55
s ))
]
,

and

∆θ =














[
1
1

]

· · ·
[
1
1

]

· · ·
[
1
1

]

[
s1
s1

]

· · ·
[
si
sj

]

· · ·
[
s5
s5

]

...
...

...
[
s1
s1

]12

· · ·
[
si
sj

]12

· · ·
[
s5
s5

]12














. (4.32)

The comparison between the true value and simulation of G12 and G22 is shown in Fig. 4.7
(a) and (b), respectively.
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Figure 4.7: Comparison between the measured and simulated FRFs of G12 in (a) and G22

in (b): the blue solid curves show their true values; the red dotted curves are simulated
by interpolating the LPV model Gij(p̂(θ

ij
s )) with θ12s and θ22s , respectively
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Remarks:

• The benefits of using a spatial LPV model to parametrize the FRF matrix become
more obvious when a large-scale system needs to be identified. Instead of performing
the identification experiments at each spatial operating point, the spatial LPV struc-
ture allows to select some crucial points to perform the identification experiments,
whereas the FRFs at other locations can be estimated through LPV interpolation.

• The spatial LPV plant model (4.31) leads to an efficient controller design process,
where the controller inherits the spatial LPV structure as

K =









K(p̂(θ11s )) K(p̂(θ12s )) K(p̂(θ13s )) K(p̂(θ14s )) K(p̂(θ15s ))
K(p̂(θ22s )) K(p̂(θ23s )) K(p̂(θ24s )) K(p̂(θ25s ))

K(p̂(θ33s )) K(p̂(θ34s )) K(p̂(θ35s ))
sym K(p̂(θ44s )) K(p̂(θ45s ))

K(p̂(θ55s ))









. (4.33)

• Since a vector exponential involves cross product terms, e.g. (θijs )
2 = [s2i , s

2
j , sisj ]

T ,
it may significantly increase the size of (4.32) and thus the computational burden
of the optimization problem (4.17). Nevertheless, experience shows that even with
an elementwise vector exponential, the identified LPV model demonstrates a satis-
factory accuracy.

• It has been explained in [6] that the interaction between subsystems shows an expo-
nential decay in space: the larger the distance between two subsystems, the smaller
the impact. The implementation of spatial truncation leads to a ’localized’ struc-
ture whose dynamics are close to the original system, but only influenced by the
neighbouring subsystems. Therefore, when dealing with a system that consists of a
large number of subsystems, instead of a full transfer function matrix G, a banded
matrix

G′ =









∗ · · · ∗
∗ · · · ∗ 0

∗ · · · ∗
0 ∗ · · · ∗

∗ · · · ∗









(4.34)

appears to be a more attractive structure from a practical point of view, after
spatially truncating the operators Gij when |sj − si| > γ̄, where γ̄ is the maximum
allowable distance from input to output. The truncated FRF matrix coincides with
the structure of a distributed system, in the sense that the response of one subsystem
is determined by itself and its nearest neighbours.

• Increasing the number of the operating points at which the identification experi-
ments are performed leads to a higher accuracy of the identified model at the cost
of increased computational complexity. A compromise between the model accuracy
and complexity needs to be achieved according to the requirements. On the other
hand, given a fixed number of operating points, the optimization of their locations
to achieve a maximum accuracy is discussed in [61] .
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4.5 Experimental Results

To experimentally validate the proposed identification approach, another testbed as shown
in Fig. 4.8 – an aluminium beam of 0.75 m length, 4 cm width, and 4 mm thickness,
equipped with 5 collocated pairs of piezo actuators and sensors – has been employed. The
attachment of the 5 piezo pairs virtually divides the test structure into 5 interconnected
subsystems, with their spatial coordinates

s = [0.075, 0.225, 0.375, 0.525, 0.675]m,

as shown in Fig. 4.9. The free-body condition is realized by suspending the beam with
three springs in parallel.

Figure 4.8: Aluminium beam equipped with 5 pairs of collocated piezo actuators and
sensors

actuators

sensors

0 0.075 0.225 0.375 0.525 0.675 0.75
s(m)

Figure 4.9: Distribution and spatial coordinates of the 5 piezo pairs

Experience shows that a chirp signal covering the resonant frequencies of interest works
the best as an excitation signal. Knowing that the first two resonant frequencies of the
structure are 35.05 and 96.08 Hz, a chirp signal sweeping the frequencies from 0 to 100
Hz with a sampling time ∆T = 0.001 s is generated to excite each subsystem individually.
The proposed identification technique is evaluated under two scenarios: 1. ideal case:
actuating and sensing at all subsystems are possible; 2. non-ideal case: either actuating
or sensing fails at certain subsystems, where the corresponding FRFs need to be estimated
without performing identification experiments.
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4.5.1 Ideal Case

In the ideal case, each subsystems is excited individually, while the responses at all 5
subsystems are measured simultaneously. Given the data set (uj, yi) for i, j = 1, 2, . . . , 5,
the upper triangular operators Gij of (4.23) are first identified individually as a set of
LTI models by means of the least-squares method discussed in Section 4.2.1. By trial and
error, proper input and output orders are determined as na = nb = 10. A polynomial
dependence of G(p̂(θijs )) on θijs is assumed. An LPV model in the form of (4.31) is then
identified to capture the spatially-varying characteristics of the FRF matrix. Fig. 4.10
shows the comparison between the measured and LPV approximated FRFs of the 5 × 5
matrix, which suggests a high accuracy of the LPV estimation.
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Figure 4.10: Comparison between the measured and LPV approximated FRFs of the 5×5
matrix: the blue curves are measured; the red ones are from the spatial LPV simulation.
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4.5.2 Non-ideal Case

The non-ideal scenario is meant to test the reliability of the local LPV identification
technique, when performing identification experiments at certain operating points is not
possible.

Assume that the 3rd actuator is defect, i.e. the operators G13, G23 and G33 in (4.23) can
not be identified experimentally, but can be approximated, after a spatial LPV model
G(p̂(θijs )) is constructed based on the information at available operating points. Fig. 4.11
shows the comparison between the measured and simulated FRFs of G13 in (a), G23 in
(b) and G33 in (c). Though some discrepancies exist, the structural dynamics at the first
two modes are relatively well preserved.
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Figure 4.11: Comparison of the measured and simulated FRFs ofG13 in (a), G23 in (b) and
G33 in (c): the blue curves are measured; the red curves are from interpolating the LPV
model G(p̂(θijs )) with θ13s , θ23s , and θ33s , respectively, assumed that the 3rd actuator fails.

4.6 Summary

This chapter has proposed a novel approach to identify the FRF matrix directly from
the input/output behaviour of a test structure, to address two issues that arise from
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implementing the conventional black-box identification: 1. the individual identification
of the FRFs in an FRF matrix requires performing identification experiments at a large
number of actuating and sensing locations, when dealing with a large-scale or complex
structure; 2. the structure of the identified FRF matrix is generally not suitable for
controller design. It has been demonstrated step by step that the FRFs in an FRF matrix
exhibit spatially-varying characteristics. A local LPV identification approach has been
extended from lumped systems to spatially-distributed systems. The FRF matrix can
then be parametrized as a spatial LPV model, which allows to approximate the FRFs at
non-actuated/non-sensed locations through LPV interpolation. The proposed approach
facilitates the experimental work by allowing to perform experiments at a relatively small
number of selected actuating and sensing locations. Meanwhile, the LPV representation
of the FRF matrix enables an efficient LPV controller design, if a controller that inherits
the plant structure is required. The performance of the proposed approach has been
experimentally demonstrated on an actuated beam. When actuating and/or sensing at
certain locations is not possible, FRFs approximated through the LPV interpolation still
preserve the main dynamics of the test structure.



Chapter 5

Distributed Identification

5.1 Introduction

Although Chapter 3 and Chapter 4 have dealt with the physical modelling and lumped
identification of given test structures, respectively, the obtained models do not allow to
work in the framework developed in Chapter 2. Thus a mathematical model that captures
the distributed nature of a structure is needed, such that system analysis and controller
synthesis conditions first developed in [8] can be applied.

It is well-known that the mechanical behaviour of structures is typically governed by
PDEs. The FE method presented in Chapter 3 is one technique to solve for the ap-
proximated solutions to PDEs. In this chapter, an alternative numerical technique –
the finite difference (FD) method – is discussed. The application of the FD method
leads to a two-dimensional input/output model structure, which spatially discretizes the
distributed-parameter system into interconnected subsystems, and defines the system dy-
namics on an individual subsystem of a small order. The resulting input/output model
can then be converted into the state space form that lends itself to efficient, LMI-based
synthesis of distributed control; it is thus used as the mathematical model for a distributed
identification.

This chapter considers the distributed identification of both parameter-invariant and
parameter-varying models. The input/output identification techniques developed in [27]
for LTSI models and in [29] for spatial LPV models are implemented experimentally.
A new identification approach that exploits the physical modelling results obtained in
Chapter 3 is proposed here to improve the identification accuracy, with the desired math-
ematical model still preserved.

This chapter includes results reported in [65] and [66]. It is organized as follows: Section
5.2 derives the mathematical model for distributed identification by solving PDEs using
the FD method. Section 5.3 briefly reviews the input/output identification techniques for
both LTSI and spatial LPV models developed in [27] and [29], respectively, and tests them
on the test structure. Section 5.4 develops an alternative identification procedure, which

65
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accounts for the physical properties of the test structure and experimentally demonstrates
a better performance compared to black-box identification.

5.2 Mathematical Model for Identification

This section discusses the implementation of the FD method to solve for approximate
solutions to the governing PDE of a beam structure. The resulting two-dimensional
input/output model structure captures the dynamics of spatially-discrete subsystems in-
teracting with nearest neighbours.

5.2.1 FD Method to Solve PDEs

The idea of the FD method is to replace the partial derivatives with approximations
obtained by Taylor expansions around interest points. For example, the Taylor series of
a function u(x), that is infinitely differentiable at point xi, is the power series

u(xi+1) = u(xi) +
∆x

1!
u′(xi) +

(∆x)2

2!
u′′(xi) + . . .+

(∆x)n

n!
u(n)(xi) + . . . , (5.1)

where ∆x = xi+1 − xi. Its first derivative can be expressed using the forward difference

u′(xi) =
u(xi+1)− u(xi)

∆x
+O(∆x), (5.2)

the backward difference

u′(xi) =
u(xi)− u(xi−1)

∆x
+O(∆x), (5.3)

the central difference

u′(xi) =
u(xi+1)− u(xi−1)

2∆x
+O((∆x)2), (5.4)

or the combination of the backward and forward difference methods—Crank-Nicolson
scheme [67]. The truncation error – the difference between the numerical approximation
and its exact value – is denoted by O(·).
PDEs of one spatial dimension include the partial derivatives of signals – e.g. u(t, x) –
with respect to continuous time t and space x. Replacing both the temporal and spatial
derivatives with difference approximations results in a difference equation with respect
to discrete time k and discrete space s. Various combinations of the difference methods
can be applied to replace the temporal and spatial derivatives, for example, forward-time
forward-space (FTFS), backward-time central-space (BTCS), etc. Depending on how
the solution u(k, s) is calculated, the approximation can be categorized either as explicit
scheme or implicit scheme.

An FD scheme is said to be explicit, if values at time instant k depend only on values
from the past. If the unknown values at k are functions of both known quantities at k−1,
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k − 2, . . ., and unknown quantities at k, the scheme is implicit. The implementation of
different schemes may yield different results. One reason is that the round-off error that
arises during calculation may lead to a blow up of the solution. A scheme is considered
convergent, if its solution approximates the solution of the PDE, and the approximation
improves as the sampling time and sampling space tend to zero.

Each scheme has its own benefits and drawbacks. A comparison can be carried out in
terms of the following three aspects:

• Numerical stability: The implicit scheme is unconditionally stable, whereas the
explicit scheme is stable only if a certain condition is fulfilled.

• Computation effort: The explicit scheme is easy to be implemented, and requires
the least computation time, whereas the implicit scheme involves an intensive com-
putational effort at each time step.

• Truncation error: The Crank-Nicolson scheme is most accurate for a small sampling
time. The truncation error of the first-order derivative is quadratic over the sampling
time/space in a Crank-Nicolson scheme, i.e. O((∆T )2), O((∆X)2), yet linear in an
explicit scheme, i.e. O(∆T ), O(∆X).

In this work, the explicit scheme is employed, accounting for its easy computation and
real-time feasibility. Since the explicit scheme is only stable under certain conditions,
the test of its numerical stability is required. Two mathematical tools – the Courant-
Friedrichs-Lewy (CFL) condition and the von Neumann analysis – are available for this
purpose.

The CFL condition developed by Courant, Friedrichs and Lewy [68], states a necessary
(not sufficient) condition for an explicit FD scheme to be a stable approximation to a
parabolic PDE by imposing a constraint on the Courant number. On the other hand,
based on the Fourier decomposition of the round-off error, the von Neumann analysis
results in necessary and sufficient conditions for the stability of an explicit FD scheme by
imposing constraints on the temporal and spatial step sizes [69].

To illustrate the implementation of the explicit FD scheme to solve for approximated
solutions to PDEs, as well as the numerical stability test, a PDE that governs the vibratory
motion of a beam structure – the Euler-Bernoulli equation – is used as an example. The
resulting difference equation after applying the FD method motivates the mathematical
model for the distributed identification.

Example 5.1 (Solving the Euler-Bernoulli Equation Using the FD Method)
The Euler-Bernoulli equation

EI
∂4w(t, x)

∂x4
+ ρAo

∂2w(t, x)

∂t2
= f(t, x) (5.5)

describes the dynamic relationship between the external force f(t, x) and the transverse
deflection w(t, x), under the Euler-Bernoulli beam theory, where E, I, ρ, and Ao denote
the Young’s modulus, second moment of area, density, and cross-section area, respectively.
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Define the sampling time as ∆T and sampling space as ∆X. Applying the central-time
central-space (CTCS) FD method to (5.5) yields

EI
w(k, s− 2)− 4w(k, s− 1) + 6w(k, s)− 4w(k, s+ 1) + w(k, s+ 2)

(∆X)4

+ ρAo

w(k + 1, s)− 2w(k, s) + w(k − 1, s)

(∆T )2
= f(k, s). (5.6)

Performing the von Neumann stability analysis, the following requirement has to be fulfilled
for a stable numerical solution to (5.6)

√

EI

ρAo

∆T

(∆X)2
≤ 1

2
. (5.7)

Assume that stable and convergent solutions exist. Then w(k, s) can be solved for explicitly
in time from variables at spatial location s, neighbours s − 1, s − 2, s + 1 and s + 2 at
time k − 1 and k − 2 as

w(k, s) = −[a(1,−2)w(k − 1, s+ 2) + a(1,−1)w(k − 1, s+ 1) + a(1,0)w(k − 1, s)

+ a(1,1)w(k − 1, s− 1) + a(1,2)w(k − 1, s− 2) + a(2,0)w(k − 2, s)] + b(1,0)f(k − 1, s) (5.8)

with coefficients b(1,0) = (∆T )2

ρAo
, a(1,0) = −2 + 6EI(∆T )2

ρAo(∆X)4
, a(1,1) = a(1,−1) = − 4EI(∆T )2

ρAo(∆X)4
,

a(1,2) = a(1,−2) =
EI(∆T )2

ρAo(∆X)4
, a(2,0) = 1.

The dependence of w(k, s) on temporally and spatially shifted inputs and outputs can be
mapped onto two masks: input mask Mu and output mask My as shown in Fig. 5.1.
Both masks are labelled by discretized temporal index ik and discretized spatial index is.
Black dots indicate the involved temporally- and spatially-shifted inputs and outputs that
contribute to the computation of w(k, s), with their contributions weighed by the input
and output coefficients b(ik ,is) and a(ik ,is), respectively. Alternatively, Fig. 5.1 can also be
expressed as output and input sets, i.e.

My = {(ik, is) : (1, 0), (1, 1), (1, 2), (1,−1), (1,−2), (2, 0)}
Mu = {(ik, is) : (1, 0)},

with the index of the output coefficients (ik, is) ∈ My, and that of the input coefficients
(ik, is) ∈ Mu.

Initial and Boundary Conditions

The solution to a PDE is generally not unique, but depending on its initial and boundary
conditions. Thus, additional constraints must be specified on the initial status and domain
boundary to obtain a unique solution. The Euler-Bernoulli equation is taken again as an
example to illustrate some common boundary conditions.
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Mu isis

ikik

My

Figure 5.1: Input and output masks resulted from applying the CTCS FD method to
solve the Euler-Bernoulli equation

Example 5.2 (Common Boundary Conditions for the Euler-Bernoulli Equation)
Denote the beam length as l. The boundary conditions for a free-free beam, where no re-
striction is applied to the boundary subsystems, and for a beam with one clamped end are
defined as following:

• Free-free boundary condition at boundaries x = 0, l

EI
∂2w(t, x)

∂x2
|(x=0,l) = 0, EI

∂3w(t, x)

∂x3
|(x=0,l) = 0. (5.9)

• Clamped at one end, e.g. x = 0

w(t, x)|(x=0) = 0,
∂w(t, x)

∂x
|(x=0) = 0. (5.10)

5.2.2 Two-Dimensional Input/Output Model Structure

Motivated by the two-dimensional difference equation (5.8), the lumped linear ARX model
(4.4) has been extended to represent multidimensional systems in [27].

Define u(k, s) as the discrete input signal applied to a two-dimensional discrete SISO
data-generating system as shown in Fig. 5.2. The input/output dynamics of the plant
model and the noise model take the form

A(qt, qs)y0(k, s) = B(qt, qs)u(k, s) (5.11)

A(qt, qs)v(k, s) = e(k, s), (5.12)

where e(k, s) represents a two-dimensional Gaussian white noise signal with zero mean,
and v(k, s) the filtered noise.
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u(k, s) G(qt, qs)
y0(k, s)

e(k, s)

H(qt, qs)

v(k, s)

y(k, s)

Figure 5.2: Two-dimensional ARX model structure

The polynomials A and B are

A(qt, qs) = 1 +
∑

(ik,is)∈My

a(ik ,is)q
−ik
t q−is

s (5.13)

B(qt, qs) =
∑

(ik,is)∈Mu

b(ik ,is)q
−ik
t q−is

s , (5.14)

where qt and qs are the temporal- and spatial-shift operators, respectively, e.g.

q−1
t q2su(k, s) = u(k − 1, s+ 2).

Given the predefined output and input masks My and Mu—the so-called support regions
in multidimensional digital signal processing [70], coefficients a(ik ,is) and b(ik ,is) impose
weights on the respective outputs and inputs. Since a spatially-distributed system is
causal in time and non-causal in space, the support region must be a subset of the first
and fourth quadrants.

Insert (5.13)-(5.14) in (5.11)-(5.12). The output of subsystem s at time instant k, i.e.
y(k, s), is determined by the difference equation

y(k, s) = −
∑

(ik ,is)∈My

a(ik ,is)y(k−ik, s−is)+
∑

(ik ,is)∈Mu

b(ik ,is)u(k−ik, s−is)+e(k, s), (5.15)

which is a general form of (5.8). It defines the dynamics of a distributed system on a
single subsystem of a small order, which can be easily reformulated in the form of the
desired multidimensional state space model (2.9), once the input and output masks have
been properly selected and the coefficients have been estimated. Taking (5.15) as the
mathematical model for the distributed identification, Sections 5.3 and 5.4 present two
identification techniques, as well as their experimental validation.

5.3 Black-Box Identification

As stated in Chapter 2, distributed systems consist of an array of interconnected subsys-
tems. Let (5.15) represent the governing difference equation of subsystem s. The black-
box identification problem can be formulated as: Given the model structure (5.15) and
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measured input and output data sequences {u(k, s), y(k, s)}, k = 1, . . . , Nk, s = 1, . . . , Ns,
where Nk and Ns are the sizes of temporal and spatial measurements, respectively, find the
proper input and output masks Mu and My, and estimate their corresponding coefficients
b(ik ,is) and a(ik ,is), such that the cost function

J =
Ns∑

s=1

Nk∑

k=1

(y(k, s)− ŷ(k, s))2 (5.16)

is minimized, where ŷ(k, s) denotes the estimated output.

This section considers not only the identification of LTSI models, but also spatial LPV
models for systems with spatially-varying features. In [27], the simplest least-squares
method is employed to identify a parametric model of an LTSI system. The identification
of a spatial LPV model is presented in [29] by extending the input/output identification
techniques for temporal LPV systems. Accounting for the precence of colored noise,
techniques for improved identification are developed in [71], [72] and [73]. This section
focuses on the application of the simplest least-squares based techniques developed in [27]
and [29] for the identification of LTSI and spatial LPV models, respectively.

5.3.1 Identification of LTSI Models

LTSI models are used to represent distributed systems comprised of a number of identical
subsystems, thus having identical coefficients a(ik ,is) and b(ik ,is) in (5.15) for all subsystems.

The input and output masks Mu and My are often unknown before the identification
procedure is complete; they need to be updated by comparing various configurations.
Provided an initial choice of the masks, the output can be estimated by rewriting the
difference equation (5.15) into regressor form as

ŷ(k, s) = φT (k, s)p, (5.17)

where the parameter vector

p =

[[
catikcatisa(ik,is)

]

(ik,is)∈My
[
catikcatisb(ik ,is)

]

(ik ,is)∈Mu

]

∈ R
np (5.18)

contains unknown coefficients. The symbol catikcatis means the concatenation of coeffi-
cients a(ik ,is) and b(ik ,is) with respect to ik and is as a vector, with (ik, is) subject to sets
My and Mu, respectively. In the Euler-Bernoulli equation example, we have

p = [a(1,−2), a(1,−1), a(1,0), a(1,1), a(1,2), a(2,0), b(1,0)]
T . (5.19)

The data vector

φ(k, s) =

[[
−catikcatisy(k − ik, s− is)

]

(ik,is)∈My
[
catikcatisu(k − ik, s− is)

]

(ik,is)∈Mu

]

∈ R
nφ (5.20)
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(nφ = np in this case) collects the measured input and output data indexed by chosen
masks as well. The data vector corresponding to the parameter vector (5.19) is written
as

φ(k, s) = [−y(k − 1, s+ 2),−y(k − 1, s+ 1),−y(k − 1, s),−y(k − 1, s− 1),

−y(k − 1, s− 2),−y(k − 2, s), u(k − 1, s)]T .

The output vector Y ∈ RNkNs and the regressor matrix Φ ∈ RNkNs×np contain measure-
ments at all temporal and spatial instants as

Y = [y(1, 1), · · · , y(Nk, 1) · · · , y(1, Ns), · · · , y(Nk, Ns)]
T

Φ = [φ(1, 1), · · · , φ(Nk, 1) · · · , φ(1, Ns), · · · , φ(Nk, Ns)]
T .

The parameter vector p that minimizes the cost function (5.16) is then computed as

p = (ΦTΦ)−1ΦTY. (5.21)

The masks can be modified after each trial, until a satisfactory estimation is achieved.

Remarks :

• The simplest least-squares based technique assumes white noise in the measured
output, which may lead to a bias when coloured noise is present. Based on the
initial results obtained using the least-squares method, an instrumental variable
method can be then applied to obtain unbiased estimates. The reader is referred to
[71] for a detailed discussion.

• The identification of a more realistic noise model having a Box-Jenkins structure
instead of an ARX structure is proposed in [72].

5.3.2 Reasons to Use Spatial LPV Models

In [8], distributed systems comprised of either periodic or infinite interconnections of
identical subsystems, are considered to be LTSI. In real applications, a system of an
infinite length does not exist. Moreover, the building subsystems often do not share
uniform physical properties. Examples are shown in Fig. 5.3 (a) for subsystems of various
lengths, in (b) for subsystems of various thicknesses, and in (c) for subsystems of various
widths. Those systems violate the assumption of an LTSI model. With the extension of
temporal LPV notations to spatially-interconnected systems, spatial LPV models can be
used to capture the spatially-varying dynamics, and still allow working in the distributed
systems framework.

5.3.3 Identification of Spatial LPV Models

The mathematical model (5.15) can be applied not only to LTSI systems, but also to
time/space-varying systems, if coefficients a(ik ,is) and b(ik ,is) are allowed to vary with re-
spect to time and/or space. In this work, only spatially-varying systems are considered,
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Figure 5.3: Examples of spatially-varying models: (a) subsystems of various lengths; (b)
subsystems of various thicknesses; (c) subsystems of various widths.

i.e. coefficients are functions of spatial scheduling parameters θs. In general, the depen-
dence functions can be any smooth functions [74]. Assume that coefficients in (5.15) are
polynomial functions of θs up to degree m as

a(ik,is)(θs) =
m∑

j=0

α(ik,is,j)(θs)
j (5.22)

b(ik ,is)(θs) =

m∑

j=0

β(ik,is,j)(θs)
j, (5.23)

where α(ik ,is,j) and β(ik ,is,j) (j = 0, · · · , m) are real constants to be estimated. The degree
m, as well as input and output masks Mu and My are pre-defined variables, and to be
updated after each trial. It should be self-evident, that the superscript j in (θs)

j denotes
the exponent, in θjs the j-th spatial operating point.

Define a vector τ that consists of the powers of the scheduling parameters as

τ = [1, θs, · · · , (θs)m]T .

The counterpart of (5.17) for a spatial LPV model is written as

ŷ(k, s) = (φ(k, s)⊗ τ)T p̃, (5.24)

where φ(k, s) ∈ Rnφ is defined in the same way as in (5.20). The parameter vector p̃ ∈ Rnp̃

(np̃ = nφ(m+ 1)) contains the unknown coefficients of polynomials α(ik ,is,j) and β(ik ,is,j)
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as

p̃ =

[[
catikcatiscatjα(ik ,is,j)

]

j=0:m,(ik,is)∈My[
catikcatiscatjβ(ik ,is,j)

]

j=0:m,(ik,is)∈Mu

]

. (5.25)

Introduce a new regressor vector η(k, s) = φ(k, s)⊗ τ , η(k, s) ∈ Rnp̃. The output vector
Y ∈ RNkNs and the regressor matrix H ∈ RNkNs×np̃ are constructed from measurements
as

Y = [y(1, 1), · · · , y(Nk, 1), · · · , y(1, Ns), · · · , y(Nk, Ns)]
T

H = [η(1, 1), · · · , η(Nk, 1), · · · , η(1, Ns), · · · , η(Nk, Ns)]
T .

The parameter vector p̃ that minimizes the cost function (5.16) is then computed as

p̃ = (HHT )−1HY. (5.26)

Remark:

• Compared to the local approach for the LPV identification discussed in Chapter 4,
which relies on the individual excitation of a single subsystem, the identification
techniques presented here are considered as a global approach, due to the fact that
all subsystems (or the spatial operating points) are excited simultaneously in one
single experiment.

5.3.4 Experimental Identification

The experimental validation of black-box identification techniques for both LTSI and spa-
tial LPV models is performed on the long test structure described in Section 1.1.2. 16
pairs of collocated actuators and sensors attached on the beam surface induce 16 spatially-
discretized subsystems. The equal distances between two neighbouring pairs and the uni-
form physical properties of the structure suggest 16 identical subsystems, each equipped
with sensing and actuating capabilities. The free-free boundary condition is assumed,
when no restriction is applied at the beam ends. To test the identification technique for
spatial LPV models, the same testbed can still be employed by intentionally deactivating
a couple of actuator/sensor pairs at arbitrary locations. The resulting subsystems are not
identical any more but spatially-varying due to varying distances between actuator/sensor
pairs as shown in Fig. 5.3 (a).

Identification of LTSI Models

Identification experiments are performed by actuating the 16 actuators simultaneously
with 16 out-of-phase chirp signals up to 15 Hz, which cover the first 6 resonant modes, i.e.
ω = [1.22, 1.968, 3.357, 5.249, 8.362, 11.29] Hz. The sampling time is chosen as ∆T = 0.001
s. After trial and error, the proper input and output masks are determined as shown in
Fig. 5.4.
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Mu isis

ikik

My

Figure 5.4: Input and output masks for the experimentally identified LTSI model using
black-box identification

The comparison of the simulated and measured output voltages at 4 selected sensors is
shown in Fig. 5.5, when the structure is excited by the same 16 (non-identical) noise
signals as the ones used in Fig. 3.14. A good match between the identified model and the
measurements can be observed.

Identification of Spatial LPV Models

Instead of the full usage of 16 actuator/sensor pairs, 6 pairs of them – pairs 3, 5, 9, 10, 12,
15 – are deactivated on purpose to allow varying distances between any two neighbouring
subsystems. The resulting test structure exhibits spatially-varying properties.

The spatial coordinates of the remaining 10 pairs are

s = [0.15, 0.45, 1.05, 1.65, 1.95, 2.25, 3.15, 3.75, 4.05, 4.65] m.

It is natural here to define the spatial coordinates as the spatial operating points, i.e.
θis = si (i = 1, . . . , 10), after scaling the range down to [-1, 1]. Let a(ik,is)(θs) and b(ik ,is)(θs)
be first order polynomial functions of θs. The proper input and output masks as shown in
Fig. 5.6 are chosen. Fig. 5.7 shows the comparison of the simulated and measured output
voltages at 4 piezo sensors, given 10 (non-identical) noise signals exciting the activated
10 piezo actuators. Although the identified spatial LPV model can follow the general
trend of the structural behaviour to a certain extent, there is clearly still room for further
improvement.

5.4 Identification based on the FE Modelling Results

Black-box identification is a quick and computationally efficient solution to identify a
model from measurements based on its input/output behaviour. The experimental val-
idation in Section 5.3.4 demonstrates that the identified models capture the structural
dynamics to a certain extent, and also shows their difficulties in the identification around
resonant frequencies. To improve the model accuracy, as well as the model-based controller
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Figure 5.5: Comparison of the black-box simulated (blue) and measured (red) output
voltages at 4 selected piezo sensors, given 16 (non-identical) noise signals exciting 16
piezo actuators simultaneously.
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Figure 5.6: Input and output masks for the experimentally identified spatial LPV model
using black-box identification
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Figure 5.7: Comparison of the black-box simulated (blue) and measured (red) output
voltages at 4 selected piezo sensors, given 10 noise signals exciting 10 piezo actuators
simultaneously.

performance at a later stage (in Chapter 6), an alternative identification technique, that
explores the physical meaning of the structure, and preserves the desired input/output
model structure (5.15), is proposed in this section with the use of the FE modelling results
achieved in Chapter 3.

It has been discussed that, although the obtained FE model exhibits a satisfactory per-
formance in capturing the structural dynamics, it is generally not suitable for the further
controller synthesis due to its large order and lumped structure. However, if it is possible
to extract a distributed model in the form of (5.15) from the FE model, this may lead to
a more accurate alternative to black-box identification.

Taking the physical properties of the test structure into consideration, Section 5.4.1 de-
rives the input and output masks from its governing PDE. Provided the selected masks,
Section 5.4.2 identifies the LTSI model by first constructing a ’lifted’ state space model,
then estimating coefficients a(ik ,is) and b(ik ,is) via exploiting the FE model obtained in
Chapter 3. Section 5.4.3 follows a similar procedure to identify a spatial LPV model.
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5.4.1 PDE-Based Selection of Masks

The Euler-Bernoulli equation (5.5) establishes the linear relationship between external
forces and transverse displacements under Euler-Bernoulli beam theory. Recall the func-
tionality of piezo patches as actuator and sensor described in Chapter 3: when the patch
is used as an actuator, the input voltage is proportional to a pair of concentrated torques
applied at the two electrode ends; as a sensor, the output voltage is proportional to the
difference of the slopes at the two electrode ends. Thus (5.5) can not be taken directly as
the governing PDE of the test structure. Nevertheless, it is possible to bring (5.5) into a
shape that approximates this specific application.

First of all, the external force f(k, s) can be approximated by f ≈ M ′′
p to bring the torque

into the PDE as

EI
∂4w(t, x)

∂x4
+ ρA

∂2w(t, x)

∂t2
=

∂2Mp(t, x)

∂x2
. (5.27)

Differentiating both sides of (5.27) twice with respect to x yields

EI
∂4

∂x4
(
∂2w(t, x)

∂x2
) + ρA

∂2

∂t2
(
∂2w(t, x)

∂x2
) =

∂4Mp(t, x)

∂x4
. (5.28)

Knowing that the second local derivative of the transverse displacement approximates
the curvature κ, i.e. κ ≈ w′′, (5.28) can then be expressed with respect to torque and
curvature as

EI
∂4κ(t, x)

∂x4
+ ρA

∂2κ(t, x)

∂t2
=

∂4Mp(t, x)

∂x4
. (5.29)

Assume that the curvature κ approximates the difference of the slopes, when the distance
between two electrode ends – in other words, the length of a piezo patch – is small

enough, i.e. κ ≈ w′′ ≈ w′

a−w′

b

xa−xb
, where xa and xb are the x coordinates of the two electrode

boundaries a and b, respectively. Given the linear relationship between the output voltage
φo and the difference of the slopes at the two electrode ends, i.e. φo = gs(w

′
a − w′

b), φo is
approximately proportional to the curvature κ as well. Hence, a piezo pair of originally
two nodes can be treated as a single node as shown in Fig. 5.8, where the input voltage φi

is proportional to the applied torque Mp, while the output voltage φo approximates the
curvature at the center of the electrodes.

M −M

w′
a

w′
b

φi

φo

Figure 5.8: Two electrode nodes are approximated by one node with a single input (input
voltage) and single output (output voltage) at the center of the electrodes
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The CTCS FD method can be applied to (5.29) to solve for κ(k, s). The input and output
masks are shown in Fig. 5.9 with coefficients a(1,2) = a(1,−2) = ca, a(1,1) = a(1,−1) = −4ca,
a(1,0) = −2 + 6ca, a(2,0) = 1, b(1,2) = b(1,−2) = cb, b(1,1) = b(1,−1) = −4cb, and b(1,0) = 6cb,

where ca =
∆T 2EI
∆X4ρAo

, and cb =
∆T 2

∆X4ρAo
.

Mu isis

ikik

My

Figure 5.9: Input and output masks obtained by applying the CTCS FD method to solve
PDE (5.29) with torque as input and curvature as output

Although (5.29) establishes the governing equation of a theoretical beam, with torque as
input and curvature as output, aspects that are specific to the test structure and not yet
modelled in (5.29) include:

• Damping. A simple proportional damping is assumed during the FE modelling.
But the translation from the damped FE model back into its governing PDE is not
known. To introduce damping into a PDE, terms that represent various types of
energy dissipation mechanisms can be directly added [75], e.g.

(a)α0
∂κ

∂t
, (b)− α1

∂3κ

∂t∂x2
, (c)α2

∂5κ

∂t∂x4
, (5.30)

where α0, α1 and α2 are constant damping factors. The damping mechanism de-
pends on the structure configuration and is not known exactly. Any choice of the
damping mechanism may bring changes to the undamped input and output masks,
and their coefficients accordingly.

• Suspension systems. It is desired that through attaching the test structure to a
suspension system comprised of soft springs, the rigid body modes are separated
from the the first bending mode by a ratio of 5 to 10 [9], such that the influence of
springs on beam dynamics can be ignored. However, it is difficult to build a soft
suspension system that fulfils this requirement for the long and thin aluminium beam
used here. The computed suspension frequencies are 0.87 Hz and 0.92 Hz, while the
first bending mode is 1.22 Hz. The suspension clearly interferes with the structural
dynamics at the very low frequency range. Hence, apart from the actuated beam,
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the suspension system becomes part of the structure to be modelled, which is not
included in the theoretical PDE.

To account for the unaddressed issues, an enlarged output mask as shown in Fig. 5.10
suggests a more complex model structure than Fig. 5.9. Both choices of masks in Fig. 5.9
and Fig. 5.10 will be tested and compared for both the LTSI model and the spatial LPV
model identification.

Mu isis

ikik

My

Figure 5.10: Input and (enlarged) output masks for the experimental identification

5.4.2 Identification of LTSI Models

With the input and output masks determined, coefficients a(ik ,is) and b(ik ,is) are constants
and identical for all subsystems just like black-box identification. Consider first the masks
in Fig. 5.9 and assume a symmetric contribution from the left and the right neighbouring
subsystems, i.e. a1 = a(1,−2) = a(1,2), a2 = a(1,−1) = a(1,1), a3 = a(1,0), a4 = a(2,0),
b1 = b(1,−2) = b(1,2), b2 = b(1,−1) = b(1,1), and b3 = b(1,0), where a1, a2, a3, a4, b1, b2, and b3
are coefficients to be estimated. The difference equation in the form of (5.15) is expanded
as

y(k, s) =− a1[y(k − 1, s− 2) + y(k − 1, s+ 2)]− a2[y(k − 1, s− 1) + y(k − 1, s+ 1)]

− a4[y(k − 2, s− 2) + y(k − 2, s+ 2)]− a5[y(k − 2, s− 1) + y(k − 2, s+ 1)]

+ b1[u(k − 1, s− 2) + u(k − 1, s+ 2)] + b2[u(k − 1, s− 1) + u(k − 1, s+ 1)]

− a3y(k − 1, s)− a6y(k − 2, s) + b3u(k − 1, s). (5.31)

To estimate the unknown coefficients, the FE model obtained in Chapter 3 is involved in
the identification procedure as follows:

1. Construct a ’lifted’ system. Given the difference equation (5.31), a state space model
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of the overall system, or the so called ’lifted’ system [76], is realized as





x̆(k + 1)
x̆(k + 2)

y̆(k + 1)



 =






0 I 0

Ă21 Ă22 B̆2

0 I D̆










x̆(k)
x̆(k + 1)

ŭ(k + 1)



 . (5.32)

The overhead ˘ indicates signals or system matrices of a lifted system. The state
vector x̆(k) and the input vector ŭ(k) contain the outputs and inputs of all 16
subsystems at time k as

x̆(k) = [y(k, 1), y(k, 2), . . . , y(k, 16)]T ,

ŭ(k) = [u(k, 1), u(k, 2), . . . , u(k, 16)]T .

The system matrices Ă21, Ă22 and B̆2 retrieve the difference equation (5.31) at 16
spatial locations; each has the structure of a Toeplitz matrix as

Ă21 =














−a4
−a4

−a4
−a4

. . .

−a4
−a4














, Ă22 =














−a3 −a2 −a1
−a2 −a3 −a2 −a1
−a1 −a2 −a3 −a2 −a1

−a1 −a2 −a3 −a2 −a1
. . .

−a1 −a2 −a3 −a2
−a1 −a2 −a3














B̆2 =














b3 b2 b1
b2 b3 b2 b1
b1 b2 b3 b2 b1

b1 b2 b3 b2 b1
. . .

b2 b3 b2 b1
b3 b2 b1














. (5.33)

The lifted state space model (5.32) differs from the multidimensional state space
model (2.9) in the sense that (2.9) defines the system dynamics on an individual
subsystem, where the exchange of information among subsystems is modelled as
spatial states, whereas the lifted system (5.32) represents the overall dynamics as a
MIMO LTI system, containing only temporal states.

2. Identify the system matrix Ă :=

[
0 I

Ă21 Ă22

]

using the Levenberg-Marquardt method

[58] [77]. The dynamic properties of a system are determined by the eigenvalues
of the system matrix, here Ă. From a physical point of view, complex eigenvalues
of the system matrix of a flexible structure determine the resonant frequencies, as
well as damping factors at resonant modes. Thus, the system matrix Ă (or more
specifically, ai (i = 1, . . . , 4)) can be estimated by minimizing the difference of the
computed eigenvalues between the FE model and the lifted system, without any
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impact from the input matrix. Modes at low frequencies are considered to be more
important than the high frequencies modes. Thus, higher weights are imposed on
the low frequency modes during the identification. Fig. 5.11 shows the comparison
of the first 10 resonant frequencies between the FE model and the estimated system
matrix Ă. Though modes start to diverge above the 8th mode, an accurate match
below 15 Hz suggests a satisfactory estimation.
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Figure 5.11: Comparison of the first 10 resonant frequencies between the identified lifted
system and the FE model

3. Identify the input matrix B̆ := [0 B̆T
2 ]

T . After the coefficients ai (i = 1, . . . , 4) in Ă
have been determined, coefficients bj (j = 1, . . . , 3) can be estimated in either time or
frequency domain. Here, coefficients bj are estimated by minimizing the difference
of the computed FRFs between the lifted system and the FE model. Applying
a chirp excitation at the 8th actuator, the comparison of the FRFs between the
identified lifted system, the FE model and real measurements is shown in Fig. 5.12.
Up to 15 Hz, a good agreement of the identified lifted system (or equivalently, the
two-dimensional input/output model) with the FE model can be observed. The
discrepancies compared to the real measurements have not been captured by the
FE model, and therefore neither by the distributed input/output model.

Remark:

• In Section 3.5.4, a slight variation in the feed-through properties among 16 collocated
piezo pairs has been observed, which implies a varying feed-through constant from
subsystem to subsystem. By individually identifying the feed-through constant
at each collocated pair could result in a more accurate plant model. However, the
assumption of an LTSI model – the interconnected subsystems are identical – is then
obviously violated. At the price of a slightly deteriorated accuracy, a feed-through
constant that applies to all the subsystems and minimizes the average deviations is
employed here, i.e. D̆ = b0I, where I ∈ R16×16, and b0 is the feed-through constant.
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Figure 5.12: Comparison of the transfer FRFs at 4 selected sensors given a chirp exci-
tation at the 8th actuator. The blue and red curves are computed from the identified
lifted system and the FE model, respectively, whereas the green curves are from the real
measurements.

5.4.3 Identification of Spatial LPV Models

The hardware configuration used in Section 5.3.4 to construct a spatially-varying system
applies here as well. The identification of a spatial LPV model follows the same line as in
Section 5.4.2, except that the coefficients a(ik ,is) and b(ik ,is) are now first order polynomial
functions of spatial scheduling parameters θs ∈ [−1 1] as defined in (5.23), where α(ik ,is,j)

and β(ik,is,j) are the coefficients to be estimated. Due to the non-uniform profiles of
subsystems, the symmetry property of contributions made by the mirrored left and right
neighbours is lost.

The lifted system in the form of (5.32) and the input and output masks in Fig. 5.9 apply to
the spatial LPV model, except that matrices Ă21, Ă22 and B̆2 are now parameter-varying
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and constructed as

Ă21(θs) =










−a(2,0)(θ
1
s)
−a(2,0)(θ

2
s)
−a(2,0)(θ

3
s)
. . .

−a(2,0)(θ
10
s )










Ă22(θs) =
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1
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.

Although the hardware is reconfigured compared to the LTSI model—10 instead of 16
actuator/sensor pairs are actually activated, the test structure itself – the aluminium
beam – remain unchanged, and so do the eigenvalues. The system matrix Ă can still be
estimated by minimizing the difference of computed eigenvalues between the identified
lifted system and the FE model.

Fig. 5.13 shows the comparison of the computed resonant frequencies between the identi-
fied LPV model and the FE model. An even better match than in Fig. 5.11 for an LTSI
model identification has been achieved. This may be due to the fact that the introduction
of more decision variables provides extra degrees of freedom in the estimation. After the
B̆ matrix being estimated, Fig. 5.14 is generated in the same way as Fig. 5.7. It can
be easily seen, that the discrepancies between the simulated and measured subsystem
responses in Fig. 5.14 are considerably reduced compared to Fig. 5.7.

Remarks:

• Similar procedures have been applied to identify more complex LTSI and spatial
LPV models, by employing the enlarged masks in Fig. 5.10. The identification
results do not show a significant improvement compared to the identified models
using the masks in Fig. 5.9. Keep in mind that the identified models will be used
for model-based controller design. Models of smaller sizes are therefore preferred.

• Under the assumption that the governing PDE of a spatially-distributed system is
not known accurately, yet its FE model is available (which is realistic, because FE
modelling has become a routine process in structural engineering for the analysis
of test structures for decades), the proposed identification procedures fill the gap
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Figure 5.13: Comparison of the first 10 resonant frequencies between the identified LPV
model and the FE model
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Figure 5.14: Comparison of the FE-based simulated (blue) and measured (red) output
voltages at 4 selected piezo sensors, given 10 noise signals exciting 10 piezo actuators
simultaneously.
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between the FE modelling and distributed identification by extracting distributed
models from the FE model.

• The identified input/output models are subject to the accuracy of the FE model.
Structural dynamics which are not captured by the FE modelling can not be taken
care of by the input/output model either.

5.5 Summary

This chapter has dealt with the distributed identification of both LTSI and spatial LPV
models. A two-dimensional input/output model derived by applying the FD method to
the governing PDE of a beam structure – the Euler-Bernoulli equation – defines the struc-
tural dynamics on spatially-discretized subsystems, and preserves the distributed nature
of the flexible structure. Its general form is determined as the mathematical model for the
distributed identification. The two-dimensional black-box identification techniques have
been briefly reviewed and implemented on the test structure. The experimental validation
demonstrated that the identified models represent the structural dynamics to a certain
extent, but also display their difficulties in capturing the dynamics around resonant fre-
quencies. For this reason, alternative identification procedures have been proposed by
extracting distributed models from the FE model, with the desired model structure still
maintained. Using the proposed procedures, a considerably improved agreement between
measurements and identified models has been achieved in the experimental implementa-
tion.



Chapter 6

Distributed Controller Design

6.1 Introduction

This chapter deals with the controller design for both parameter-invariant and parameter-
varying distributed systems. In many cases, a centralized controller fails to efficiently
control a distributed system due to a high level of connectivity and computational bur-
den caused by a large number of inputs and outputs. By inheriting the interconnected
structure of the plant, distributed controller design at the subsystem level is much easier
to handle.

In the last decade, distributed controller design has been studied by various researchers
from different perspectives. A novel multidimensional state space framework, that ad-
dresses the system analysis and controller synthesis problem based on a single subsystem,
has been proposed in [8]. Employing the state space model developed in [8], [30] takes a
different path by solving the controller design problem of a ’lifted’ system, which describes
the overall dynamics by augmenting subsystems, using a sequentially semi-separable ap-
proach. Iterative algorithms are employed for a sub-optimal controller synthesis. A
decomposition approach is proposed in [31] for interconnected systems, if the system ma-
trices of these systems satisfy a certain structural property. Then it is possible to design
a distributed controller which has the same interconnected pattern as the plant. Based
on two-dimensional loop shaping concepts, [32] solves the controller design problem of
a typical industrial spatially-distributed system – the papermaking machine – through
decoupling the large-scale multi-variable system into a family of SISO design problems,
one at each spatial frequency. In [78], an efficient and computationally tractable de-
sign method to optimize the design parameters of both the plant and the controller in a
collocated structural system has been proposed using a norm upper bound approach.

In this work, the controller design problem is addressed in the framework developed in
[8]. Given the experimentally identified input/output models in Chapter 5, their multidi-
mensional state space representations are realized first. Analysis and synthesis conditions
for the design of both distributed and decentralized controllers for LTSI systems are pro-
vided. The LPV control technique for lumped systems has been extended to address
spatio-temporal systems in [21] using CLFs, under the assumption of an LFT-based de-

87
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pendence of the state space model on scheduling parameters. To reduce the conservatism
incurred by the use of CLFs for parameter-varying systems with bounded variation rates,
analysis and synthesis conditions using PDLFs for lumped systems are extended here
to parameter-varying distributed systems. Experimental results validate the controller
performance in terms of output disturbance rejection.

This chapter includes results reported in [79] and [80]. It is organized as follows: Section
6.2 converts the identified LTSI and spatial LPV input/output models into their state
space representations. Section 6.3 presents a procedure for the construction of multidi-
mensional generalized plants. Synthesis conditions for LTSI distributed controllers devel-
oped in [8] are recapped in Section 6.4, whereas conditions for decentralized controller
design are provided in Section 6.4.2, with their performance evaluated experimentally in
Section 6.4.3. The LPV controller design for time/space-varying systems is discussed in
Section 6.5. Conditions for distributed LPV controller design using CLFs – less conser-
vative than [21] – are given in Section 6.5.1. To further reduce the conservatism when
an upper bound on the variation rate of scheduling parameters is known, the LPV con-
trol technique using PDLFs is extended from lumped systems to distributed systems in
Section 6.5.2. Experimental results of closed-loop systems with controllers designed using
both CLFs and PDLFs are demonstrated in Section 6.5.3.

6.2 Multidimensional State Space Realization

It has been justified in Chapter 5, that the test structure considered in this work can
be described using a two-dimensional input/output model. A model-based controller can
either be designed in input/output form of a fixed structure ([81], [82]), or in a state space
framework. In this work, system analysis and controller synthesis are realized in state
space framework. In order to apply the state-space based synthesis tools developed in
[8], the realization of the identified input/output models into their multidimensional state
space representations in the form of (2.9) is first required. The simple Euler-Bernoulli
equation in Example 5.1 is used as an example here to illustrate the general procedures
in multidimensional state space realization.

Example 6.1 (State Space Realization of the Euler-Bernoulli Equation) After
applying the FD method, the solution of the PDE (5.5) can be approximated by the dif-
ference equation (5.6). It states that the output of subsystem s at time k – y(k, s) – is
determined by the outputs of itself at time k − 1 and k − 2, the outputs of its neighbours
s− 2, s− 1, s+ 1 and s+ 2 at time k − 1, and its own input at k − 1.

Follow the routines of constructing a lumped state space model in controller canonical
form. Define the transverse displacement as output y(k, s) = w(k, s), and the applied
force as input u(k, s) = f(k, s). The difference equation implies its transfer function
model

Y

U
=
B(qt, qs)

A(qt, qs)
=

b(1,0)qt

q2t + a(1,−2)qtq2s + a(1,−1)qtqs + a(1,0)qt + a(1,1)qtq−1
s + a(1,2)qtq−2

s + a(2,0)
.

(6.1)
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Define a new variable V (qt, qs), such that

U = AV, Y = BV, (6.2)

where U = AV yields the input equation

v(k + 2, s) =− a(1,−2)v(k + 1, s+ 2)− a(1,−1)v(k + 1, s+ 1)− a(1,0)v(k + 1, s)

− a(1,1)v(k + 1, s− 1)− a(1,2)v(k + 1, s− 2)− a(2,0)v(k, s) + u(k, s),

and Y = BV the output equation

y(k, s) = b(1,0)v(k + 1, s).

Let the temporal state, and the positive and negative spatial state vectors be selected as

xt =

[
v(k, s)

v(k + 1, s)

]

x+
s =

[
v(k + 1, s− 2)
v(k + 1, s− 1)

]

x−
s =

[
v(k + 1, s+ 2)
v(k + 1, s+ 1)

]

, (6.3)

respectively. The multidimensional state space model in controller canonical form is real-
ized as







xt(k + 1, s)
x+
s (k, s+ 1)

x−
s (k, s− 1)

y(k, s)






=













0 1 0 0 0 0 0
−a(2,0) −a(1,0) −a(1,2) −a(1,1) −a(1,−2) −a(1,−1) 1

0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0

0 b(1,0) 0 0 0 0 0



















xt(k, s)
x+
s (k, s)

x−
s (k, s)

u(k, s)






. (6.4)

Although the experimentally identified input/output models exhibit more complex dy-
namics than the simple Euler-Bernoulli equation, the realization of their state space mod-
els follows the similar line. The rest of this section converts the identified LTSI and
spatial LPV models into their state space representations, considering models obtained
using both black-box identification and the FE modelling results.

6.2.1 LTSI Models

The experimentally identified black-box LTSI model has the input and output masks
shown in Fig. 5.4. Compared to the Euler-Bernoulli equation, the output of subsystem
s at time k, y(k, s), additionally depends on the outputs of its neighbours at k − 2 and
its own input at k − 2 and k − 3. Thus define the temporal state, positive and negative
spatial state vector as

xt =





v(k, s)
v(k + 1, s)
v(k + 2, s)



 x+
s =







v(k + 1, s− 2)
v(k + 1, s− 1)
v(k + 2, s− 2)
v(k + 2, s− 1)







x−
s =







v(k + 1, s+ 2)
v(k + 1, s+ 1)
v(k + 2, s+ 2)
v(k + 2, s+ 1)






, (6.5)
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respectively. A state space realization of the LTSI model takes the form







xt(k + 1, s)
x+
s (k, s+ 1)

x−
s (k, s− 1)

y(k, s)






=

[

AG BG

CG DG

]







xt(k, s)
x+
s (k, s)

x−
s (k, s)

u(k, s)






, (6.6)

with the system matrices given in Appendix (A.2) which are identical for all subsystems.

On the other hand, the FE-based LTSI model identified in Section 5.4 is endowed with
physical meanings, and governed by the input and output masks shown in Fig. 5.9, where
the output y(k, s) depends on the past inputs applied on s, as well as on its neighbours
s− 2, s− 1, s+ 1 and s+ 2. More intuitively, the black-box identified subsystem model
interacts with nearby subsystems only through outputs, yet the FE-based model through
both outputs and inputs. Thus the temporal state, positive and negative spatial state
vectors are defined as

xt =

[
v(k, s)

v(k + 1, s)

]

x+
s =







v(k + 1, s− 2)
v(k + 1, s− 1)
u(k + 1, s− 2)
u(k + 1, s− 1)







x−
s =







v(k + 1, s+ 2)
v(k + 1, s+ 1)
u(k + 1, s+ 2)
u(k + 1, s+ 1)






, (6.7)

respectively. Its state space realization takes the form of (6.6), with the system matrices
expressed in Appendix (A.3).

6.2.2 Spatial LPV Models

Consider first the black-box identified spatial LPV model. Provided the input and output
masks shown in Fig. 5.6, the application of the multidimensional Z-transformation to the
LPV difference equation yields

Y

U
=
B(θs, qt, qs)

A(θs, qt, qs)
=

b(1,0)(θs)qt + b(2,0)(θs)

q2t + a(1,−2)(θs)qtq2s + a(1,−1)(θs)qtqs + a(1,0)(θs)qt + . . .+ a(2,2)(θs)q−2
s

.

(6.8)
Compared to (6.1), the coefficients in (6.8) are not identical for all subsystems any more;
instead they are varying from subsystem to subsystem. Black-box identification performed
in Section 5.3.3 suggests that all coefficients in (6.8) are first order polynomials of the
spatial scheduling parameter θs ∈ R.

Again introduce a new variable V such that U = AV and Y = BV hold. The difference
equation of U = AV takes the form

v(k + 2, s) =− a(1,−2)(θs)v(k + 1, s+ 2)− a(1,−1)(θs)v(k + 1, s+ 1)− a(1,0)(θs)v(k + 1, s)

− a(1,1)(θs)v(k + 1, s− 1)− . . .− a(2,2)(θs)v(k, s− 2) + u(k, s)

=−(α(1,−2,0)+α(1,−2,1)θs)v(k + 1, s+ 2)−(α(1,−1,0)+α(1,−1,1)θs)v(k + 1, s+ 1)

− (α(1,0,0) + α(1,0,1)θs)v(k + 1, s)− (α(1,1,0) + α(1,1,1)θs)v(k + 1, s− 1)

− (α(2,2,0) + α(2,2,1)θs)v(k, s− 2) + u(k, s). (6.9)



Chapter 6. Distributed Controller Design 91

Rearrange (6.9) by grouping all parameter-dependent terms together

v(k + 2, s) = −α(1,−2,0)v(k + 1, s+ 2)− α(1,−1,0)v(k + 1, s+ 1)− α(1,0,0)v(k + 1, s)

−α(1,1,0)v(k + 1, s− 1)− . . .− α(2,2,0)v(k, s− 2) + u(k, s) + ps1(k, s),

where

ps1(k, s) = θs[−α(1,−2,0)v(k + 1, s+ 2)− α(1,−1,0)v(k + 1, s+ 1)− α(1,0,0)v(k + 1, s)

− α(1,1,0)v(k + 1, s− 1)− . . .− α(2,2,0)v(k, s− 2)]

= θsq
s
1(k, s). (6.10)

Likewise, the difference equation of the output equation Y = BV is written as

y(k, s) = β(1,0,0)v(k + 1, s) + β(2,0,0)v(k, s) + ps2(k, s), (6.11)

where

ps2(k, s) = θs[β(1,0,1)v(k + 1, s) + β(2,0,1)v(k, s)]

= θsq
s
2(k, s). (6.12)

By pulling out the spatial uncertainties, the spatial LPV model can be represented in
LFT form as shown in Fig. 6.1, which is a special case of the time/space-varying system
shown in Fig. 2.3. Its LFT LPV state space model is given by










xt(k + 1, s)
x+
s (k, s+ 1)

x−
s (k, s− 1)

qs(k, s)

y(k, s)










=






AG BG
p BG

u

CG
q DG

qp DG
qu

CG
y DG

yp DG
yu















xt(k, s)
x+
s (k, s)

x−
s (k, s)

ps(k, s)

u(k, s)










, (6.13)

with the choices of vectors

xt =

[
v(k, s)

v(k + 1, s)

]

x+
s =







v(k, s− 2)
v(k, s− 1)

v(k + 1, s− 2)
v(k + 1, s− 1)







x−
s =







v(k, s+ 2)
v(k, s+ 1)

v(k + 1, s+ 2)
v(k + 1, s+ 1)






, (6.14)

and the performance channel ps(k, s) =

[
ps1(k, s)
ps2(k, s)

]

, qs(k, s) =

[
qs1(k, s)
qs2(k, s)

]

, with

ps(k, s) =

[
θs

θs

]

qs(k, s) = Θsq
s(k, s). (6.15)

The system matrices of (6.13) can be found in Appendix (A.6).

The explicit LPV form of the LFT LPV model (6.13) and (6.15) can be written as






xt(k + 1, s)
x+
s (k, s+ 1)

x−
s (k, s− 1)

y(k, s)






=

[

AG(Θs) BG
u (Θs)

CG
y (Θs) DG

yu(Θs)

]







xt(k, s)
x+
s (k, s)

x−
s (k, s)

u(k, s)






, (6.16)
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GG G

Θs−1 Θs Θs+1

ps(k, s−1) qs(k, s−1) ps(k, s) qs(k, s) ps(k, s+1) qs(k, s+1)

Figure 6.1: Spatially-varying distributed system in LFT representation

where the system matrices are scheduled by the structured spatial uncertainty Θs ∈ R2×2,
and can be recovered from (6.13) and (6.15) as

[AG(Θs) BG
u (Θs)

CG
y (Θs) DG

yu(Θs)

]

=

[
AG BG

u

CG
y DG

yu

]

+

[
BG

p

DG
yp

]

Θs(I −DG
qpΘs)

[
CG

q DG
qu

]
. (6.17)

Analogous to the state space realization of the black-box identified spatial LPV model, the
FE-based spatial LPV model identified in Section 5.4.3 has a state space representation
given in Appendix (A.7) with the same choice of the states as in (6.7).

Remarks :

• It is demonstrated in [83] that, when converting a lumped LPV input/output model
into a state space representation, the phenomenon of dynamic dependence arises: the
resulting state space model depends on time-shifted versions of scheduling parame-
ters. This phenomenon may also occur when converting a spatial LPV input/output
model into state space form, where the resulting state space model depends on space-
shifted scheduling parameters. To explore the property of dynamic dependence in
a distributed LPV model, consider the observer canonical form of (6.16), whose
output equation is expressed as y(k, s) = xt(k, s), and

y(k, s) = AG
tt(Θs)xt(k − 1, s) +AG,+

ts (Θs)x
+
s (k − 1, s) +AG,−

ts (Θs)x
G,−
s (k − 1, s)

+ BG
t,u(Θs)u(k, s). (6.18)

Replace x+
s (k − 1, s) and x−

s (k − 1, s) in (6.18) with

x+
s (k − 1, s) = AG,+

st (Θs−1)xt(k − 1, s− 1) +AG,++
ss (Θs−1)x

+
s (k − 1, s− 1)

+AG,+−
ss (Θs−1)x

−
s (k − 1, s− 1) + BG,+

s,u (Θs)u(k − 1, s)

x−
s (k − 1, s) = AG,−

st (Θs+1)xt(k − 1, s+ 1) +AG,−+
ss (Θs+1)x

+
s (k − 1, s+ 1)

+AG,−−
ss (Θs+1)x

−
s (k − 1, s+ 1) + BG,−

s,u (Θs)u(k − 1, s).

The computation of y(k, s) depends on the scheduling parameter at s, i.e. Θs, as
well as on the space-shifted scheduling parameters at s− 1 and s+1, i.e. Θs−1 and
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Θs+1. That is the so-called dynamic dependence. However, this issue arises only
when the block matrix

[

AG,+
st (Θs) AG,++

ss (Θs) AG,+−
ss (Θs) BG,+

s,u (Θs)

AG,−
st (Θs) AG,−+

ss (Θs) AG,−−
ss (Θs) BG,−

s,u (Θs)

]

(6.19)

is gain-scheduled.

Recall the state space realization (6.4) of an LTSI model. An explicit LPV form of
the spatial LPV model (6.16) can be constructed following the same pattern, where
parameter-dependent coefficients a(ik ,is)(θs) and b(ik ,is)(θs) appear only in block ma-

trices

[

AG
tt(Θs) AG,+

ts (Θs) AG,−
ts (Θs) BG

t,u(Θs)

CG,
t,y(Θs) CG,+

s,y (Θs) CG,−
s,y (Θs) DG

yu(Θs)

]

, leaving the block matrix (6.19) in

(6.16) consisting of static terms—0 and 1, which indicate the signal flow between
subsystems. Therefore, the phenomenon of dynamic dependence is not an issue in
this specific application. The equivalence between the input/output LPV model
and the converted state space model is not affected.

• The equivalence between the identified input/output model and the transformed
multidimensional state space model has been validated by comparing their open-
loop responses.

6.3 Construction of a Generalized Plant

The goal of designing a controller is to exponentially stabilize the controlled system and
to impose a performance specification from the generalized disturbance w, which could
be a combination of an input disturbance d, output noise n and reference input r, to the
fictitious controlled variable z, which measures the controller satisfying certain properties,
e.g. with regard to the control error e, and the control effort u [84]. The construction of a
generalized plant for distributed systems does not differ much from lumped systems, ex-
cept that the performance weightings can be either defined as multidimensional, involving
both temporal and spatial dynamics, or purely temporal.

Note that a multidimensional weighting filter itself is a spatially-interconnected system.
Although the two-dimensional loop shaping problem has been considered in [85] for a
circulant system, how to construct and parametrize a multidimensional filter to specify
certain performance requirements on a controlled distributed system is not known. Thus,
one-dimensional temporal weighting filters are tuned and incorporated here in the spatio-
temporal generalized plant.

Let the disturbance d(k, s) be injected into the output of subsystem s as shown in Fig. 6.2.
Considered here is a controller design by shaping the mixed sensitivities: sensitivity to
suppress the output disturbance, and control sensitivity to impose an upper bound on the
control effort. The weighting filter WK used to shape the control sensitivity has a state
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space representation

x1(k + 1, s) = A1x1(k, s) +B1u(k, s)

z1(k, s) = C1x1(k, s) +D1u(k, s),
(6.20)

whereas the weighting filter to shape sensitivity WS is written as

x2(k + 1, s) = A2x2(k, s) +B2y(k, s)

z2(k, s) = C2x2(k, s) +D2y(k, s).
(6.21)

G

K

Wk

Ws
d(k, s)

z1(k, s)

z2(k, s)

u(k, s)

y0(k, s)y(k, s)

Figure 6.2: Generalized plant at the subsystem level of an LTSI model

The series interconnection of an LTSI plant model







xt(k + 1, s)
x+
s (k, s+ 1)

x−
s (k, s− 1)

y0(k, s)






=

[

AG BG
d BG

u

CG
y DG

yd DG
yu

]









xt(k, s)
x+
s (k, s)

x−
s (k, s)

d(k, s)
u(k, s)









, (6.22)

with shaping filters WK and WS incorporated, yields a generalized plant in the form of
(2.11), whose algebraic expression is given by
















xt(k + 1, s)
x1(k + 1, s)
x2(k + 1, s)
x+
s (k, s+ 1)

x−
s (k, s− 1)

z1(k, s)
z2(k, s)
y(k, s)
















=

















AG
tt 0 0 AG,+

ts AG,−
ts BG

t,d BG
t,u

0 A1 0 0 0 0 B1

B2C
G
t,y 0 A2 B2C

G,+
s,y B2C

G,−
s,y B2D

G
yd B2D

G
yu

AG,+
st 0 0 AG,++

ss AG,+−
ss BG,+

s,d BG,+
s,u

AG,−
st 0 0 AG,−+

ss AG,−−
ss BG,−

s,d BG,−
s,u

0 C1 0 0 0 0 D1

D2C
G
t,y 0 C2 D2C

G,+
s,y D2C

G,−
s,y D2D

G
yd D2D

G
yu

Ct,y 0 0 C+
s,y C−

s,y Dyd Dyu






























xt(k, s)
x1(k, s)
x2(k, s)
x+
s (k, s)

x−
s (k, s)

d(k, s)
u(k, s)














. (6.23)
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Likewise, the generalized plant for the spatial LPV model shaped by LTI weighting filters
has the form
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,

with ps = Θsq
s.

6.4 Controller Synthesis for LTSI Models

It is desired that the controller shares the interconnected structure of the plant. The
control design objective for an LTSI model (2.11) is to find a controller in the form
of (2.20), such that the closed-loop system (2.21) is well-posed, exponentially stable and
satisfies a given quadratic performance condition as defined in Section 2.5. In this chapter,
synthesis conditions for continuous systems developed in [8] are revisited. Conditions
for discrete systems can be easily derived from [21]. Given the generalized plant (6.23)
discrete in time and space, a bilinear transformation has to be applied to convert the
discrete system to its continuous equivalence.

The following assumptions are made for controller design:

(i) (ĀG, B̄G
u , C̄

G
y ) is stabilizable and detectable.

(ii) D̄G
yu = 0.

In this specific application, the second assumption is obviously violated due to the direct
feed-through effect within the collocated piezo pairs. Nevertheless, the non-zero D̄G

yu can
be absorbed in B̄G

u through postfiltering, such that assumption (ii) holds. Alternatively,
the controller can be first designed under this assumption, then mapped via loop shifting
to account for a non-zero D̄G

yu. Section 6.4.1 addresses this issue in detail. Consequently,
the assumption D̄G

yu = 0 can be made without loss of generality.

6.4.1 Analysis and Synthesis Conditions

The analysis condition for continuous systems – Theorem 2.2 (ii) – involves the realization
of the closed-loop system L whose state vector is partitioned into temporal, positive and
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negative spatial state vectors as shown in (2.22), leading to the system matrices of a
controlled system constructed from the plant and controller matrices as

[

ĀL B̄L

C̄L D̄L

]

=














ĀG
tt 0 ĀG,+

ts 0 ĀG,−
ts 0 B̄G

t,d

0 0 0 0 0 0 0

ĀG,+
st 0 ĀG,++

ss 0 ĀG,+−
ss 0 B̄G,+

s,d

0 0 0 0 0 0 0

ĀG,−
st 0 ĀG,−+

ss 0 ĀG,−−
ss 0 B̄G,−

s,d

0 0 0 0 0 0 0

C̄G
t,z 0 C̄G,+

s,z 0 C̄G,−
s,z 0 D̄G

zd














+













0 0 0 B̄G
t,u

I 0 0 0
0 0 0 B̄G,+

s,u

0 I 0 0
0 0 0 B̄G,−

s,u

0 0 I 0

0 0 0 D̄L
zu













[

ĀK B̄K

C̄K D̄K

]

×







0 I 0 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 0 I 0

C̄G
t,y 0 C̄G,+

s,y 0 C̄G,−
s,y 0 D̄G

yd






. (6.24)

However, the partition of positive and negative spatial state vectors of the controller
remains unknown until the synthesis is complete. Therefore, the closed-loop system needs
to be restructured such that the state vectors of the plant and the controller are grouped
separately, i.e.

xL̃(k, s) =

[
xG(k, s)
xK(k, s)

]

, (6.25)

where the subscript L̃ indicates a permuted closed-loop system. The resulting system
matrices in contrast to (6.24) are given by

[

ĀL̃ B̄L̃

C̄ L̃ D̄L̃

]

=





ĀG 0 B̄G
d

0 0 0

C̄G
z 0 D̄G

zd



+





0 B̄G
u

I 0

0 D̄G
zu





[

ĀK B̄K

C̄K D̄K

] [
0 I 0
C̄G

y 0 D̄G
yd

]

. (6.26)

The closed-loop Lyapunov matrix that accounts for the permutation of the closed-loop
system (6.26) is rearranged from XL ∈ XmL to X L̃ [8], where

XL =

[

XL
t

XL
s

]

=








XG
t XGK

t

(XGK
t )T XK

t

XG
s XGK

s

(XGK
s )T XK

s







, (6.27)

X L̃ =








XG
t XGK

t

XG
s XGK

s

(XGK
t )T XK

t

(XGK
s )T XK

s







. (6.28)

The analysis condition Theorem 2.2 (ii) is equivalent to the condition in the following
theorem.
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Theorem 6.1 ([8]) Assume that the interconnected system (2.21) is well-posed. The
system is exponentially stable, and has quadratic performance γ, if and only if there exists
a symmetric matrix X L̃, such that

[
∗
∗

]T








0 X L̃

X L̃ 0
1
γ
I 0

0 −γI















ĀL̃ B̄L̃
d

I 0

C̄ L̃
z D̄L̃

zd

0 I







< 0. (6.29)

Applying the elimination lemma (see Appendix C.1) to (6.29) yields corresponding syn-
thesis conditions.

Theorem 6.2 There exists a distributed controller in the form of (2.20) that guarantees
exponential stability and a quadratic performance γ of the closed-loop system (2.21), if
and only if there exist symmetric matrices R, S ∈ XmG, such that

NT
R

[
∗
∗

]T







0 R
R 0

1
γ
I 0

0 −γI













(ĀG)T (C̄G
z )

T

I 0

(B̄G
d )

T (D̄G
zd)

T

0 I






NR < 0 (6.30)

NT
S

[
∗
∗

]T







0 S
S 0

1
γ
I 0

0 −γI













ĀG B̄G
d

I 0

C̄G
z D̄G

zd

0 I






NS < 0 (6.31)

[
Rt I
I St

]

≥ 0, (6.32)

where NR = ker[(B̄G
u )

T (D̄G
zu)

T ], NS = ker[C̄G
y D̄G

yd].

Controller Construction

After LMIs (6.30)-(6.32) have been solved for matrices R and S, the temporal and spatial
components of the Lyapunov matrix can be constructed via performing an SVD of I−RS,
i.e.

MtN
T
t = I − RtSt, MsN

T
s = I −RsSs, (6.33)

then

XL
t =

[
St I
NT

t 0

]−1 [
I Rt

0 MT
t

]

XL
s =

[
Ss I
NT

s 0

]−1 [
I Rs

0 MT
s

]

XL =

[
XL

t

XL
s

]

. (6.34)

Restructure the Lyapunov matrix XL in the form of X L̃ in (6.28). Given the system
matrices of the permuted closed-loop system (6.26), the LMI condition (6.29) depends
now on the unknown controller matrices in an affine way. The controller is obtained by

solving (6.29) for the controller matrices

[

ĀK B̄K

C̄K D̄K

]

.
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Note that the designed controller is still continuous both in time and space. To implement
it digitally, the bilinear transformation C.3 (see Appendix C) needs to be performed to
convert it back to its discrete counterpart.

Addressing a Non-Zero D̄G
yu

The controller is designed under the assumption D̄G
yu = 0. To take care of non-zero D̄G

yu,
two possible ways are provided here:

• Loop shifting [8]: after the controller matrices are computed from (6.29), the non-
zero D̄G

yu is taken care of by applying the following transformation:
[

ĀK B̄K

C̄K D̄K

]

→
[

ĀK − B̄KD̄G
yu(I + D̄KD̄G

yu)
−1C̄K B̄K(I + D̄G

yuD̄
K)−1

(I + D̄KD̄G
yu)

−1C̄K (I + D̄KD̄G
yu)

−1D̄K

]

. (6.35)

• Postfiltering: add a postfilter Wf to the plant output as shown in Fig. 6.3.

G

Wk

Ws

Wf

K

d(k, s)

z1(k, s)

z2(k, s)

u(k, s)

ŷ(k, s)y(k, s) y0(k, s)

Figure 6.3: Generalized plant at the subsystem level after incorporating a postfilter

Let a realization of the postfilter be described as

xf (k + 1, s) = Afxf (k, s) +Bfy0(k, s) (6.36)

ŷ(k, s) = Cfxf (k, s), (6.37)

which is chosen as a low-pass filter with cut-off frequency well beyond the bandwidth
of the controlled system. The plant model (6.6) with a postfilter incorporated takes
the form









xt(k + 1, s)
xf (k + 1, s)
x+
s (k, s+ 1)

x−
s (k, s− 1)

ŷ(k, s)









=











AG
tt 0 AG,+

ts AG,−
ts BG

t,u

BfC
G
t,y Af BfC

G,+
s,y BfC

−
s,y BfD

G
yu

AG,+
st 0 AG,++

ss AG,+−
ss BG,+

s,u

AG,−
st 0 AG,−+

ss AG,−−
ss BG,−

s,u

0 Cf 0 0 0



















xt(k, s)
xf(k, s)
x+
s (k, s)

x−
s (k, s)

u(k, s)









, (6.38)

where assumption (ii) (D̄G
yu = 0) is fulfilled.
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6.4.2 Decentralized Controller Design

Decentralized controllers differ from distributed controllers in the sense that no informa-
tion exchange takes place between controller subsystems, as shown in Fig. 6.4. Decentral-
ized controllers thus exhibit only temporal dynamics.

G GG

K KK

Figure 6.4: Part of a decentralized system

Consider the structure of a decentralized controller on subsystem s

[

xK(k + 1, s)

u(k, s)

]

=

[

AK BK

CK DK

][

xK(k, s)

y(k, s)

]

. (6.39)

Synthesis conditions (6.30)-(6.32) for distributed controller design apply to the design of
decentralized controllers, except for the Lyapunov matrix X ∈ X̂m, where

X̂m =

{

X ∈ R
(m0+m++m−)×(m0+m++m−)

∣
∣
∣
∣
X = XT =

[
Xt

0

]

, Xt ∈ R
m0×m0 > 0

}

. (6.40)

By imposing the condition that spatial Lyapunov matrices are zero, the resulting controller
realizes a decentralized control scheme.

6.4.3 Experimental Results

To test the controller performance, 16 identical chirp signals of amplitude 4 V and band-
width up to 20 Hz are injected into the loop as output disturbances as shown in Fig. 6.2.
Without any feedback control, the open-loop output is the injected disturbances, i.e.
y(k, s) = d(k, s).

Both a distributed and a decentralized controller have been designed for performance
comparison. The controller design is realized by modifying the Multidimensional Toolbox
[86] to meet the specific requirements. Provided the black-box identified LTSI model,
the designed distributed controller is of temporal order mK

0 = 6, and of spatial order
mK

+ = mK
− = 4, whereas the decentralized controller is of order mK

0 = 5.

Fig. 6.5 shows the comparison of measured outputs over time at two selected sensors be-
tween open-loop response, the closed-loop response with a distributed controller, and the
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closed-loop response with a decentralized controller. Both controllers attenuate the distur-
bances down to certain extents. It is obvious that the distributed controller outperforms
the decentralized one by significantly reducing the vibratory amplitudes. Fig. 6.6 shows
the comparison of controlled FRFs using distributed and decentralized controllers. Over
the considered frequency range, a better disturbance rejection achieved by the distributed
controller can be observed as well. Evidently, the exchange of information between sub-
systems leads to a more efficient control scheme.

−4
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0

2

4

14 14.5 15 15.5 16 16.5 17 17.5 18 18.5 19

−4

−2

0

2

4

time (s)

ou
tp
u
t
y
(k
,s
)
(V

)

sensor 3

sensor 8

Figure 6.5: With output disturbances injected, comparison of measured outputs over time
between open-loop response (blue curve), closed-loop response with a distributed LTSI
controller (green curves), and closed-loop response with a decentralized LTSI controller
(red curves)

Remarks :

• The online computation of the controller outputs can only be realized in a centralized
manner. Recall the spatial-state equation of the controller

∆K
s,mx

K
s (k, s) = AK

stx
K
t (k, s) + AK

ssx
K
s (k, s) +BK

s y(k, s). (6.41)

Moving terms involving spatial states xK
s (k, s) to the left generates

(∆K
s,m −AK

ss)x
K
s (k, s) = AK

stx
K
t (k, s) +BK

s y(k, s). (6.42)

Note that after solving for the controller matrices from (6.29), the spatial state
vector may lose its physical meanings, i.e. subsystems may not communicate directly
through their inputs and/or outputs. Thus the computation of the controller output
can not be realized on a single-subsystem basis based on the information it receives
from its neighbours.
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Figure 6.6: Comparison of FRFs from injected output disturbances to collocated output
between closed-loop response with distributed LTSI controllers (green curves), and closed-
loop response with decentralized LTSI controllers (red curves)

To the author’s knowledge, the only way to compute it, is to construct a global
version of (6.42) that includes the entire spatial states from all controller subsystems
as

(I16 ⊗∆K
s,m − I16 ⊗AK

ss)x
K
s (k, ·) = (I16 ⊗AK

st)x
K
t (k, ·) + (I16 ⊗BK

s )y(k, ·), (6.43)

where xK
s (k, ·) ∈ R

16(mK
++mK

−
), xK

t (k, ·) ∈ R16mK
0 , and y(k, ·) ∈ R16 denote the aug-

mented spatial, temporal state vectors and plant outputs at all 16 subsystems,
respectively. Then solve the spatial states at each time instant by

xK
s (k, ·) = (I16⊗∆K

s,m− I16⊗AK
ss)

−1[(I16⊗AK
st)x

K
t (k, ·)+ (I16⊗BK

s )y(k, ·)]. (6.44)

• Given the FE model derived in Chapter 3, attempts have been made to design a
centralized H∞ controller for comparison. However, it is not possible for Matlab to
solve the synthesis problem for a system of order 196.

• Difficulties have been encountered in the controller synthesis using the FE-based
input/output model obtained in Section 5.4, despite of the fact that a better match
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to the plant dynamics has been achieved by the FE-based model than by the black-
box identified model. This may attribute to the presence of the direct feed-through
effect in the FE-based model, which is approximated in the black-box identification
as fast dynamics.

6.5 Controller Synthesis for Temporal/Spatial LPV

Models

The gain scheduling control methodology guarantees stability and performance over a
wide range of varying parameters. Extending analysis and synthesis approaches for tem-
poral LPV systems to parameter-varying spatially-interconnected systems leads to a high
performance and computationally attractive control scheme. In this section, the controller
design problem for distributed systems subject to temporal/spatial variations is studied.
Inheriting the spatial structure of the plant, distributed controllers are synthesized using
both CLFs and PDLFs and implemented experimentally. Advantages of using PDLFs
will become clear when compared with the controller performance using CLFs.

It is assumed that

(i) (ĀG(Θt,Θs), B̄G
u (Θt,Θs), C̄G

y (Θt,Θs)) is stabilizable and detectable for all Θt ∈ Θt

and Θs ∈ Θs.

(ii) [C̄G
y (Θt,Θs) D̄G

yd(Θt,Θs)] and [(B̄G
u )

T (Θt,Θs) (D̄G
zu)

T (Θt,Θs)] have full row rank
for all Θt ∈ Θt and Θs ∈ Θs.

(iii) D̄G
zd(Θt,Θs) = 0 and D̄G

yu(Θt,Θs) = 0.

The first two assumptions guarantee the existence of a stabilizing output feedback con-
troller, whereas the third one is assumed for simplicity. Two methods have been discussed
in Section 6.4.1 to address non-zero D̄G

yu(Θt,Θs).

A powerful tool, the FBSP [45], plays an important role in the derivation of synthesis
conditions for LFT LPV systems.

Theorem 6.3 (Full Block S-Procedure) Let Θ ∈ Θ represent the varying parame-
ters. Assume a rational parameter dependence of G(Θ) ∈ Rm×n on Θ. Let

G(Θ) = Θ ⋆

[
G11 G12

G21 G22

]

= G22 +G21Θ(I −G11Θ)−1G12 (6.45)

be an LFT representation. For a given matrix M ∈ R
m×m, the following two conditions

are equivalent:

(i) The quadratic matrix inequality

GT (Θ)MG(Θ) < 0 (6.46)

holds ∀Θ ∈ Θ.
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(ii) There exists a full-block multiplier Π such that

[∗]T
[

Π

M

]



G11 G12

I 0

G21 G22



 < 0, (6.47)

and ∀Θ ∈ Θ

[∗]TΠ
[
I
Θ

]

≥ 0. (6.48)

Proof The proof of Theorem 6.3 is provided in [14].

Theorem 6.3 states that the nonlinear matrix inequality (6.46) is equivalent to a set
of two LMIs: the main condition (6.47) that contains the constant matrices from the
LFT representation of G(Θ); and a multiplier condition (6.48) that involves the varying
parameters Θ. The use of the FBSP for the derivation of synthesis conditions is discussed
in Section 6.5.1 using CLFs, and in Section 6.5.2 using PDLFs. The performance of
designed controllers is demonstrated experimentally in Section 6.5.3.

6.5.1 Analysis and Synthesis Conditions Using CLFs

In the state-space framework developed in [8], distributed systems with temporal/spatial
variations can be expressed in explicit LPV form (2.12). A rational dependence of system
matrices on scheduling parameters allows an equivalent LFT representation (2.13) and
(2.14). Using the small-gain theorem, the design of a gain-scheduled H∞ controller in LFT
form can be recast in terms of LMIs [11]. A distributed controller design for parameter-
dependent spatially-interconnected systems using CLFs has been studied in [21], where
synthesis conditions are derived based on a specific choice of multipliers. Here, rather
general and less conservative conditions are given using the FBSP. Note that the use of
CLFs allows for arbitrary fast parameter-variation rates.

Consider a gain-scheduled closed-loop system in the form of (2.24) whose state vector is
structured as in (2.22). It can be viewed as an LTSI system subject to temporal/spatial
uncertainties from the plant ΥG and from the controller ΥK as

[

ĀL(ΘL
t ,Θ

L
s ) B̄L

d (Θ
L
t ,Θ

L
s )

C̄L
z (Θ

L
t ,Θ

L
s ) D̄L

zd(Θ
L
t ,Θ

L
s )

]

=

[
ΥG

ΥK

]

⋆






D̄L
qp C̄L

q D̄L
qd

B̄L
p ĀL B̄L

d

D̄L
zp C̄L

z D̄L
zd




 := ΥL ⋆






D̄L
qp C̄L

q D̄L
qd

B̄L
p ĀL B̄L

d

D̄L
zp C̄L

z D̄L
zd




 ,

where the uncertainties ΥG and ΥK are defined as in (2.14) and (2.26), respectively.

Define the multiplier set Y (nΘt
,nΘs)

as

Y (nΘt
,nΘs)

=

{

Π ∈ R
2(nΘt

+nΘs)×2(nΘt
+nΘs)

∣
∣
∣
∣
Π = ΠT =

[
Π11 Π12

ΠT
12 Π22

]

,Πij =

[
Πt

ij

Πs
ij

]

,

Πt
ij ∈ R

nΘt
×nΘt ,Πs

ij ∈ R
nΘs×nΘs ,Πt

ijΘt = ΘtΠ
t
ij,Π

s
ijΘs = ΘsΠ

s
ij , i, j = 1, 2

}

.
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The analysis condition – Theorem 2.2 (ii) – for LTSI systems is extended to distributed
LPV systems in the following result.

Theorem 6.4 Assume that the controlled system (2.27) and (2.28) is well-posed. The
system is exponentially stable and has quadratic performance γ, for any (ΘL

t ,Θ
L
s ) ∈

(ΘL
t ,Θ

L
t ), if one of following two conditions is satisfied:

(i) There exists a symmetric matrix XL ∈ XmL, such that

[
∗
∗

]T







0 XL

XL 0
1
γ
I 0

0 −γI













ĀL(ΘL
t ,Θ

L
s ) B̄L

d (Θ
L
t ,Θ

L
s )

I 0

C̄L
z (Θ

L
t ,Θ

L
s ) D̄L

zd(Θ
L
t ,Θ

L
s )

0 I






< 0. (6.49)

(ii) There exists a symmetric matrix XL ∈ XmL and a symmetric multiplier ΠL ∈
Y (n

ΘL
t
,n

ΘL
s
), such that





∗
∗
∗





T










0 XL

XL 0

ΠL

1
γ
I 0

0 −γI





















ĀL B̄L
p B̄G

d

I 0 0

C̄L
q D̄L

qp D̄L
qd

0 I 0

C̄L
z D̄L

zp D̄L
zd

0 0 I












< 0, (6.50)

and
[∗
∗

]T

ΠL

[

I

ΥL

]

> 0, (6.51)

where nΘL
t
and nΘL

s
denote the sizes of temporal and spatial uncertainties of the

closed-loop system, respectively.

Condition (ii) is the result after applying the FBSP to (6.49) with extra constraints
imposed on the multiplier structure, in addition to the symmetry required by the FBSP.

Just like the derivation of synthesis conditions for LTSI systems, the elimination lemma
can not be directly applied to conditions (6.50) and (6.51), due to the unknown partition

of the controller spatial state vector. The restructured state vector xL̃ = [(xG)T (xK)T ]T

requires the permutation of the system matrices, Lyapunov matrices, as well as the mul-
tiplier ΠL. The permuted multiplier ΠL̃ has the form

ΠL̃=

















ΠG,t
11 ΠGK,t

11

ΠG,s
11 ΠGK,s

11

(ΠGK,t
11 )T ΠK,t

11

(ΠGK,s
11 )T ΠK,s

11

ΠG,t
12 ΠGK,t

12

ΠG,s
12 ΠGK,s

12

ΠKG,t
12 ΠK,t

12

ΠKG,s
12 ΠK,s

12

sym

ΠG,t
22 ΠGK,t

22

ΠG,s
22 ΠGK,s

22

(ΠGK,t
22 )T ΠK,t

22

(ΠGK,s
22 )T ΠK,s

22

















. (6.52)
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Theorem 6.4 (ii) is equivalent to the following results.

Theorem 6.5 The controlled system (2.27) and (2.28) is well-posed, exponentially sta-

ble and has quadratic performance γ if there exists X L̃ in the form of (6.28), and a

multiplier ΠL̃ in the form of (6.52), such that





∗
∗
∗





T











0 X L̃

X L̃ 0

ΠL̃

1
γ
I 0

0 −γI























ĀL̃ B̄L̃
p B̄G

d

I 0 0

C̄ L̃
q D̄L̃

qp D̄L̃
qd

0 I 0

C̄ L̃
z D̄L̃

zp D̄L̃
zd

0 0 I













< 0 (6.53)

[
∗
∗

]T

ΠL̃







I
I

ΥG

ΥK






> 0. (6.54)

Controller synthesis conditions can then be further developed by applying the elimination
lemma to (6.53) and (6.54).

Theorem 6.6 Consider a distributed system in LFT form as in (2.16) and (2.17).
There exists a distributed controller in the form of (2.25) and (2.26), that guarantees
well-posedness, exponential stability and quadratic performance γ of the closed-loop sys-
tems (2.27) and (2.28), if there exist symmetric matrices R, S ∈ XmG, and symmetric
multipliers ΠR, ΠS ∈ Y (n

ΘG
t
,n

ΘG
s
), that satisfy

NT
R





∗
∗
∗





T










0 R
R 0

ΠR

1
γ
I 0

0 −γI





















(ĀG)T (C̄G
q )

T (C̄G
z )

T

I 0 0

(B̄G
p )

T (D̄G
qp)

T (D̄G
zp)

T

0 I 0

(B̄G
d )

T (D̄G
qd)

T (D̄G
zd)

T

0 0 I












NR < 0 (6.55)

NT
S





∗
∗
∗





T










0 S
S 0

ΠS

1
γ
I 0

0 −γI





















ĀG B̄G
p B̄G

d

I 0 0

C̄G
q D̄G

qp D̄G
qd

0 I 0

C̄G
z D̄G

zp D̄G
zd

0 0 I












NS < 0 (6.56)

[
Rt I
I St

]

≥ 0, (6.57)

and for any Θt ∈ Θt, Θs ∈ Θs

[
∗
]T

ΠR

[
I
ΥG

]

≥ 0
[
∗
]T

ΠS

[
I
ΥG

]

≥ 0, (6.58)
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where NR = ker
[
(B̄G

u )
T (D̄G

qu)
T (D̄G

zu)
T
]
, NS = ker

[
C̄y D̄G

yp D̄G
yd

]
.

Multiplier Structures

Solving (6.58) involves an infinite number of constraints on gridding points within the vari-
ation space Θt×Θs. Imposing additional constraints on the multipliers reduces condition
(6.58) into a finite number of LMIs. The first LMI in (6.58) is equivalent to

ΠR11 +ΠR12Υ
G +ΥGΠT

R12 +ΥGΠR22Υ
G ≥ 0. (6.59)

Under the assumption ΠR22 < 0, solving (6.59) can be reduced to solving

ΠR11 +ΠR12Υ
G +ΥGΠT

R12 ≥ 0. (6.60)

A similar constraint is imposed on ΠS as well. Then condition (6.58) is affine with respect
to ΥG. Instead of checking (6.58) over the whole variation range, it suffices to check only
at the vertices of a convex hull that contains the Cartesian product Θt ×Θs, i.e.

[
∗
]T

ΠR

[
I

Υ̂G
i

]

≥ 0,
[
∗
]T

ΠS

[
I

Υ̂G
i

]

≥ 0, i = 1, 2, . . . , 22(nt+ns), (6.61)

with ΠR22 < 0 and ΠS22 < 0, where Υ̂G
i denotes the vertices of the admissible set, and

nt and ns are the numbers of temporal and spatial scheduling parameters θt and θs,
respectively.

Furthermore, at the price of additional conservatism, condition (6.58) can be rendered
trivially fulfilled and eliminated by using (D,G)-scaling [87]. That is achieved by imposing

ΠR11 = −ΠR22 > 0, ΠR12 = −ΠT
R12; (6.62)

ΠS11 = −ΠS22 > 0, ΠS12 = −ΠT
S12. (6.63)

Under the assumption that |θti | < 1 and |θsi| < 1, the multiplier condition (6.58) is
trivially fulfilled. Therefore, it is adequate to consider only (6.55)-(6.57) for the existence
of the searched controller.

Results presented in [21] are a special case of Theorem 6.6 with the use of a more conser-
vative D-scaling, i.e.

ΠR11 = −ΠR22 > 0, ΠR12 = 0; (6.64)

ΠS11 = −ΠS22 > 0, ΠS12 = 0. (6.65)

Controller Scheduling Policy and Controller Construction

Imposing structural constraints on the multipliers reduces computational complexity at
the expense of conservatism. Using (D,G)- or D-scaling, condition (6.54) is trivially
fulfilled when the controller is scheduled in the same way as the plant, i.e. ΥK = ΥG.
The imposed multiplier structure induces conservatism. The use of the full block multi-
pliers leads to less conservative results, but requires the construction of a more complex
controller scheduling subspace as explained in [43].
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After Lyapunov matrices R and S, multipliers ΠR and ΠS have been computed, the
controller can either be constructed using closed-loop formulas, see [21] and [14], or
solved from the analysis conditions (6.53) and (6.54). The closed-loop Lyapunov func-

tion X L̃ is computed in the same way as in the LTSI case (6.33) and (6.34). A gen-
eral procedure of constructing the closed-loop multiplier ΠL is provided in [43]. Nev-
ertheless, when D-scaling is imposed on the multipliers ΠR and ΠS for simplicity, i.e.
ΠR = diag{ΠR11,−ΠR11} and ΠS = diag{ΠS11,−ΠS11}, the closed-loop multiplier ΠL can
be constructed in the same way as the closed-loop Lyapunov matrix [11], i.e.

PtQ
T
t = I − Πt

R11Π
t
S11, PsQ

T
s = I − Πs

R11Π
s
S11, (6.66)

then

ΠL,t =

[
Πt

S11 I

QT
t 0

]−1 [
I Πt

R11

0 P T
t

]

, ΠL,s =

[
Πs

S11 I

QT
s 0

]−1 [
I Πs

R11

0 P T
s

]

. (6.67)

The resulting closed-loop multiplier ΠL inherits the structure of D-scaling, i.e.

ΠL =







ΠL,t 0
0 ΠL,s

−ΠL,t 0
0 −ΠL,s






. (6.68)

The permuted multiplier ΠL̃ takes the form of (6.52), with ΠL
12 = ΠL

21 = 0. The unknown
and constant controller matrices in LFT representation in the form of (2.25) can then be
easily solved from (6.53).

6.5.2 Synthesis Conditions Using PDLFs

The use of CLFs to design LPV controllers allows an infinite rate of parameter variations
and results in conservatism, when an upper bound on the variation rate exists. The
smaller the bounds, the more conservative is the use of CLFs. This section extends the
controller design approach in [14] for temporal LFT systems to distributed LFT LPV
systems using PDLFs.

Define ∂X (Θt,Θs) as the variation rate of a Lyapunov function X (Θt,Θs) ∈ Xm. Assume
that the varying dynamics of the temporal and spatial variables are decoupled, then

∂X (Θt,Θs) =

[
∂tXt(Θt)

∂sXs(Θs)

]

, (6.69)

where ∂t and ∂s denote the derivatives with respect to time and space, respectively. Let
the set of temporal and spatial variation rates of uncertainties be denoted by (Ξt,Ξs),
such that (Θt,Θs) ∈ (Θt,Θs), and (∂tΘt, ∂sΘs) ∈ (Ξt,Ξs).

After incorporating the parameter-dependent Lyapunov functions, the system analysis
conditions are formulated as follows.
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Theorem 6.7 Assume that the controlled system (2.27) and (2.28) is well-posed. The
system is exponentially stable and has quadratic performance γ, if one of following two
conditions is satisfied:

(i) There exists a Lyapunov matrix X L̃(ΘL̃
t ,Θ

L̃
s ) in the form of (6.28) with respect to per-

muted closed-loop uncertainties (ΘL̃
t ,Θ

L̃
s ), such that for any (ΘL̃

t ,Θ
L̃
s ) ∈ (ΘL̃

t ,Θ
L̃
s ),

(∂tΘ
L̃
t , ∂sΘ

L̃
s ) ∈ (ΞL̃

t ,Ξ
L̃
s )

[
∗
∗

]T








0 X L̃(ΘL̃
t ,Θ

L̃
s )

X L̃(ΘL
t ,Θ

L
s ) −∂X L̃(ΘL̃

t ,Θ
L̃
s )

1
γ
I 0

0 −γI















ĀL̃(ΘL̃
t ,Θ

L̃
s ) B̄L̃

d (Θ
L̃
t ,Θ

L̃
s )

I 0

C̄L̃
z (Θ

L̃
t ,Θ

L̃
s ) D̄L̃

zd(Θ
L̃
t ,Θ

L̃
s )

0 I







< 0,

(6.70)

where (ΘL̃
t ,Θ

L̃
s ) are the sets of permuted closed-loop uncertainties.

(ii) There exist Lyapunov matrices R(Θt,Θs), S(Θt,Θs) ∈ XmG, such that for any
(Θt,Θs) ∈ (Θt,Θs), (∂tΘt, ∂sΘs) ∈ (Ξt,Ξs)

[∗]T
[
∗
∗

]T








0 R(Θt,Θs)
R(Θt,Θs) −∂R(Θt,Θs)

1
γ
I 0

0 −γI















(ĀG)T (Θt,Θs) (C̄G
z )

T (Θt,Θs)
I 0

(B̄G
d )

T (Θt,Θs) (D̄G
zd)

T (Θt,Θs)
0 I








×NR(Θt,Θs) < 0, (6.71)

[∗]T
[
∗
∗

]T








0 S(Θt,Θs)
S(Θt,Θs) ∂S(Θt,Θs)

1
γ
I 0

0 −γI















ĀG(Θt,Θs) B̄G
d (Θt,Θs)

I 0

C̄G
z (Θt,Θs) D̄G

zd(Θt,Θs)
0 I








×NS(Θt,Θs) < 0, (6.72)

[
Rt(Θt) I

I St(Θt)

]

≥ 0, (6.73)

where

NR(Θt,Θs) = ker
[
(B̄G

u )
T (Θt,Θs) (D̄G

zu)
T (Θt,Θs)

]
, (6.74)

NS(Θt,Θs) = ker
[
C̄G
y (Θt,Θs) D̄G

yd(Θt,Θs)
]
. (6.75)

Condition (ii) is the result of applying the elimination lemma to (6.70).

To solve the infinite set of LMIs (6.71)-(6.73), two commonly used approaches are

1. gridding [18], where inequalities are solved at grid points that cover the range of
parameter variation and rates (Θt,Θs)× (Ξt,Ξs);
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2. LFT LPV synthesis, which relies on the application of S-procedure [88], or the
extended version - FBSP.

Considered here is LFT LPV controller synthesis. Assume a quadratic form of the Lya-
punov matrices R(Θt,Θs) and S(Θt,Θs), and bring the parameter-varying system ma-
trices and null spaces in their LFT representations, respectively. After performing the
multiplications of LFT systems, conditions (6.71)-(6.73) can be rewritten as

[∗]T







0 P
P 0

1
γ
I 0

0 −γI







(

Ω ⋆

[
GP11 GP12

GP21 GP22

])

< 0 (6.76)

[∗]T







0 Q
Q 0

1
γ
I 0

0 −γI







(

Ω ⋆

[
GQ11 GQ12

GQ21 GQ22

])

< 0 (6.77)

[∗]T







Pt 0
0 Qt

0 I
I 0







([
Θt

Θt

]

⋆

[
G11 G12

G21 G22

])

≥ 0, (6.78)

where P , Q ∈ XmG ; the augmented plant uncertainty Ω arises from the LFT multi-
plication in (6.71) and (6.72), and is defined as Ω = diag{∂ΥG,ΥG,ΥG,ΥG,ΥG}. The
derivation from (6.71)-(6.73) to (6.76)-(6.78), and the algebraic expressions of the con-
stant matrices in (6.76)-(6.78) can be found in Appendix B. It is easy to see that the
quadratic matrix inequalities (6.76)-(6.78) are now in the form of (6.46). Applying the
FBSP to each of them results in the following synthesis conditions.

Theorem 6.8 Consider an LTSV system (2.16) and (2.17) with its parameter variation
and rate sets (Θt,Θs) and (Ξt,Ξs), respectively. There exists a distributed LPV controller
in the form of (2.23), that guarantees well-posedness, exponential stability and quadratic
performance γ of the closed-loop system (2.24), if there exist matrices P , Q ∈ XmG,
multipliers ΠP , ΠQ ∈ Y (5n

ΘG
t
,5n

ΘG
s
) and Π ∈ Y (2n

ΘG
t
,2n

ΘG
t
), that satisfy

[
∗
∗

]T










ΠP

0 P
P 0

1
γ
I 0

0 −γI














GP11 GP12

I 0

GP21 GP22



 < 0, (6.79)

[
∗
∗

]T










ΠQ

0 Q
Q 0

1
γ
I 0

0 −γI














GQ11 GQ12

I 0

GQ21 GQ22



 < 0, (6.80)
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[
∗
∗

]T










−Π

Pt 0
0 Qt

0 I
I 0














G11 G12

I 0

G21 G22



 ≥ 0, (6.81)

and ∀(Θt,Θs) ∈ (Θt,Θs), (∂tΘt, ∂sΘs) ∈ (Ξt,Ξs)

[∗]TΠP

[
I
Ω

]

≥ 0, (6.82)

[∗]TΠQ

[
I
Ω

]

≥ 0, (6.83)

[
∗
∗

]T

Π







I
I

Θt

Θt






> 0. (6.84)

Proof The proof of Theorem 6.8 can be found in Appendix B.

Controller Construction

Discussions on the multiplier structures in Section 6.5.1 for the controller design using
CLFs apply when PDLFs are used. If the quadratic LFT matrix functions R(Θt,Θs) and
S(Θt,Θs) have been found after solving (6.79)–(6.84), to the author’s knowledge, the LPV
controller can only be constructed using explicit formulas, see [14] and [18]. Nevertheless,
due to the use of gain-scheduled Lyapunov functions, the implementation of the designed
controller in the form of (2.23) requires the real-time measurement of the parameter
variation rates. Under the assumption of decoupled temporal and spatial variations, the
derivatives of spatial parameters can be measured off-line and remain unchanged on-line.
However, it is often difficult to estimate the temporal variation rate. Thus, in order to
remove the controller dependence on ∂tΘt, only one of the Lyapunov matrices R(Θt,Θs)
or S(Θt,Θs) is defined as parameter-varying [13], e.g. let R be constant and S(Θt,Θs)
be parameter-dependent. For the sake of brevity, the argument (Θt,Θs) of a parameter-
dependent matrix is left out in the following equations, e.g. a calligraphic A is short for
A(Θt,Θs), whereas R stands for a constant matrix. The continuous LPV controller is
obtained as

N = I − SR,

F =− [(D̄G
zu)

T D̄G
zu]

−1 × [γ(B̄G
u )

TR−1 + (D̄G
zu)

T C̄G
z ],

L =− [γS−1(C̄G
y )

T + B̄d(D̄G
yd)

T ]× [D̄G
yd(D̄G

yd)
T ]−1,

ĀK =−N−1
(
(ĀG)T + S[ĀG + B̄G

u F + LC̄G
y ]R + γ−1S[B̄G

d + LD̄G
yd](B̄G

d )
T

+ γ−1(C̄G
z )

T [C̄G
z + D̄G

zuF ]R
)
,

B̄K = N−1SL,
C̄K = FR,

D̄K = 0.
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6.5.3 Experimental Results

The experimental setup is modified as a spatially-varying system by deactivating six
actuator/sensor pairs just as for the LPV model identification in Chapter 5. The control
objective is defined in the same way as in the LTSI case in Section 6.4.3—suppressing
parallel injected output disturbances. Based on the black-box identified spatial LPV
model, distributed controllers using both CLFs and PDLFs have been designed by shaping
mixed sensitivities, and have been validated experimentally.

• Distributed controller using CLFs: Multipliers with D-scalings are used. The re-
sulting controller is of temporal order mK

0 = 5, and of spatial order mK
+ = mK

− = 4.

• Distributed controller using PDLFs: Multipliers with D-scalings are used. Due to
the spatial variation of the subsystem, the parameter-dependent Lyapunov matrix
is a function of spatial uncertainties. A quadratic Lyapunov matrix can be written
in LFT form as

R(Θs) =

[
Rt

Rs(Θs)

]

= T T
R (Θs)PTR(Θs) = [∗]T

[

Pt

Ps

] [
I

TRs
(Θs)

]

= [∗]T
[

Pt

Ps

]



I

Θs ⋆

[
TRs11 TRs12

TRs21 TRs22

]



=[∗]T
[

Pt

Ps

]

Θs ⋆





TRs11 0 TRs12

0 I 0
TRs21 0 TRs22







 .

(6.85)

Let Rs(Θs) be a first order polynomial in Θs, i.e. Rs(Θs) = P0+P1Θs, which yields
the following selection

Ps =

[
0 P1/2

P1/2 P0

]

,

[
TRs11 TRs12

TRs21 TRs22

]

=





0 I

I 0
0 I



 . (6.86)

The obtained controller is of temporal order mK
0 = 4, and of spatial order mK

+ =
mK

− = 4.

Fig. 6.7 shows the comparison of the experimental responses in time domain between
open loop and closed-loop system with controllers designed using both PDLFs and CLFs.
Fig. 6.8 shows the comparison in frequency domain—FRFs from injected output distur-
bance to collocated output. The distributed controller designed using PDLFs improves
the closed-loop performance significantly at most of the subsystems, especially in the low
frequency range. Provided the knowledge of the upper bound on the spatial variation
rate, the conservatism caused by the use of CLFs is largely reduced by the use of PDLFs.
The improved experimental results confirm the benefits of using PDLFs.

6.6 Summary

This chapter has addressed the distributed controller design problem for both LTSI and
LTSV systems, where a controller inheriting the distributed nature of the plant is desired.
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Figure 6.7: With output disturbances injected, comparison of measured outputs over time
between open-loop response(blue curve), closed-loop response with PDLFs (green curves),
and closed-loop response with CLFs (red curves)

The input/output models identified in Chapter 5 have been first converted into their
multidimensional state space representations, such that the state-space based controller
design techniques can be applied. The procedures for constructing a generalized plant for
shaping the mixed sensitivities of the spatio-temporal system have been discussed. Anal-
ysis and synthesis conditions for a distributed LTSI controller design have been briefly
reviewed and implemented on the test structure to suppress the injected disturbance.
The performance of the obtained distributed controller has been compared with that of
a decentralized controller. The experimental results confirm that with the information
exchange between subsystems, an improved overall performance has been achieved. For
LTSV systems, the distributed LPV controller design using CLFs has been considered. To
reduce the conservatism due to the bounded variation rates of the scheduling parameters,
the LPV controller design techniques using PDLFs originally developed for temporal sys-
tems have been extended here to multidimensional systems. The designed LPV controllers
using both CLFs and PDLFs have been tested experimentally. The less conservative LPV
controller designed using PDLFs has demonstrated a superior performance in terms of
suppressing the injected disturbance.
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Chapter 7

Distributed Anti-Windup
Compensator Design

7.1 Introduction

Actuator saturation often occurs in physical systems. The constrained control behaviour is
usually not captured when solving the controller design problem as described in Chapter 6.
In the presence of limitations on the actuator capacity, the established closed-loop perfor-
mance suffers from deterioration, or even instability. For this reason, anti-windup (AW)
compensators are often considered in real applications to counteract the effects of actuator
saturation.

Over the last decades, AW compensator design has been addressed in numerous works by
applying various approaches. A linear conditioning scheme that augments a system with
a linear transfer function as the AW compensator, which results from the right coprime
factorisation of the plant, is proposed in [36], aiming at driving the saturated system back
to the intended linear behaviour as quickly as possible. In [39], provided that stability
is guaranteed for a constrained system, performance can be tuned by minimizing the L2

gain using a static compensator. This approach is further developed in [37] [89] with
a compensator of order greater than or equal to that of the plant. AW compensators
that handle the controller saturation as well as plant uncertainties are considered in
[38]. In [42], a more general and potentially less conservative framework for the robust
analysis of nonlinearities is developed, which is applied to solve the AW compensator
design problem in [90] and [91]. The common feature of the aforementioned works is
a two-step approach, where the synthesis problems are solved separately, one after the
other, for the controller and the AW compensator. Different from the conventional two-
step approach, [92] computes the controller and the AW compensator in one step with one
goal, where the gridding method is employed to solve the resulting nonlinear inequalities.

Among the existing works, very few deal with the saturation problem of distributed pa-
rameter systems. In [40], a robust AW compensator for the reaction-diffusion equation is
presented. The centralized scheme may encounter difficulties when applied to a large scale
system. Instead of a large model describing the system dynamics in a centralized manner,

114
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a localized model of smaller size is much easier to handle. Working in the distributed
system framework developed in [8], [41] proposes a distributed AW compensator for an
open-water channel control system, which boils down to the search for a static gain value
that guarantees Lyapunov stability.

Inspired by the work in [41], [89] and [37], this chapter proposes an AW compensator
design using a two-step approach for LTSI systems. The designed AW compensator can
be implemented on top of an existing closed-loop system, with global stability and a
bound on L2 performance of the augmented system guaranteed. The tool developed in
[42] – the IQC approach – is employed to impose constraints on the nonlinear saturation
operator, such that the analysis and synthesis conditions can be formulated in terms of
LMIs.

This chapter includes results reported in [93]. The rest of this chapter is organized as
follows: Section 7.2 recaps a lumped AW architecture, and the framework of IQCs, with
an emphasis on its application to the saturation/deadzone operator, and robust analysis.
Section 7.3 extends the AW scheme for lumped systems to spatially-interconnected sys-
tems. In Section 7.3.1, stability analysis via IQCs is applied to constrained distributed
systems. Synthesis conditions for an AW compensator are derived in Section 7.3.2. A
decentralized AW scheme is designed for comparison in Section 7.4. Simulation results
obtained on an actuated Euler-Bernoulli beam demonstrate the performance of both the
distributed and the decentralized AW schemes in Section 7.5.

7.2 Preliminary

This section recaps the working principle of a lumped AW scheme with full-order dynam-
ics. A mathematical tool – IQCs – that is often used to analyse the robust stability of a
feedback system with nonlinear uncertainties is reviewed here, and will be employed later
for the derivation of system analysis conditions.

7.2.1 AW Scheme for Lumped Systems

The two-step AW design, also referred to as control of constrained systems [94], consists
of two steps:

1. Design a linear controller K, such that when |u| ≤ ū, where ū is the maximum
capacity of the physical actuators, stability and a performance bound are guaranteed
on the closed-loop system.

2. Design a linear AW compensator Ψ, such that when |u| > ū, the achieved stability
and performance from step 1 are preserved to a certain extent.

The AW framework for lumped systems proposed in [89] is shown in Fig. 7.1. When
actuator saturation does not occur, u = u0 holds; otherwise, the AW compensator Ψ is
activated and generates two compensation signals: v1 ∈ R

nu is added to the controller



Chapter 7. Distributed Anti-Windup Compensator Design 116

output, while v2 ∈ Rny enters the controller as part of the controlled input, i.e., y = y0+v2.
The state space realization of the AW compensator suggested in [89]






xΨ(k + 1)
[
v1(k)
v2(k)

]




 =

[

AΨ BΨ

CΨ DΨ

][

xΨ(k)

e(k)

]

, (7.1)

where e = ũ− u, possesses full-order dynamics, and allows more degrees of freedom than
a static compensator. The saturation operator is defined as

u = sat(u0 + v1) = sat(ũ), (7.2)

where sat(ũ) = sign(ũ) ∗min{ū, |ũ|}.

GK

Ψ

y u0 ũ u

d

z

y0

ev2

v1

Figure 7.1: AW scheme proposed for lumped systems in [89]

7.2.2 Robust Analysis Using IQCs

IQCs [42] can be used to analyse systems with various types of uncertainties. It describes
the behaviour of a system in the frequency domain in terms of an integral constraint on
the Fourier transformations of the input/output signals [95].

Let RH∞ be the set of proper, stable and rational functions with real coefficients, Ll
2(0,∞)

be the space of square integrable signals, i.e., a signal f(t) ∈ Ll
2(0,∞), if its energy

‖ f(t) ‖2=
∫ ∞

0

‖ f(τ) ‖2 dτ (7.3)

is bounded. The definition of IQCs is given as follows.

Definition 7.1 (IQC [42]) Two signals w ∈ Lm
2 (0,∞) and v ∈ Ll

2(0,∞) are said to
satisfy the IQC defined by a Hermitian-valued function Π, where Π : jR → C(l+m)×(l+m),
if

∫ ∞

−∞

[
v̂(jw)
ŵ(jw)

]∗

Π(jw)

[
v̂(jw)
ŵ(jw)

]

dw ≥ 0, (7.4)

where v̂(jw) and ŵ(jw) are the Fourier transformations of v and w, respectively.
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Provided a proper choice of the multiplier Π, IQCs can be used to describe relations be-

tween signals. For example, with the multiplier Π =

[
I 0
0 −I

]

, (7.4) defines ‖ w ‖2≤‖ v ‖2.

Multiplier for Saturation/Deadzone Operator

With the definition of the saturation operator given, the deadzone operator is defined as
e = dz(ũ) = u − sat(u); both of them are nonlinear operators. By allowing additional
conservatism, the saturation and deadzone operators can be over-bounded by a linear
operator – sector [0 1] – as shown in Fig. 7.2.

e

ũũ

u

ūū

−ū−ū

(a) (b)

Figure 7.2: Sector [0 1] bounds a saturation operator (a) and a deadzone operator (b)

Consider now only the deadzone function. The fact that the deadzone operator is bounded
by a sector [0 1] implies that for any positive definite symmetric matrix W̃ ∈ Rnu×nu , the
condition

eT W̃ (ũ− e) ≥ 0 (7.5)

holds, which can be reformulated as a quadratic matrix inequality as

2eT W̃ ũ− 2eT W̃ e ≥ 0, (7.6)

eT W̃ ũ+ ũTW̃ e− 2eT W̃ e ≥ 0, (7.7)

[
∗
]T
[
−2W̃ W̃

W̃ 0

] [
e
ũ

]

≥ 0. (7.8)

Therefore a static multiplier Π :=

[
−2W̃ W̃

W̃ 0

]

can be used to cast the nonlinear deadzone

function into a quadratic constraint.

Stability Analysis

The characterization of a nonlinear operator in terms of (7.4) makes sense only when
the involved signals are bounded, such that their square integral exists. Thus, stability
analysis on the feedback loop as shown in Fig. 7.3 is required.
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G(s)

Θ

e w

v f

Figure 7.3: Output feedback loop, where Θ can be a linear or nonlinear bounded operator.

It is assumed that G(s) ∈ RH l×m
∞ is an LTI operator, and Θ is a bounded operator that

maps from Ll
2e(0,∞) to Lm

2e(0,∞), and can be used to describe nonlinear components of
a system. Noise or disturbances are injected through e and f ; both are square integrable
on finite intervals. Without loss of generality, assume e = 0 in Fig. 7.3, so that w = Θ(v).

The stability of the feedback loop can be stated as follows [42].

Theorem 7.1 The feedback interconnection of G(s) and Θ is stable, where G(s) ∈
RH l×m

∞ , and Θ is a bounded causal operator, if

(i) for every ζ ∈ [0, 1], the interconnection of G(s) and ζΘ is well-posed;

(ii) for every ζ ∈ [0, 1], the IQC defined by Π is satisfied by ζΘ;

(iii) there exists ǫ > 0 such that

[
G(jω)

I

]∗

Π(jω)

[
G(jω)

I

]

≤ −ǫI, ∀ω ∈ R. (7.9)

The multiplier Π(jω) can be parametrized to describe various nonlinear operators. It can
be defined either static or dynamic. The well-posedness in condition (i) can be verified
through the invertibility of I − ζGΘ. Finding dynamic multipliers that fulfil condition
(ii) is not trivial and will be further discussed in Section 7.3.1. Under the assumption
that Π(jω) is a rational function with no poles on the imaginary axis, condition (iii) can
be cast into a quadratic problem, and further into LMIs with the application of Kalman-
Yakubovic-Popov (KYP) Lemma (see Appendix C.2) as follows.

Consider the transfer function G(jω) := C(jωI−A)−1B+D, and a frequency-independent
multiplier Π(jw) = M . The left side of (7.9) can be expressed in terms of G and M as

[
G(jω)

I

]∗

M

[
G(jω)

I

]

=

[
(jωI −A)−1B

I

]∗([
CT 0
DT I

]

M

[
C D
0 I

])[
(jωI − A)−1B

I

]

.

(7.10)
According to [96], with the application of the KYP lemma, (7.10) is equivalent to: there
exists a positive and symmetric matrix X , and a positive scalar µ, such that

[
ATX +XA XB

BTX 0

]

+

[
CT 0
DT I

]

µM

[
C D
0 I

]

< 0. (7.11)
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7.3 Distributed AW Compensator Scheme

Analogous to the distributed pattern of the controller, it is desired that the AW compen-
sator also reflects the distributed structure of the closed-loop system. The local exchange
of saturation information may lead to a better allocation of control effort among sub-
systems. Inspired by the AW scheme for lumped systems in Fig. 7.1, an AW scheme
for distributed systems in Fig. 7.4 is proposed, where the distributed plant G, the con-
troller K, and the AW compensator Ψ interact with neighbouring subsystems and share
a common communication topology. For the clarity of presentation, all involved signals
in Fig. 7.4 are indexed only by their spatial variables.

GGG

KKK

ΨΨΨ

ds−1 zs−1 ds zs ds+1 zs+1

us−1 y0,s−1

v2,s−1

es−1

ũs−1 v1,s−1

u0,s−1

ys−1

us y0,s

v2,s

es
ũs v1,s

u0,s

ys

us+1 y0,s+1

v2,s+1

es+1

ũs+1 v1,s+1

u0,s+1

ys+1

Figure 7.4: Distributed structure of the proposed AW compensator

The compact state space models of the plant and the controller that account for the
integrated AW compensator are slightly modified from (2.11) and (2.20) to





(∆G
mx

G)(k, s)

z(k, s)
y0(k, s)



 =






AG BG
d BG

u

CG
z DG

zd DG
zu

CG
y DG

yd DG
yu










xG(k, s)

d(k, s)
u(k, s)



 , (7.12)

[

(∆K
mx

K)(k, s)

u0(k, s)

]

=

[

AK BK

CK DK

][

xK(k, s)

y(k, s)

]

, (7.13)

respectively. The distributed AW compensator Ψ at subsystem s is realized as










xΨ
t (k + 1, s)

xΨ,+
s (k, s+ 1)

xΨ,−
s (k, s− 1)
[
v1(k, s)
v2(k, s)

]










=











AΨ
tt AΨ,+

ts AΨ,−
ts BΨ

t

AΨ,+
st AΨ,++

ss AΨ,+−
ts BΨ,+

s

AΨ,−
st AΨ,+−

ss AΨ,−−
ts BΨ,−

s

CΨ
v1,t

CΨ,+
v1,s

CΨ,−
v1,s

DΨ
v1e

CΨ
v2,t

CΨ,+
v2,s

CΨ,−
v2,s

DΨ
v1e


















xΨ
t (k, s)

xΨ,+
s (k, s)

xΨ,−
s (k, s)

e(k, s)







, (7.14)
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whose compact form writes





(∆Ψ
mx

Ψ)(k, s)
[
v1(k, s)
v2(k, s)

]



 =

[

AΨ BΨ

CΨ DΨ

][
xΨ(k, s)

e(k, s)

]

. (7.15)

Note that although (7.1) and (7.15) appear similar, they fall into to two classes of systems:
(7.1), as a lumped system, exhibits only temporal dynamics; (7.15) is a spatio-temporal
system, whose signals are two-dimensional with respect to time and space.

Remarks :

• When no saturation occurs, the system in Fig. 7.4 retrieves the behaviour of the
unconstrained closed-loop system in Fig. 2.5.

• The compensator scheme in Fig. 7.4 is a distributed version of Fig. 7.1: cutting
off the communication channels between the plant, the controller, and the AW
compensator subsystems leads to a number of dynamically decoupled systems, each
including lumped G, K and Ψ—an exact copy of Fig. 7.1.

Among the dynamic components in Fig. 7.4, the plant dynamics G are assumed to be
known, usually through system identification, whereas the controller K is designed in-
dependently of the AW compensator Ψ by solving the synthesis conditions described in
Section 6.4.1. Provided the state space realizations of the plant subsystem (7.12) and
controller subsystem (7.13), replacing the controller input y(k, s) with y0(k, s) + v2(k, s),
the control effort u(k, s) with u0(k, s)+ v1(k, s)− e(k, s), and pulling the plant subsystem
G and its controller K together, give rise to the closed-loop subsystem L whose input
signals are d(k, s), e(k, s), and a vector v(k, s) that consists of the compensator outputs

v(k, s) :=
[
v1(k, s)

T v2(k, s)
T
]T
, and outputs are z(k, s) and ũ(k, s) = u0(k, s)+ v1(k, s).

The state space representation of the closed-loop subsystem L is written as





(∆L
mx

L)(k, s)

z(k, s)
ũ(k, s)



=






AL BL
d BL

e BL
v

CL
z DL

zd DL
ze D

L
zv

CL
ũ DL

ũd D
L
ũe D

L
ũv












xL(k, s)

d(k, s)
e(k, s)
v(k, s)






, (7.16)

whose state vector xL(k, s) is arranged as (2.22) by separating temporal, positive and
negative spatial states. Recall the definition of a deadzone function that maps from ũ to
e. Replacing the saturation function with a deadzone function allows to restructure the
distributed system in Fig. 7.4 in a compact way as shown in Fig. 7.5.

For the purpose of system analysis, Fig. 7.5 can be further restructured by pulling the
AW compensator Ψ and the closed-loop subsystem L together into one block P as shown
in Fig. 7.6. Then the resulting distributed system can be seen as the interconnection of
LTSI subsystem P with an uncertainty in the form of a deadzone operator.

As mentioned in Section 7.2.2, the deadzone operator is a memoryless nonlinear operator,
which can be over-bounded by the sector [0 1]. The replacement of the deadzone operator
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Figure 7.5: Compact form of the constrained system obtained by pulling the plant and
the controller into one block

PPP

ds−1 zs−1 ds zs ds+1 zs+1

es−1 ũs−1 es ũs es+1 ũs+1

Figure 7.6: Constrained closed-loop system in a compact form with the deadzone operator
as the uncertainty

in the uncertainty block by the sector [0 1] operator yields the lower LFT representation
(see Appendix C.2) of subsystems as shown in Fig. 7.7, where Θs denotes the linear sector
[0 1] and takes values from 0 to 1.

PPP

ds−1 zs−1 ds zs ds+1 zs+1

es−1 ũs−1 es ũs es+1 ũs+1

Θs−1 Θs Θs+1

Figure 7.7: Constrained closed-loop system in a compact form with the sector [0 1] as the
uncertainty

The subsystem P contains the interactive dynamics of G, K and Ψ, and is realized in
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LFT form as




(∆P
mx

P )(k, s)

z(k, s)
ũ(k, s)



 =






AP BP
d BP

e

CP
z DP

zd DP
ze

CP
ũ DP

ũd DP
ũe










xP (k, s)

d(k, s)
e(k, s)



 (7.17)

e(k, s) = Θsũ(k, s), (7.18)

whose state vector is grouped as

xP =

[
[
xL
t

xΨ
t

]T

,

[
xL
s+

xΨ
s+

]T

,

[
xL
s−

xΨ
s−

]T
]T

. (7.19)

With the matrices of subsystem L known, after grouping the unknown AW parameters
together, the system matrices of subsystem P can be decomposed as















AL
tt 0 AL,+

ts 0 AL,−
ts 0 BL

t,d BL
t,e

0 0 0 0 0 0 0 0

AL,+
st 0 AL,++

ss 0 AL,+−
ss 0 BL,+

s,d BL,+
s,e

0 0 0 0 0 0 0 0

AL,−
st 0 AL,−+

ss 0 AL,−−
ss 0 BL,−

s,d BL,−
s,e

0 0 0 0 0 0 0 0

CL
t,z 0 CL,+

s,z 0 CL,−
s,z 0 DL

zd DL
ze

CL
t,ũ 0 CL,+

s,ũ 0 CL,−
s,ũ 0 DL

ũd DL
ũe
















+















0 0 0 BL
t,v

I 0 0 0
0 0 0 BL,+

s,v

0 I 0 0
0 0 0 BL,−

s,v

0 0 I 0

0 0 0 DL
zv

0 0 0 DL
ũv















[

AΨ BΨ

CΨ DΨ

]







0 I 0 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 I






.

(7.20)

7.3.1 Analysis Conditions

Theorem 7.1 states conditions for a lumped feedback loop in Fig. 7.3 to be stable. Replace
the LTI operator G(s) in Fig. 7.3 with the LTSI subsystem P in Fig. 7.6, the uncertainty
block Θ with Θs. The stability theorem 7.1 can be extended to spatially distributed
systems as follows.

Theorem 7.2 Assume that the distributed plant G in (7.12), the distributed controller
K in (7.13) and the distributed AW compensator Ψ in (7.15) are given. The intercon-
nected system (7.17) and (7.18) is well-posed, exponentially stable and satisfies quadratic
performance γ, if there exists a symmetric positive definite matrix W ∈ Rnu×nu and a real
matrix XP ∈ XmP , such that





∗
∗
∗





T












0 XP

XP 0

−γI 0
0 1

γ
I

−2W W
W 0























I 0 0
ĀP B̄P

d B̄P
e

0 I 0
C̄P

z D̄P
zd D̄P

ze

0 0 I
C̄P

ũ D̄P
ũd D̄P

ũe












< 0 (7.21)

holds.
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Proof Consider now the state space realization (7.17) of subsystem P . Impose a worst-
case gain γ on the performance channel d → z. After applying the KYP lemma C.2 (see
Appendix C), condition (iii) in Theorem 7.1 is equivalent to the existence of a Lyapunov
matrix XP ∈ XmP , and a positive scalar µ ([42] [97]), such that





(ĀP )TXP +XP ĀP XP B̄P
d XP B̄P

e

(B̄P
d )

TXP 0 0

(B̄P
e )

TXP 0 −I



+
1

γ2





(C̄P
z )

T

(D̄P
zd)

T

(D̄P
ze)

T




[
C̄P

z D̄P
zd D̄P

ze

]

+





(C̄P
ũ )

T 0

(D̄P
ũd)

T 0

(D̄P
ũe)

T I



µM

[
C̄P

ũ D̄P
ũd D̄P

ũe

0 0 I

]

< 0, (7.22)

where the static multiplier that characterizes the sector [0 1] operator is selected as

M =

[
0 W̃

W̃ −2W̃

]

. (7.23)

Provided that the upper left term in the chosen multiplier is positive semi-definite, con-
dition (ii) in Theorem 7.1 is always fulfilled for ζ = 0. Meanwhile, the negative semi-
definiteness of the lower right terms turns (7.4) into a convex problem. Therefore, it
suffices to check condition (ii) only at ζ = 1 [42], which is trivially fulfilled. Thus, stabil-
ity of the well-posed interconnected system between subsystem P and a deadzone operator
Ψ has been established.

Finally, with the change of variable W = µW̃ , (7.22) can be written in a quadratic
inequality form as (7.21).

Remarks :

• According to the sector condition, (7.5) should hold for any positive symmetric
matrices W̃ (or W ). Defining W as a variable in (7.21) allows extra degrees of
freedom in the minimization of γ.

• Despite the conservatism of a sector-based boundary [98], sector [0 1] is widely
applied in control engineering to impose constraints on a deadzone/saturation op-
erator. The conservatism could be reduced with the use of dynamic (frequency-
dependent) multipliers [99] [100].

7.3.2 Synthesis Conditions

With the analysis conditions developed in Theorem 7.2, synthesis conditions for a dis-
tributed AW compensator Ψ can be easily obtained by applying the elimination lemma
not to (7.21) directly, but to the permuted version of (7.21), due to the same argument
as made during the derivation of the controller synthesis conditions in Chapter 6, i.e.,
the sizes of positive and negative spatial states of the compensator remain unknown until
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the synthesis is complete. Instead of a closed-loop realization as in (7.20), a restructured

state space model with the state vector defined as xP̃ (k, s) =

[
xL(k, s)
xΨ(k, s)

]

is given by







AP̃ BP̃
d BP̃

e

C P̃
z DP̃

zd DP̃
ze

C P̃
ũ DP̃

ũd D
P̃
ũe






=








AL 0 BL
d BL

e

0 0 0 0

CL
z 0 DL

zd DL
ze

CL
ũ 0 DL

ũd DL
ũe







+








0 BL
v

I 0

0 DL
zv

0 DL
ũv








[

AΨ BΨ

CΨ DΨ

] [
0 I 0 0
0 0 0 I

]

︸ ︷︷ ︸

Q

. (7.24)

The Lyapunov matrix XP ∈ XmP is accordingly permuted in the same way as in (6.28),
i.e.

X P̃ =








XL
t XLΨ

t

XL
s XLΨ

s

(XLΨ
t )T XΨ

t

(XLΨ
s )T XΨ

s







. (7.25)

Theorem 7.2 is equivalent to: The interconnected system (7.17) and (7.18) is well-posed,
exponentially stable and satisfies quadratic performance γ, if there exists a symmetric
positive definite matrix W ∈ Rnu×nu and a real matrix X P̃ in the form of (7.25), such
that
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∗
∗





T












0 X P̃

X P̃ 0

−γI 0
0 1

γ
I
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W 0
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ze

0 0 I
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ũ D̄P̃

ũd D̄P̃
ũe













< 0. (7.26)

Inheriting the distributed fashion of the controller design, a local AW compensator is to
be designed based on a single subsystem, and copied to all other subsystems in case of an
LTSI system. Conditions for the design of a distributed AW compensator can be derived
as follows.

Theorem 7.3 There exists a distributed AW compensator Ψ in (7.15), that guarantees
well-posedness, exponential stability and quadratic performance γ of the constrained closed-
loop system (7.17) and (7.18), if there exist a symmetric positive definite matrix W ∈
Rnu×nu and R, S ∈ XmL, that satisfy

[
∗
∗

]T







0 S
S 0

−γI 0
0 1

γ
I













I 0
ĀL B̄L

d

0 I
C̄L

z D̄L
zd






< 0, (7.27)
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NR>0, (7.28)

[

Rt I

I St

]

> 0, (7.29)

where NR = ker
[
(B̄L

v )
T (D̄L

zv)
T (D̄L

ũv)
T
]
.

Proof The proof of this theorem follows from [43], by applying the elimination lemma to
(7.21).

Remark:

• Condition (7.27) differs from the conventional form of the matrix inequality after
applying dualization lemma [43], which contains additional multiplications with null
space NT

s from left and Ns from right. Condition (7.27) is actually the result after
multiplying with NT

s and Ns. This is due to the fact that the null space of matrix
Q in (7.24) does not depend on any system matrix. Thus neither does its null space
Ns. After the multiplication, W drops out from (7.27).

After matrices R and S have been computed, the Lyapunov matrix X and the AW
compensator Ψ can be subsequently obtained from (7.26) by following the controller
reconstruction procedure provided in Section 6.4.1.

7.4 Decentralized AW Compensator Design

Cutting off the communication channels between AW compensators results in a decen-
tralized AW scheme as shown in Fig. 7.8.

The decentralized AW compensator contains only temporal states, thus takes the form of
the lumped state space representation in (7.1). Analogous to the handling of decentralized
controller, analysis condition (7.21) or (7.26), and synthesis conditions (7.27)-(7.29) can
be applied to solve for the decentralized AW compensator as well, except that the spatial
components in Lyapunov matrix XP are restricted to be zero matrices as in (6.40).

7.5 Simulation Results

After the analysis and synthesis conditions for a distributed AW compensator design being
developed, attempts have been made to design an AW compensator for the experiment
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Figure 7.8: Decentralized AW scheme

setup. However, due to the large order of the augmented subsystem, Matlab fails to solve
the problem numerically. Instead, an Euler-Bernoulli beam as shown in Fig. 7.9, whose
dynamics are governed by the PDF (5.5) of smaller order is used again as an example to
demonstrate how the occurrence of the windup effect affects the established closed-loop
performance, as well as how a distributed and a decentralized AW scheme counteract it.

Figure 7.9: Aluminium beam with free-free boundary condition equipped with 16 pairs
of actuators and sensors

Example 7.1 (AW Compensation for the Euler-Bernoulli Beam) Here, the per-
formance of the AW compensator in terms of input disturbance rejection is tested. Excite
the subsystems with 16 identical chirp signals of amplitude 5 N up to 10 Hz simultaneously
as input disturbances. The open-loop response of the beam is shown in Fig. 7.10.

Following the controller design procedures in Section 6.4.1, a distributed controller is
obtained and implemented. The achieved closed-loop response without actuator constraints
is shown in Fig. 7.11; it can be observed as the nominal performance. The vibratory
motion of the beam caused by the input disturbance is damped to a significantly smaller
scale. Fig. 7.12 shows the comparison between the control effort and injected disturbance
at subsystem 8, which clearly indicates that an effective active vibration control counteracts
the external disturbance by generating a control signal with the same frequency but opposite
phase.

Now suppose that all actuators are subject to the constraint u ∈ [−4 4] N. It is obvious
that the required control input in Fig. 7.12 exceeds the actuation limits. Fig. 7.13 shows
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Figure 7.10: Open-loop response to 16 parallel chirp signals up to 10 Hz as input distur-
bances
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Figure 7.11: Closed-loop response to 16 parallel chirp signals up to 10 Hz as input dis-
turbances without actuator constraints

the closed-loop performance achieved by the same controller with actuator constraints.
Although worse than Fig. 7.11, it is still better than the open-loop response. The windup
effect can be observed in Fig. 7.14, where in (a) the controller output u0(k, 8) is winded
up to a considerably high level, whereas (b) shows the control signal after saturation.

Fig. 7.15 shows the closed-loop response with the distributed AW scheme, and Fig. 7.17
with the decentralized AW scheme. The distributed AW compensator improves the perfor-
mance, compared to Fig. 7.13, but not to the level of the nominal closed-loop performance
in Fig. 7.11—in principle, any AW scheme can hardly recover the unconstrained per-
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Figure 7.12: Control effort (blue curve) and input disturbance (red curve) at subsystem
8, without actuator constraints. The required control effort exceeds the max. and min.
actuation limits (green lines).
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Figure 7.13: Closed-loop response to 16 parallel chirp signals up to 10 Hz as input dis-
turbances with actuator constraints imposed, without AW implemented

formance. Fig. 7.16 shows how the attenuation of saturated control effort is realized by
the distributed AW scheme. The counteracting of distributed AW output v1 against the
excessive controller output u0, effectively brings the saturated system behaviour back to
its linear range. With the information exchanging between subsystems, the control effort
can be better allocated to counteract the saturation effects. The decentralized compensator
in Fig. 7.17 clearly destabilizes the system. However, it should be noted that this is not
the general case. For a fair comparison in this work, the same shaping filters have been
employed to tune the decentralized and distributed AW compensator design. It turns out
that the decentralized AW compensator destabilizes the constrained system.
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Figure 7.14: Controller output u0(k, s) in (a) and saturated control effort u(k, s) in (b) at
subsystem 8 with actuator constraints imposed
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Figure 7.15: Closed-loop response to 16 parallel chirp signals up to 10 Hz as input dis-
turbances with actuator constraints imposed, with a distributed AW compensator imple-
mented

7.6 Summary

This chapter has proposed a two-step approach for the distributed AW compensator
design to counteract the actuator saturation that often occurs in physical systems. A
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Figure 7.16: Output v1(k, 8) (red curve) of the distributed AW compensator counteracts
the winded controller output u0(k, 8) (blue curve) at patch 8, resulting an attenuated sum
ũ(k, 8) = u0(k, 8) + v1(k, 8) (black curve). The saturated control effort u(k, 8) (magenta
curve) is the actual input of the plant subsystem 8.
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Figure 7.17: Closed-loop response to 16 parallel chirp signals up to 10 Hz as input dis-
turbances with actuator constraints imposed, with a decentralized AW compensator im-
plemented

lumped AW scheme employed as the building block of the distributed AW compensator
has been first introduced. To cope with the nonlinear saturation/deadzone operator, a
powerful tool – IQCs – has been briefly reviewed, as well as the choice of the multipliers
and the application of IQCs for the stability analysis of a feedback system subject to
a bounded linear/nonlinear uncertainty. A distributed AW scheme has been proposed,
which inherits the spatial structure of the controlled distributed system. IQCs have been
employed to impose constraints on the nonlinear saturation/deadzone operator as the
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uncertainty, such that the compensator design problem can be cast in terms of LMIs. The
proposed distributed AW scheme has been compared with a decentralized AW scheme;
both designed compensators have been tested in simulation to address the saturation
problem of a beam structure governed by the Euler-Bernoulli equation. The simulation
results demonstrated that by enforcing the communication between subsystems in the
distributed AW scheme, the control effort can be more efficiently allocated to counteract
the saturation effects than in the decentralized one.



Chapter 8

Conclusions and Outlook

This thesis has studied physical modelling, identification, controller and AW compensator
design of spatially-distributed systems. An aluminium beam equipped with an array of
collocated piezo actuator/sensor pairs has been constructed as a representative spatially-
distributed system for experimental use. The aim is to realize an effective model-based
controller design to achieve given performance specifications on the closed-loop system.
The state space framework developed in [8] provides the foundation of the thesis. New
methods have been developed to address problems arising during implementation.

A physical model has been constructed in Chapter 3 using a piezoelectric FE modelling
approach, which incorporates an array of piezo actuators and sensors into the modelling.
The obtained theoretical FE model has been updated by performing the experimental
modal analysis. A good match between the updated FE model and measured structural
dynamics has been achieved. Possible reasons for unmodeled effects have been analysed.
A direct feed-through phenomenon has been observed between collocated actuators and
sensors.

Physical modelling by means of exploring the underlying physical laws may become diffi-
cult if the plant dynamics get complex. Chapter 4 has proposed an approach to identify
the FRF matrix directly from the input/output behaviour of the plant. Provided FRF
measurements at a small number of selected actuating and sensing locations, a local LPV
identification technique for spatio-temporal systems has been proposed to parametrize
the FRF matrix as a spatial LPV model, allowing to approximate FRFs at unmeasured
actuation or sensing locations. The proposed method thus alleviates tedious experimental
work in case of a complex structure. Experimental results demonstrate the feasibility of
this approach.

Considering a spatially-distributed system as the interconnection of an array of subsys-
tems, Chapter 5 addressed the identification problem in a distributed framework. The
two-dimensional least-squares based estimation methods developed in [27] for LTSI mod-
els and in [29] for LTSV models have been experimentally implemented. To improve
the identification accuracy especially at resonances, a new identification procedure has
been developed by making use of the FE modelling results obtained in Chapter 3. The
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identified models provide a better representation of the real structural dynamics than the
black-box models.

Analysis and synthesis conditions for spatially-invariant systems proposed in [8] have been
implemented experimentally in Chapter 6 for the first time to suppress the structural vi-
bration of an actuated beam. The closed-loop performance of the distributed controller
has been compared to that of a decentralized controller. The information exchange within
a distributed controller allows each subsystem to obtain information about the status of
its neighbours; it helps to achieve an improved overall performance. The LPV controller
design technique using PDLFs has been extended from lumped systems to LTSV sys-
tems. Spatial LPV controllers have been designed for the test structure which consists of
spatially-varying subsystems using both CLFs and PDLFs. The experimental comparison
confirms that, with the reduced conservatism, an LPV controller designed using PDLFs
outperforms the corresponding one using CLFs.

Chapter 7 has dealt with the actuator saturation problem that often occurs in a physical
system. A distributed AW scheme has been proposed, that preserves the distributed
nature of the plant and the designed controller. IQCs have been applied to analyse
the robust stability of the saturated system. A distributed AW compensator has been
synthesized using the Euler-Bernoulli beam as an example. Its performance has been
compared in simulation with that of a decentralized AW scheme. Due to the more efficient
allocation of control effort among subsystems, the distributed AW scheme recovers the
closed-loop performance better than the decentralized one in the presence of actuator
saturation.

Outlook

Aspects that should be taken into consideration in future research are summarized as
follows:

• The experimental identification of distributed systems often requires a large spatial
order to achieve an accurate approximation of the test structure. Experience shows
that, after the implementation of the controller synthesis procedure, the obtained
controller has normally the same order as the generalized plant. Furthermore, if a
distributed AW scheme is built on top of them to counteract actuator saturation,
the AW compensator has a size of both the plant and the controller. The large
system order imposes numerical challenges on the search for optimal solutions when
solving synthesis LMIs: either the LMIs can not be handled by the LMI solvers;
or the results are sensitive to numerical errors. Therefore, keeping the model order
as small as possible can be essential for LMI solvers to find a feasible and reliable
solution. Taking the coupled temporal and spatial dynamics into consideration,
structure-preserving model reduction [101] is one interesting option to simplify a
multidimensional model.

• In this work, the construction of a generalized plant for controller synthesis is based
on the use of one-dimensional shaping filters by only shaping the temporal dynam-
ics of the closed-loop system. Although it has demonstrated its performance to a
certain extent in terms of disturbance rejection, the power of robust controller de-
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sign through shaping sensitivities has not been fully explored in multidimensional
systems. It has been mentioned that the use of two-dimensional shaping filters may
potentially lead to an improved performance, where the filter itself is a distributed
system. To find the appropriate parametrization of a two-dimensional shaping filter
which imposes desired constraints on the closed-loop system is not a trivial task. It
leaves room for further research on the impact of the use of two-dimensional shaping
filters.

• Before applying the well-developed state-space based synthesis conditions in [8], the
experimentally identified input/output model needs to be realized in state space
representation. Alternatively, analysis and synthesis conditions could be directly
derived and implemented in input/output form. Two main advantages of employing
input/output synthesis are:

– It has been discussed in Section 6.4.3 that after solving for the controller ma-
trices, the online computation of the controller outputs can only be realized
in a centralized manner as depicted in Fig. 1.6. In contrast, a distributed
controller in input/output form allows to implement the online computation
in a ’real’ distributed architecture as shown in Fig. 1.2 (c), where subsystems
communicate with each other through inputs and/or outputs.

– It has been mentioned in Section 6.2.2 that the equivalence between the spatial
LPV input/output model and its state space representation is not influenced
by the dynamic dependence on the scheduling parameters in this specific ap-
plication. Nevertheless, when it is not this case, the complexity in terms of
realizing an equivalent state space model can increase significantly. This moti-
vates the development of synthesis techniques that can design temporal/spatial
LPV controllers directly from the identified input/output LPV models. Rel-
evant methods have been developed for lumped systems, e.g. [102], [82], etc.
A distributed fixed-structure controller design approach for LTSI systems is
proposed in [103].

• This thesis works on the modelling, identification and controller design of an exper-
imental setup, with an array of piezo actuators and sensors attached in a collocated
pattern. It has been studied in [51], that the use of collocated actuator/sensor pairs
for a lightly damped flexible structure leads to alternating poles and zeros near the
imaginary axis. This property guarantees the asymptotic stability of the controlled
system against disturbances and uncertainties; thus it is recommended. It has been
observed in Chapter 3, that a direct feed-through effect exists between collocated
actuators and sensors. Although the sensor measurements could be compensated
using a feed-through constant, the presence of the direct feed-through effect caused
several difficulties in identification and controller design.

– It has been demonstrated that the feed-through constants slightly vary from
patch to patch. The use of an identical feed-through constant for all subsystems
brings inaccuracy into the modelling and identification. On the other hand,
the use of varying feed-through constants violates the LTSI assumption.
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– The controller is designed to suppress the structural vibration caused by the
disturbance injection. Due to the presence of the feed-through effect, sensor
measurements are dominated by the fed-through actuation input. To separate
the signal that is actually caused by structural vibration (in this case, propor-
tional to curvature) from sensor measurements requires an accurate knowledge
of the feed-through behaviour at each pair.

– The direct feed-through effect could be the reason for the encountered synthesis
problem when a distributed controller is to be designed based on the FE-based
identified model. Singular perturbations [104] can be considered as a solution to
address this issue by modelling the direct feed-through effect as fast dynamics.

Therefore, it could be mostly helpful to avoid these problems by placing actua-
tor/sensor pairs in a modified ’collocated’ way. Two possible options to attach one
actuator/sensor pair are shown in Fig. 8.1, where in (a), the actuator and sensor
are attached next to each other in the width direction, and in (b) in the length
direction of the beam. Nevertheless, it has been validated in [51], that the classical
beam theory does not suffice to model the configuration (a). Instead, the Kirch-
hoff shell theory that accounts for the membrane strain is required. On the other
hand, the piezo pair in configuration (b) actuates and senses at slightly deviated
locations in the length direction of the beam. However, if the length of the beam is
significantly larger than the length of the piezo patch, the small location deviation
could be ignored. The assumption that subsystems are equipped with actuating
and sensing capabilities is still fulfilled.

(a) (b)

Figure 8.1: Possible options for the placement of a pair of ’collocated’ piezo patches to
avoid the direct feed-through effect: (a) an actuator and a sensor are attached next to
each other in the width direction, (b) in the length direction of the beam.



Appendix A

State Space Realization of Identified
Models

A.1 LTSI Models

A state space realization of the experimentally identified LTSI models takes the form
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The system matrices of the black-box identified model are























0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 −a(2,0)−a(1,0)−a(2,2)−a(2,1)−a(1,2)−a(1,1)−a(2,−2)−a(2,−1)−a(1,−2)−a(1,−1) 1
0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0

b(3,0) b(2,0) b(1,0) 0 0 0 0 0 0 0 0 0
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(A.2)
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whereas the system matrices of the FE-based LTSI model are





















0 1 0 0 0 0 0 0 0 0 0
−a(2,0) −a(1,0) −a(1,2) −a(1,1) b(1,2) b(1,1) −a(1,−2) −a(1,−1) b(1,−2) b(1,−1) b(1,0)
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0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0





















. (A.3)

A.2 Spatial LPV Models

A state space realization of the spatial LPV model in LFT representation is given by
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with [
ps1(k, s)
ps2(k, s)

]

=

[
θs

θs

] [
qs1(k, s)
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. (A.5)

The system matrices of the black-box identified spatial LPV model are


























0 1 0 0 0 0 0 0 0 0 0 0 0
−α(2,0,0)−α(1,0,0)−α(2,2,0)−α(2,1,0)−α(1,2,0)−α(1,2,0)−α(2,−2,0)−α(2,−1,0)−α(1,−2,0)−α(1,−1,0) 1 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0

−α(2,0,1)−α(1,0,1)−α(2,2,1)−α(2,1,1)−α(1,2,1)−α(1,2,1)−α(2,−2,1)−α(2,−1,1)−α(1,−2,1)−α(1,−1,1) 0 0 0
β(2,0,1) β(1,0,1) 0 0 0 0 0 0 0 0 0 0 0
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whereas the system matrices of the FE-based spatial LPV model are


























0 1 0 0 0 0 0 0 0 0 0 0 0
−α(2,0,0)−α(1,0,0)−α(1,2,0)−α(1,2,0)β(1,2,0)β(1,2,0)−α(1,−2,0)−α(1,−1,0)β(1,−2,0)β(1,−1,0) 1 0 1
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0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1
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0 1 0 0 0 0 0 0 0 0 0 0 0
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Proof of Theorem 6.8

Proof Assume a quadratic LFT form of R(Θt,Θs) and S(Θt,Θs), i.e.
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Likewise,
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Then all factors in condition (6.71) can be expressed in LFT representation as
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whose right factor is decomposed
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Combine the LFT representations (B.3), (B.4) and (B.6). Condition (6.71) can be written
as
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After performing the star products, (B.7) becomes
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Applying similar procedures to (6.72) yields
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whose right factor is decomposed as
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Analogously, applying the FBSP to (6.73) yields
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Thus, conditions (6.71) - (6.73) can be written in LFT form as (6.77) - (6.78). Applying
the FBSP results synthesis conditions (6.79) - (6.84).
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Auxiliary Technical Material

C.1 Hardware and Software Description

Quantity Type Description Producer
16 P-876.A11 PZT as sensor Physik Instrumente
16 P-876.A12 PZT as actuator Physik Instrumente
16 E-835 PZT driver module Physik Instrumente
1 NI6353 Analog input card National Instruments
1 NI6723 Analog output card National Instruments
1 Labview Real-time system National Instruments

Table C.1: Hardware and software description

C.2 Upper and Lower LFT

For appropriately dimensioned matricesK andM =

[
M11 M12

M21 M22

]

and assuming its inverse

exists, the upper LFT is defined as

Fu(M,K) = M22 +M21K(I −M11K)−1M12. (C.1)

Similarly, the lower LFT is defined as

Fl(M,K) = M11 +M12K(I −M22K)−1M21. (C.2)

C.3 Bilinear Transformation

Let m0, m+, m− indicate the sizes of the temporal, positive and negative spatial state
vectors, respectively, and define H = diag{Im0

, Im+
,−Im−

}. The discrete state space
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model (2.11) (discrete both in time and space) and its equivalent continuous counterpart
(continuous both in time and space) can be converted in both directions through the
bilinear transformation [8] [21].

• discrete to continuous:

Ā = H(A− I)(A+ I)−1 (C.3)
[
B̄d B̄u

]
=

√
2H(A+ I)−1

[
Bd Bu

]
(C.4)

[
C̄z

C̄y

]

=
√
2

[
Cz

Cy

]

(A + I)−1 (C.5)

[
D̄zd D̄zu

D̄yd D̄yu

]

=

[
Dzd Dzu

Dyd Dyu

]

−
[
Cz

Cy

]

(A+ I)−1
[
Bd Bu

]
(C.6)

• continuous to discrete:

A = (I −HĀ)−1(I +HĀ) (C.7)
[
Bd Bu

]
=

√
2(I −HĀ)−1H

[
B̄d B̄u

]
(C.8)

[
Cz

Cy

]

=
√
2

[
C̄z

C̄y

]

(I −HĀ)−1 (C.9)

[
Dzd Dzu

Dyd Dyu

]

=

[
D̄zd D̄zu

D̄yd D̄yu

]

+

[
C̄z

C̄y

]

(I −HĀ)−1H
[
B̄d B̄u

]
(C.10)

C.4 Elimination Lemma

Lemma C.1 (Elimination Lemma [105]) Consider a symmetric matrix P =

[
Q S
ST R

]

with R ≥ 0, and its inverse P−1 =

[
Q̃ S̃

S̃T R̃

]

with Q̃ ≤ 0. The quadratic inequality

[
I

ATXB + C

]T

P

[
I

ATXB + C

]

< 0 (C.11)

has a solution X if and only if

BT
⊥

[
I
C

]T

P

[
I
C

]

B⊥ < 0 (C.12)

AT
⊥

[
−CT

I

]T

P−1

[
−CT

I

]

A⊥ < 0 (C.13)

hold true, where A⊥ and B⊥ denote arbitrary matrices whose columns form the kernel
spaces of A and B, respectively.
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C.5 KYP Lemma

Lemma C.2 (KYP Lemma [106]) Given M = MT ∈ R(n+m)×(n+m), A ∈ Rn×n,
B ∈ Rn×m, with det(jωI − A) 6= 0 for ω ∈ R and (A,B) controllable, the following two
statements are equivalent:

• ∀ω ∈ R ∪ {∞}
[
(jωI −A)−1B

I

]∗

M

[
(jωI −A)−1B

I

]

≤ 0 (C.14)

• There exists a matrix P ∈ R
n×n such that P = P T and

M +

[
ATP + PA PB

BTP 0

]

≤ 0. (C.15)

The equivalence for strict inequalities holds even if (A,B) is not controllable.
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List of Notations, Symbols and
Abbreviations

Notations

R Field of real numbers
C Field of complex numbers
RH∞ Set of proper, stable and rational functions with real coefficients
l2 Space of sequences square summable over the doubly-infinite time
L2 Space of signals square integrable over the doubly-infinite time
[
A B
C D

]

Shorthand for a parameter-invariant state space realization
[
A(Θ) B(Θ)
C(Θ) D(Θ)

]

Shorthand for a state space realization varying on Θ

⊗ Kronecker product
⋆ Star product
∗ Symmetric terms in LMI
(·)T , (·)∗ Transpose/complex conjugate transpose
ker(·) Null space
∂t(·), ∂s(·) Variation rate with respect to time/space
sat(·) Saturation function
dz(·) Deadzone function
sym Symmetric terms in a matrix
O(·) Truncation error

Symbols

a, b Coefficients in input/output models
bp Width of the electrode
d(k, s) Disturbance signal
d, d31, d32, d33 Piezoelectric constant
e Error vector
eT Piezoelectric coupling coefficient under constant stress
e(k), e(k, s) Gaussian white noise signal with zero mean
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fi i-th exogenous force
ga, gs Actuator/sensor constant
hp Thickness of the electrode
ik, is Temporal/spatial index variable
ks Spring stiffness
l Length of the structure
le Length of an element
lp Length of the electrode
m0 Size of the temporal state vector
m+, m− Size of the positive/negative spatial state vectors
n+(k, s), n−(k, s) Output noise in positive/negative directions
na, nb Size of the denominator/nominator order in input/output form
nd Size of the disturbance
np Number of parameters to be estimated in LTI/LTSI models
np̃ Number of parameters to be estimated in LTSV models
nt, ns Number of temporal/spatial scheduling parameters
nu Size of the external input
ny Size of the measured output
nz Size of the fictitious output
nθ̄ Number of operating points
nΘt

, nΘs
Size of the temporal/spatial uncertainty

nφ Size of the regressor vector φ
p Vector of coefficients to be estimated in LTI/LTSI models
p̄, p̂ True values and approximations of p
p̃ Vector of parameters to be estimated in LTSV models
pe Vector of elemental-nodal loads
p(θt), p(θs) Vector of coefficients scheduled by tempora/spatial parameters
pt(k, s), qt(k, s) Input and output of the temporal uncertainty channel
ps(k, s), qs(k, s) Input and output of the spatial uncertainty channel
q Electric charge
qt Temporal forward shift operator
qs, q

−1
s Spatial forward/backward shift operator

rθti, rθsi Multiplicity of temporal/spatial scheduling parameters θti and θsi
sE Compliance when the electric field is constant
t, k Continuous/discrete temporal variable
u(k), u(k, s) Exogenous plant input
u0(k), u0(k, s) Controller output
ũ(k), ũ(k, s) Controller output after AW compensation and before saturation
ū(k), ū(k, s) Maximum capacity of a physical actuator
ŭ(k) Input of a lifted system
ue Vector of elemental-nodal displacement
v(k), v(k, s) Filtered noise
v1, v2 Outputs of an AW compensator
w Transverse deflection
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xt(k, s) Temporal state
x+
s (k, s) Spatial state in the positive direction

x−
s (k, s) Spatial state in the negative direction

x̆(k) State of a lifted system
x, s Continuous/discrete spatial variable
y(k), y(k, s) Measured output (controller input)
y0(k), y0(k, s) Plant output
ŷ(k), ŷ(k, s) Estimated output
y̆(k) Output of a lifted system
z(k, s) Fictitious output

Ao Cross-section area
A(qt), A(qt, qs) Denominator polynomial of lumped or distributed models
B(qt), B(qt, qs) Nominator polynomial of lumped or distributed models
Bu Derivative of shape function Nu

C Global damping matrix
Ca Capacitor
Ce Elemental damping matrix
D Electric displacement
E Young’s modulus

Electric field
F Vector of exogenous forces
G(qt), G(qt, qs) Input/output representation of a plant model
G(s) Continuous transfer function of a plant model
H(qt), H(qt, qs) Input/output representation of a noise model
I Second moment of area
J Cost function
K(qt) Discrete transfer function of a controller
Ke

uφ, K
e
φu Mechanical and electrical coupled elemental stiffness matrix

Ke
uu Elemental mechanical-stiffness matrix

K Global stiffness matrix
M Global mass matrix
Me Elemental mass matrix
Mi i-th Moment
Mp Concentrated moment generated by Piezo actuator
Mu, My Input/output mask
Nk, Ns Size of temporal/spatial measurements
Nu Shape function
NR, NS Null space
NR(·), NS(·) Parameter-varying null space
P Global external load
P Matrix of estimated coefficients λ
Q Global electric charge
Re Resistance
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S Strain
S, S−1 Spatial forward/backward shift operator
T Stress
T Temporal forward shift operator
U Global mechanical variable
V Volume
Wf Postfilter
Wk Shaping filter of control sensitivity
Ws Shaping filter of sensitivity
X Structured Lyapunov matrix
Xt, Xs Temporal/spatial Lyapunov matrix
Xm Set of structured Lyapunov matrix

X̂m Set of structured Lyapunov matrix with only temporal components
Y Output vector
Y Multiplier set
Z Impedance

Greek Letter

α, β Parameters to be estimated in LTSV models
γ Performance index
∆m Augmented operator
∆θ̄ Matrix of exponents of operating points
∆T Sampling time
∆X Sampling space
ǫT Relative permittivity when the stress is constant
η, H Regressor vector/matrix in LTSV model identification
θti , θsi Temporal/Spatial scheduling parameter
θt, θs Vector of temporal/spatial scheduling parameters
Θt, Θs Structured temporal/spatial uncertainty
Θt, Θs Compact set of structured temporal/spatial uncertainty
κ Curvature
λ Coefficients of polynomial functions on scheduling parameters
Λ Matrix of polynomial coefficients
ξ Dimensionless coordinate
Ξt, Ξs Set of the temporal/spatial variation rate
Π Multiplier
ρ Density
τ Vector of exponents of scheduling parameters
Υ Augmented uncertainty

Υ̂ Vertices of augmented uncertainty
φ, Φ Regressor vector/matrix in LTI or LTSI model identification
Φi, Φo Global input/output voltage
φi, φo Elemental input/output voltage
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ω Frequency
Ωm, Ω Matrix of mode shapes

Superscript

G Plant model
K Controller
L Closed-loop system

L̃ Permuted closed-loop system L
P Closed-loop system including G, K, and Ψ

P̃ Permuted closed-loop system P
Ψ AW compensator

Abbreviations

ARX AutoRegressive with eXogeneous
AW AntiWindup
BTCS Backward-Time Central-Space
CFL Courant-Friedrichs-Lewy
CLF Constant Lyapunov Function
CTCS Central-Time Central-Space
DOF Degree of Freedom
FBSP Full Block S-Procedure
FD Finite Difference
FE Finite Element
FRF Frequency Response Function
FTFS Forward-Time Forward-Space
IQC Integral Quadratic Constraint
KYP Kalman-Yakubovic-Popov
LFT Linear Fractional Transformation
LMI Linear Matrix Inequality
LPV Linear Parameter-Varying
LTI Linear Time-Invariant
LTSI Linear Time- and Space-Invariant
MEMS MicroElectroMechanical System
MIMO Multiple-Input Multiple-Output
ODE Ordinary Differential Equation
PDE Partial Differential Equation
PDLF Parameter-Dependent Lyapunov Function
PI Physik Instrumente
PVDF PolyVinylidene DiFluoride
PZT Lead Zicronate Titanate
SISO Single-Input Single-Output
SVD Singular Value Decomposition
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