157 | Dezember 1965

SCHRIFTENREIHE SCHIFFBAU

B. Wagner

Auswertung von Windkanalversuchen zur Bestimmung der Luftkräfte an Überwasserschiffen bei inhomogener Strömung

INSTITUT FÜR SCHIFFBAU DER UNIVERSITÄT HAMBURG

Bericht Nr. 157

Auswertung von Windkanalversuchen zur Bestimmung der Luft-

kräfte an Überwasserschiffen bei inhomogener Strömung

von

B. Wagner

Hamburg, Dezember 1965

<u>Auswertung von Windkanalversuchen zur Bestimmung der Luft-</u> kräfte an Überwasserschiffen bei inhomogener Strömung

Der IfS-Bericht Nr. 113 (1963) "Auswertung veröffentlichter Modellmessungen zur Bestimmung der Luftkräfte an Überwasserschiffen" bedarf einer Ergänzung durch Modellversuchsergebnisse von Überwasserschiffen in inhomogener Strömung. Die Versuche hierzu sind neueren Datums.

Das Modell wird in ungleichförmiger Strömung untersucht, deren "Gradient" dem der natürlichen Windverteilung über der See ähnlich ist.

Gliederung

- 1. Verwendete Symbole
- 2. Auswertung der veröffentlichten Modellmessungen
- 3. Angaben über die ausgewerteten Versuche
- 4. Ergebnisse der Auswertung (Tabellen und Bilder)
- 5. Literatur zu "Luftkräfte an Überwasserschiffen"

- 1. Verwendete Symbole (vergleiche hierzu Fig.1)
- R....resultierende Luftkraft
- X....Luftkraftkomponente in Schiffslängsrichtung (positiv, wenn nach vorn gerichtet)
- Y....Luftkraftkomponente senkrecht zur Schiffslängsrichtung
- C....Luftkraftkomponente senkrecht zur Anströmrichtung (Querkraft)
- D....Luftkraftkomponente in Anströmrichtung (Widerstand)
- M ... Moment der Luftkraft, auf Schiffsmitte $(L_{oa}/2)$ bezogen
- c_R, c_X, c_Y, c_C, c_D... dimensionslose Beiwerte der Luftkraftkomponenten
- c_{M} . dimensionsloser Beiwert des Luftkraftmomentes
- v....relative Anströmgeschwindigkeit
- L_{oa}...Länge(über alles) von Modell bzw. Schiff
- B....Breite von Modell bzw. Schiff
- A_L...Überwasserlateralfläche (auf die Schiffslängsebene projizierte Fl**ä**che des Überwasserschiffes)
- A_T...."Lufthauptspant" (auf die Querebene projizierte Fläche des Überwasserschiffes)

....Dichte des Versuchsmediums

....kinematische Zähigkeit des Versuchsmediums

 R_{n}Reynoldszahl = $v.L_{oa}/v$

-relative Anströmrichtung, bezogen auf die positive x-Richtung
-Richtung der Resultierenden der Luftkraft, bezogen auf die positive x-Richtung

2. Auswertung der veröffentlichten Modellmessungen

Die Ergebnisse der unter 3. beschriebenen Versuche wurden in die in der Aerodynamik und Hydrodynamik üblichen dimensionslosen Beiwerte umgerechnet.

$$c_{R} = R / \frac{\varphi}{2} \cdot v^{2} \cdot A_{L}$$

$$c_{X} = X / \frac{\varphi}{2} \cdot v^{2} \cdot A_{L} = c_{R} \cdot \cos \alpha$$

$$c_{Y} = Y / \frac{\varphi}{2} \cdot v^{2} \cdot A_{L} = c_{R} \cdot \sin \alpha$$

$$c_{C} = C / \frac{\varphi}{2} \cdot v^{2} \cdot A_{L} = c_{R} \cdot \sin (\alpha - \varepsilon) = c_{Y} \cdot \cos \varepsilon + c_{X} \cdot \sin \varepsilon$$

$$c_{D} = D / \frac{\varphi}{2} \cdot v^{2} \cdot A_{L} = c_{R} \cdot \cos (\alpha - \varepsilon) = c_{X} \cdot \cos \varepsilon + c_{Y} \cdot \sin \varepsilon$$

$$c_{M \oplus 5} \equiv M_{\oplus 5} / \frac{\varphi}{2} \cdot v^{2} \cdot A_{L} \cdot L_{oa};$$

In dieser Form sind die Meßwerte unmittelbar mit denen anderer Strömungskörper vergleichbar.

Auf den Tabellen und Bildern wurden die für den Versuchskörper charakteristischen Vergleichswerte

> $\frac{2 A_L}{L_{oa}^2}$ (entsprechend dem Seitenverhältnis Λ) und $\frac{L_{oa}}{B}$ (Dickenverhältnis) sowie die Reynoldszahl $R_n = v \cdot L_{oa} / v$ mit angegeben.

3. Angaben über die ausgewerteten Versuche mit Überwasserschiffsmodellen in inhomogener Strömung

3.1.Amerikanische Messungen en Übervasserschiffsmedellen von

Libertyschiffen, Zerstörern, U-Booten und Geleit-Flug-

zeugträgern (vergl. Literaturverzeichnis [10])

Um die Windkräfte an ankernden Schiffen der nach dem Kriege in den USA in großer Stückzahl aufgelegten Typen festzustellen, wurden umfangreiche Versuche an Einzelmodellen sowie an in Gruppen geordneten Modellen ausgeführt.

<u>Windkanal</u>: Geschlossener Windkanal 8 x 10 Fuß des Taylor Model Basin (Kanal 1 und Kanal 2).

Yersuchsmethode: Die Modelle wurden auf einer in eine Grund-

platte eingelassenen Drehscheibe gemessen. Die Bodenplatte der Modelle war mit dem erforderlichen Spiel in die Drehscheibe eingefügt und auf einer elektrischen 3-Komponenten-Waage befestigt.

Die Nähe der Grundplatte bewirkte eine Inhomogenität der das Modell treffenden Strömung. In Fig.2, die [10] entnommen wurde, ist der Gradient der Kanalströmung in Relation zur Größe der Modelle dargestellt.

Windgeschwindigkeit:	(8 Zoll = 0,2032 m über der Grundplatte)
	38,6 bis 64,3 m/s.
Reynolds-Zahl:	$R_n = 4,2$ bis 7,92. 10^6
Anströmbereich:	$\mathcal{E} = 0$ bis 360°; Intervalle 20 bzw. 30°
Versuchsmodelle:	(M 1:52,8 bis 1:96)

Modell	Maßst.	n] L _{oa}	m) B	m ² A _L	^{2A} L L ₀ a	L _{oa} B	m/s v	^R n
EC2 Libertyschiff (leer, ankernd)	1:83,2	1,620	0,207	0,224	0, 171	7,81	51,44	5,72.10 ⁶
CVE55 Geleit- Flugzeugträger	1:96	1,584	0,207	0,225	0,1787	7,65	38,6	4,2.10 ⁶
SS212 U-Boot	1:52,8	1,798	0,1553	0,1106	0,0682	9,15	64,3	7,94.10 ⁶
DD692 Zerstörer	1:73,8	1,553	0,1675	0,1728	0,143	9,27	64,3	6,86.10 ⁶

Ergebnisse: Die Meßergebnisse wurden in der Form grafischer Darstellunger gegeben:

> X (lbs) = f(z)Y (lbs) = f(b) M_{2} , γ (lbs.ft) = f(ε).

<u>Umrechnung der Ergebnisse</u>: erfolgte mit Hilfe von L_{oa} und A_{L} nach obiger Tabelle sowie mit der Luftdichte $_{A}$ = 0,002378 $\frac{1bs \cdot s^{2}}{r + 4}$.

Die Ergebnisse der Umrechnung sind Tabelle 1 bis 4 und Fig. 4 bis 7 zu entnehmen.

Modell	Maßst.	[m] L _{oa}	(m) B	(m ²) A _L	^{2A} L L ₀ a	L _{oa} B	[m/s] v	R _n	
EC2 Libertyschift (leer, ankernd)	r 1:83,2	1,620	0,207	0,224	0, 171	7,81	51,44	5,72.10 ⁶	
CVE55 Geleit- Flugzeugträger	1:96	1,584	0,207	0,225	0,1787	7,65	38,6	4,2.10 ⁶	
SS212 U-Boot	1:52,8	1,798	0,1553	0,1106	0,0682	9,15	64,3	7,94.10 ⁶	
DD692 Zerstörer	1:73,8	1,553	0,1675	0,1728	0,143	9,27	64,3	6,86.10 ⁶	

Ergebnisse: Die Meßergebnisse wurden in der Form grafischer Darstellungen gegeben:

X (1bs)	=	f(&)
Y (1bs)	=	f(&)
M _{0.5} (lbs.ft)	=	f(&).

<u>Umrechnung der Ergebnisse</u>: erfolgte mit Hilfe von L_{oa} und A_L nach

obiger Tabelle sowie mit der Luftdichte $P_A = 0,002378 \frac{1bs \cdot s^2}{ft^4}$

Die Ergebnisse der Umrechnung sind Tabelle 1 bis 4 und Fig. 4 bis 7 zu entnehmen.

<u>3.2. Ergebnisse englischer Messungen an Handelsschiffsmodellen</u> (nach Shearer-Lynn, vergl. Literaturverzeichnis [20])

Es handelt sich um die erste durch Veröffentlichung bekannte systematische Versuchsreihe, die zur Ermittlung der Luftkräfte und -momente an Modellen moderner Handelsschiffe durchgeführt wurde.

· ·

<u>Windkanal</u>: Duplex Tunnel of the Aerodynamics Division of the National Physical Laboratory

<u>Versuchsmethode</u>: Die Modelle wurden in Wandnähe des Windkanals (Kanalgrenzschicht) gemessen. Die Geschwindigkeitsverteilung in Wandnähe (Gradient) der Geschwindigkeit) wurde in

Fig.3 in Relation zur Größe der untersuchten Modelle dargestellt.

<u>Windgeschwindigkeit</u>: (außerhalb der Kanalgrenzschicht) v = 61 ft/s = 18,6 m/s.

<u>Reynolds'Zahl</u>: $R_n = 3,61 - 3,16 - 2,44.10^6$.

<u>Anströmbereich</u>: $\mathcal{E} = 0$ bis 180° ; Intervalle 10° , außerdem gemessen $\mathcal{E} = 5^{\circ}$ und $\mathcal{E} = 185^{\circ}$.

Versuchsmodelle:

1. Model]	LA	: Tanker von 16 000 tdw, Modell Al:auf Ladungstief- gang.
		Modell A2: auf 0,6 . Ladungstiefgang,gleichlastig.
2. Modell	B	: Frachter von 10 000 tdw, langer Mittelaufbau, 2 Luken vor der Brücke.
		Modell Bl: auf Ladungstiefgang, gleichlastig;
		Modell B2: auf 0,6.Ladungstiefgang, gleichlastig.
3. Modell	L C	: Frachter von 10000 tdw, kurzer Mittelaufbau, 3 Luken vor der Brücke.
		Modell Cl: auf Ladungstiefgang, gleichlastig; Modell C2: auf 0,6.Ladungstiefgang, gleichlastig.
Die Model	lle B u	nd C haben den gleichen Rumpf.

4. Modell D : großes Fahrgastschiff, 42 000 BRT (Liner "Oriana").

Die <u>Modellabmessungen und Vergleichswerte</u> sind der folgenden Tabelle zu entnehmen:

Modell	Maßst.	<mark>L</mark> ູ m]	B [m]	A [m²]	$\frac{\frac{2A_{L}}{2}}{L_{oa}}$	<u> </u>	R _n
Al (Rumpf)	1:60	2,83	0,369	0,1495	0,0374	7,66	3,61.10 ⁶
A2 (Rumpf)	1:60	2,83	0,369	0,312	0,078	7,66	3,61.10 ⁶
Al	1:60	2,83	0,369	0,322	0,0808	7,66	3,61.10 ⁶
A2 Bl (Rumpf) B2 (Rumpf)	1:60 1:60	2,8) 2,48 2,48	0,314 0,314 0,314	0,172 0,298	0,056 0,0970	7,90 7,90 7,90	3,16.10 ⁶ 3,16.10 ⁶
B1	1:60	2,48	0,314	0,323	0,1050	7,90	3,16.10 ⁶
B2	1:60	2,48	0,314	0,449	0,1460	7,90	3,16.10 ⁶
C1	1:60	2,48	0,314	0,325	0,1060	7,90	3,16.10°
C2	1:60	2,48	0,314	0,451	0,1470	7,90	3,15.10 ⁶
D	1:128	1,913	0,232	0,317	0,1732	8,26	2,44.10 ⁶
D	1:64	3,826	0,464	1,268	0,1732	8,26	4,88.10 ⁶

Ergebnisse: Die Meßergebnisse wurden in folgender Form dargestellt:

R (lbs) = $f(\mathcal{E})$ bei v = 100 ft/s α = $f(\mathcal{E})$ ^M0,5(lbs.ft) = $f(\mathcal{E})$.

<u>Umrechnung der Ergebnisse</u>: erfolgte mit L_{oa} und A_L laut Tabelle, sowie mit der Luftdichte $\rho_A = 0,00237$ lbs.s²/ft⁴.

Die <u>Ergebnisse der Umrechnung</u> sind den Tabellen 5 bis 16 und Fig. 8 bis 19 zu entnehmen. Tab. 16 bzw. Fig. 19 enthalten die Ergebnisse für das Fahrgastschiff D (Tab.15, Fig.18) nach Umrechnung auf einen Gradienten entsprechend M 1:64.

Bemerkung:

Das Fahrgastschiffsmodell D wurde auch als Doppelmodell in Kanalmitte untersucht, also in gleichförmigem Wind (vergl. IfS-Bericht Nr.113).

0

5. Literatur zu "Luftkräfte an Überwasserschiffen"

- [1] Mc.Entee, W.: Notes from the Model Basin. SNAME 1916, S.86 [2] Föttinger, G.S.: Vergleichsversuche über den Luftwiderstand von Schiffsmodellen, JSTG 1924, S.329 3 Hughes, G.: Model Experiments on the Wind Resistance of Ships. TINA 1930, S.310 [4] Hughes, G.: The Air Resistance of Ships' Hulls with Warious Types and Distributions of Superconstructures. IESS 1932, S.302 5 EMB-Report 276, December 1930: Tests of Drawing Room Model of 10000 ton light Cruisers (PENSACOLA and SALT LAKE CITY) in Water to Determine Forces due to Wind. [6] EMB-Report 312, October 1931: Tests of Drawing Room Model of US Destroyer HAMILTON in Water to Determine Forces due to Wind. [7] EMB-Report 334 [8] EMB-Report 345, January 1933: Tests of Model of USS SALINAS Inverted in Water to Determine Forces due to Wind. **آو**آ EMB-Report 362 10 DTMB-Report 830, 1952: Long, M.E.: Wind Tunnel Tests on
- [11] Araki, H. and T.Hanaoka: Wind Tunnel Experiments on Train Ferries. Presented at the Autumn of the Soc. of Naval Architects, Japan 1948, published in Vol. 84

Multiple Ship Moorings; Part 3.

- Kinoshita, M., T. Hanaoka and Y. Nakajima: On the Effect of Wind on the Manoeuverability of Bonitoand Tuna-Fishing Boats. Presented at the Autumn M. of the Soc. of N.A. Japan 1949 published in Vol.86
 Kinoshita, M., and Y. Nakajima: On the Effect of Wind on
 - Manoeuverability of Vessels. Abstract notes and data concerning the subjects at the Sixth International Conference of Ships Tank Superintendents. Experimental Tank Committee of Japan, 1951
- (14) Okada, S.: On the Heeling Moment due to Wind Pressure on Small Vessels. Presented at the Autumn M. of the Soc. of N.A., Japan, Nov.1952, to be published in Vol.84
- [15] Kinoshita, M. and S.Okada: Heeling Moment due to Wind Pressure on Small Vessels. Proc. of Symposium on the Behaviour of Ships in a Seaway. Wageningen, Sept.1957, S.527
- [16] Experimental Tank Committee of Japan: An Investigation into the Sea-Going Qualities of the Single-Screw Cargo Ship NISSEI MARU by Actual and Model ship Experiments. Transport. Technical Research Inst. Mejiro, Toshimaku, Tokyo, Japan, 1954, S.69
- [17] v.Lammeren, v.Manen, Lap: Scale Effect Experiments on Victory Shps and Models. Part I: Analysis of the Resistance and Thrust-Measurements on a Model Family and on the Model Boat D.C.ENDERTJR., TINA 1955, S.167

'18' Williams, Nixcr, Shelton: Wind Resistance Tests on Three Cargo Vessels. NPL-Report to BSRA. 1953

[19] Raymer, W. and H. Nixon: Wind Resistance Tests on Models of a Modern Passenger Liner. NPL-Report to BSRA, 1 1957

[20] Shearer, K. and W. Lynn: Wind Tunnel Tests on Models of Merchant Ships. NECI Vol. 76, S.229

Die Ergebnisse der Auswertung der in 5, 5, 6', 11, 12, 16, 17] mitgeteilten Ergebnisse von Modellversuchen in homogener Strömung werden folgendem IfS-Bericht mitgeteilt:

[21] Wagner, B.: Auswertung veröffentlichter Modellmessungen zur Bestimmung der Luftkräfte an Überwasserschiffen. IfS.-Bericht Nr.113, 1963. Tabelle 1 (vgl. Fig. 4a und 4b)

Modell Liberty-Schiff EC 2

 $\frac{2 A_{L}}{L_{oa}} = 0,171; \qquad \frac{L_{oa}}{B} = 7,81$

$$R_n = 5,72 \cdot 10^6$$

ε ⁰	°R	°C	°D	сX	с _Y	с _М
0	0,080	0,000	0,080	0,080	0,000	0,0000
20	0,256	0,204	0,154	0,075	0,245	0,0530
40	0,629	0,431	0,458	0,074	0,625	0,0878
60	0,834	0,382	0,740	0,040	0,833	0,0816
80	0,944	0,135	0,934	0,029	0,943	0,0347
100	0,925	- 0,171	0,908	0,011	0,925	- 0,0265
120	0,820	- 0,407	0,711	- 0,004	0,820	- 0,0715
140	0,645	- 0,466	0,445	- 0,040	0,643	- 0,0877
160	0,279	- 0,228	0,161	- 0,07/4	0,269	- 0,0530
180	0,092	- 0,006	0,092	- 0,092	0,006	0,0020
200	0,258	0,202	0,159	- 0,081	- 0,245	0,0581
2 2 0	0,626	0,450	0,442	- 0,043	- 0,625	0,0898
240	0,815	0,400	0,7710	- 0,009	- 0,815	0,0673
260	0,930	0,164	0,915	0,002	- 0,930	0,0224
280	0,937	- 0,135	·0,928	0,028	- 0,936	- 0,0326
300	0,834	- 0,380	0,742	0,043	- 0,832	- 0,0775
320	0,641	- 0,440	0,466	0,074	- 0,636	- 0,0867
340	0,268	0,217	0,157	0,074	- 0,257	- 0,0530
360	0,085	0,000	0,085	0,085	0,000	- 0,0000

•

Tabelle 2 (vgl. Fig. 5a und 5b)

Modell Geleit-Flugzeugträger CVE 55

 $\frac{2 A_{L}}{L_{oa}^{2}} = 0,1787; \qquad \frac{L_{oa}}{B} = 7,65$ $R_{n} = 4,2 \cdot 10^{6}$

٠

.

0	°R	°C	°D	°x	°ү	с _М
0	0,066	-0,011	0,065	0,065	- 0,011	- 0,0042
20	0,290	0,242	0,159	0,067	0,282	0,0709
40	0,506	0,354	0,361	0,049	.0,504	0,1168
60	0,624	0,287	0,553	0,028	0,623	0,0887
80	0,705	0,099	0,698	0,024	0,704	0,0396
100	0,717	- 0,155	0,700	0,030	0,716	- 0,0108
120	0,654	- 0,336	0,561	0,011	0,654	- 0,0771
140	0,493	-0,338	0,359	- 0,059	0,489	- 0,0800
160	0,266	- 0,202	0,172	- 0,093	0,249	- 0,0463
180	0,082	0,000	0,082	- 0,082	0,000	0,0021
200	0,263	0,201	0,170	- 0,091	- 0,247	0,0475
220	0,491	0,321	0,372	- 0,078	- 0,485	0,0771
240	0,670	0,324	`0 , 586	- 0,013	- 0,670	0,0646
260	0,750	0,154	0,735	0,024	- 0,750	- 0,0004
280	0,725	- 0,115	0,716	0,011	- 0,725	- 0,0463
300	0,623	- 0,297	0,548	0,017	- 0,623	- 0,0809
320	0,467	- 0,327	0,334	0,046	- 0,465	- 0,1068
340	0,293	- 0,248	0,155	0,061	- 0,286	- 0,0771
360	0,066	- 0,011	0,065	0,065	- 0,011	- 0,0033

.

Tabelle 3 (vgl. Fig. 6a und 6b)

Modell U-Boot SS 212

$$\frac{2 A_{\rm L}}{L_{\rm oa}^2} = 0,0682; \qquad \frac{L_{\rm oa}}{B} = 9,15$$

$$R_n = 7,94 \cdot 10^6$$

е ^о з	°R	°C	° _D	°X	е _Y	с _М	
0.	0,036	- 0,008	0,035	0,035	- 0,008	- 0,0040	
20	0,201	0,174	0,101	0,035	0,198	0,0457	
40	0,475	0,350	0,321	0,021	0,475	0,1011	
60	0,634	0,300	0,559	0,019	0,634	0,1035	
80	0,723	0,091	0,717	0,035	0,721	0,0806	
100	0,722	- 0,157	0,706	0,032	0,721	0,0551	
120	0,634	- 0 <u>,</u> 336	0,537	0,022	0,634	0,0336	
140	0,450	- 0,337	0,299	- 0,013	0,449	0,0151	
160	0,196	- 0,166	0,104	- 0,041	0,192	0,0040	
170	0,095	- 0,075	0,058	- 0,044	0,084	0,0027	
180	0,045	0,008	0,044	- 0,044	- 0,008	0,0000	
200	0,202	0,173	0,104	- 0,039	- 0,198	- 0,0040	
220	0,458	0,344	0,303	- 0,011	- 0,458	- 0,0102	
240	0,624	0,332	0,529	0,024	- 0,623	- 0,0264	
260	0,698	0,153	0,681	0,033	- 0,697	- 0,0481	
280	0,692	- 0,089	0,686	0,032	- 0,691	- 0,0740	
300	0,637	- 0,300	0,563	0,022	- 0,637	- 0,1049	
320	0,457	- 0,336	0,310	0,021	- 0,456	- 0,0928	
340	0,202	- 0,177	0,097	0,030	- 0,200	- 0,0444	
360	0,037	- 0,013	0,035	0,035	- 0,013	- 0,0027	

Tabelle 4 (vgl. Fig. 7a und 7b)

Modell Zerstörer DD 692

- $\frac{2 A_{\rm L}}{L_{\rm oa}^2} = 0,1430; \qquad \frac{L_{\rm oa}}{B} = 9,27$
- $R_n = 6,86 \cdot 10^6$

مکند. ۲

°3	°R	°c	°D	°x	°Y	° _M	
0	0.091	0.000	0.091	0.091	0.000	0.0000	
30	0,465	0,352	0,302	0,086	0,456	0,0915	
60	0,794	0,352	0,711	0,051	0,791	0,1014	
90	0,879	- 0,046	0,877	0,046	0,877	0,0368	
120	0,812	- 0,441	0,682	0,041	0,811	- 0,0139	
150	0,425	- 0,291	0,309	- 0,122	0,406	- 0,0159	
180	0,091	0,000	0,091	- 0,091	0,000	0,0020	
210	0,459	0,333	0,316	- 0,107	- 0,446	0,0139	
240	0,801	0,383	0,704	- 0,020	- 0,801	0,0099	
270	0,895	0,051	0,893	0,051	- 0,893	- 0,0437	
300	0,799	- 0,337	0,725	0,071	- 0,796	- 0,1014	
330	0,466	- 0,350	0,308	0,091	- 0,456	- 0,0925	
360	0,091	0,000	0,091	0,091	- 0,000	0,0000	

٬,

Tabelle 5 (vgl. Fig. 8a und 8b)

Modell Tanker A1 (Rumpf)

 $\frac{2 A_{L}}{L_{oa}^{2}} = 0,0374; \qquad \frac{L_{oa}}{B} = 7,66$ $R_{n} = 3,61 \cdot 10^{6}$

° S	°R	°C	°D	сX	с ^х	с _М
0	0,064	0,000	0,064	- 0,064	0,000	0,0000
10	0,075	0,029	0,069	- 0,062	0,041	0,0139
20	0,103	0,062	0,082	- 0,056	0,086	0,0263
30	0,160	0,094	0,129	- 0,065	0,146	0,0310
40	0,226	0,126	0,187	- 0,062	0,216	0,0348
50	0,299	0,134	0,267	- 0,069	0,291	0,0328
6.0	0,374	0,128	0,352	- 0, 0 65	0,368	0,0236
770	0,436	0,091	0,427	- 0,061	0,432	0,0139
80	0,485	0,035	0,484	- 0,050	0,481	0,0095
90	0,505	- 0,049	0,504	- 0,049	0,502	0,0000
100	0,484	- 0,107	0,472	- 0,023	0,483	- 0,0101
110	0,436	- 0,160	0,406	- 0,011	0,436	- 0,0213
120	0,388	- 0,200	0,333	- 0,007	0,388	- 0,0297
1'30	0,325	0,206	0,252	0,005	0,325	- 0,0348
140	0,252	- 0,176	0,180	0,025	0,251	- 0,0371
150	0,187/	- 0,142	0,122	0,035	0,184	- 0,02 7/3
160	0,099	- 0,071	0,069	0,040	0,090	- 0,0223
170	0,077	- 0,045	0,063	0,054	0,055	- 0,0098
180	0,065	0,000	0,065	0,065	0,000	0,0000

Tabelle 6 (vgl. Fig. 9a und 9b)

Modell Tanker A2 (Rumpf)

$$\frac{2.A_{\rm L}}{L_{\rm oa}^2} = 0,078; \quad \frac{L_{\rm oa}}{B} = 7,66$$

 $R_n = 3,61 \cdot 10^6$

.

ε°	°R	°C	с ^D	°x	с _Y	с _М
0	0,047	0,000	0,047	- 0,047	0,000	0,0000
10	0,064	0,047	0,044	- 0,035	0,054	0,0199
20	0,147	0,120	0,085	- 0,039	0,142	0,0370
30	0,243	0,190	0,151	- 0,036	0,240	0,0515
40	0,331	0,219	0,248	- 0,049	0,327	0,0551
50	0,419	0,228	0,352	- 0,051	0,416	0,0499
60	0,508	0,211	0,462	- 0,049	0,505	0,0411
70	0,586	0,157	0,565	- 0,046	0,585	0,0308
80	0,656	0,076	0,651	- 0,039	0,655	0,0152
90	0,651	- 0,023	0,651	- 0,023	0,651	0,0000
100	0,635	- 0,121	0,624	- 0,011	0,635	-0,0242
110	0,575	- 0,203	0,538	- 0,007	0,575	-0,0401
120	0,503	- 0,256	0,433	- 0,006	0,503	-0,0524
130	0,425	- 0,271	0,328	0,004	0,425	-0,0608
140	0,330	- 0,242	0,224	0,016	0,330	-0,0590
150	0,230	- 0,189	0,130	0,018	0,230	-0,0496
160	0,155	- 0,131	0,082	0,033	0,151	-0,0350
170	0,074	- 0,055	0,050	0,039	0,063	-0,0179
180	0,047	0,000	0,047	0,047	0,000	0,0000

Tabelle 7 (vgl. Fig. 10a und 10b)

Modell Tanker A1

 $\frac{2 A_{\rm L}}{L_{\rm oa}^2} = 0,0808; \qquad \frac{L_{\rm oa}}{B} = 7,66$

 $R_n = 3,61 \cdot 10^6$

0 E	°R	°C	°D	cX	с ^х	с _М
0	0,225	0,000	0,225	- 0,225	0,000	0,0000
10	0,214	0,055	0,207	_ 0,194	0,090	0,0155
20	0,254	0,074	0,243	_ 0,203	0,153	0,0194
30	0,346	0,120	0,325	- 0,221	0,266	0,0242
40	0,435	0,152	0,408	- 0,214	0,378	0,0205
50	0,512	0,145	0,491	- 0,207	0,469	0,0129
60	0,585	0,140	0,568	- 0,162	0,562	0,0060
70	0,628	0,10 <u>9</u>	0,618	- 0,109	0,618	- 0,0088
80	0,640	0,057	0,638	- 0,055	0,639	- 0,0154
90	0,640	0,000	0,640	0,000	0,640	- 0,0294
100	0,629	- 0,060	0,626	0,049	0 ; 627	- 0,0406
110	0,611	- 0,124	0,599	0,088	0,606	- 0,0525
120	0,575	- 0,183	0,545	0,115	0,564	- 0,0650
130	0,560	- 0,245	0,504	0,136	0,544	- 0,0849
140	0,470	- 0,210	0,421	0,188	0,431	- 0,0821
150	0,388	- 0,210	0,327	0,178	0,345	- 0,0811
160	0,293	- 0,138	0,259	0,193	0,218	- 0,0 638
170	0,211	- 0,076	0,197	0,181	0,109	- 0,0349
180	0,160	0,000	0,160	0,160	0,000	0,0000

- .

Tabelle 8 (vgl. Fig. 11a und 11b)

Modell Tanker A2

 $\frac{2 A_{\rm L}}{L_{\rm oa}} = 0,1212; \qquad \frac{L_{\rm oa}}{B} = 7,66$

 $R_n = 3,61 \cdot 10^6$

0 3	° _R	°C	° _D	°x	°Y	с _М
0	0,175	0,000	0,175	- 0,175	0,000	0,0000
10	0,180	0,077	0,163	- 0,147	0,104	0,0213
2 0	0,248	0,131	0,210	- 0,153	0,195	0,0337
30	0,350	0,195	0,290	- 0,154	0,315	0,0459
40	0,466	0,250	0,394	- 0,141	0,445	0,0465
50	0,561	0,269	0,493	- 0,111	0,550	0,0422
60	0,639	0,218	0,600	- 0,111	0,629	0,0215
7 0	0,701	0,205	0,671	- 0,037	0,700	0,0153
80	0,728	0,120	0,718	- 0,006	0,728	- 0,0009
90	0,741	0,026	0,741	0,026	0,741	- 0,0215
100	0,719	- 0,093	0,713	0,033	0,718	- 0,0422
110	0,680	- 0,182	0,655	0,053	0,679	- 0,0596
120	0,629	- 0,241	0,580	0,082	0,624	- 0,0753
130	0,580	- 0,284	0,506	0,108	0,570	- 0,0881
140	0,496	- 0,283	0,409	0,130	0,479	- 0,0857
150	0,386	- 0,224	0,314	0,160	0,351	- 0,0859
160	0,283	- 0,184	0,215	0,140	0,247	- 0,0698
170	0,173	- 0,087	0,150	0,111	0,133	- 0,0349
180	0,126	0,000	0,126	0,126	0,000	0,0000

Tabelle 9 (vgl. Fig. 12a und 12b)

Modell Frachter B 1 (Rumpf)

 $\frac{2 A_{\rm L}}{L_{\rm oa}^2} = 0,056; \qquad \frac{L_{\rm oa}}{B} = 7,90$

$$R_n = 3,16 \cdot 10^6$$

ν.

ε°	°R	°C	сD	сX	с ^д	с _М
0	0,052	0,000	0,052	- 0,052	0,000	0,0000
10	0,073	0,046	0,057	- 0,048	0,055	0,0193
20	0,139	0,103	0,093	- 0,052	0,129	0,0336
30	0,200	0,155	0,126	- 0,031	0,198	0,0465
40	0,270	0,174	0,206	- 0,046	0,266	0,0499
50	0,344	0,192	0,285	- 0 , 036	0,342	0,0470
60	0,405	0,168	0,369	- 0,039	0,404	0,0381
700:	0,494	0,143	0,472	- 0,027	0,493	0,0319
80	0,530	- 0,072	0,525	- 0,020	0,530	0,0160
90	0,550	- 0,019	0,550	- 0,019	0,550	0,0056
100	0,494	- 0,103	0,483	- 0,017	0,494	- 0,0098
110	0,468	- 0,160	0,440	0,000	0,468	- 0,0168
120	0,416	- 0,205	0,363	0,004	0,416	- 0,0291
130	0,360	- 0,214	0,290	0,022	0,359	- 0,0398
140	0,291	- 0,209	0,203	0,021	0,290	- 0 , 0429
150	0,205	- 0,164	0,123	0,025	0,203	- 0,0386
160	0,121	- 0,099	0, 069	0,031	0,117	- 0 , 0249
170	0,064	- 0,045	0,046	0,037	0,052	- 0,0146
180	0,034	0,000	0,034	0,034	0,000	0,0000

Tabelle 10 (vgl. Fig. 13a und 13b)

Modell Frachter B2 (Rumpf)

$$\frac{\frac{2 A_{L}}{2}}{\frac{L_{oa}}{2}} = 0,097; \qquad \frac{\frac{L_{oa}}{B}}{B} = 7,90$$

 $R_n = 3,16 \cdot 10^6$

о Е	°R	°C	сD	°x	с _Y	с _М
0	0,044	0,000	0,044	- 0,044	0,000	0,0000
10	0,092	0,076	0,053	- 0,039	0,084	0.0217
20	0,183	0,155	0,098	- 0,039	0,179	0,0454
30	0,278	0,222	0,167	- 0,033	0,276	0,0564
40	0,374	0,263	0,266	- 0,035	0,373	0,0675
50	0,460	0,274	0,369	- 0,027	0,459	0,0615
60	0,560	0,255	0,499	- 0,028	0,560	0,0566
70	0,640	0,208	0,606	- 0,011	0,640	0,0424
80	0,715	0,112	0,706	- 0,013	0,715	0,0220
90	0,736	0,009	0,736	- 0,009	0,736	0,0000
100	0,674	- 0,122	0,661	- 0,005	0,676	- 0,0223
110		-	_	_	_	- 0.0389
120	0,583	- 0,287	0,507	0,005	0,583	- 0.0599
1 30	0,484	- 0,294	0,384	0,021	0,483	- 0.0615
140	0,387	- 0,284	0,263	0,020	0,387	- 0.0631
150	0,282	- 0,232	0,160	0,023	0.281	- 0.0524
160	0,175	- 0,153	0,085	0,028	0,173	- 0,0369
170	0,082	- 0,068	0,046	0,033	0.075	- 0.0185
180	0,037	0,000	0,037	0,037	0,000	0.0000

Tabelle 11 (vgl. Fig. 14a und 14b)

•

Modell Frachter B1

$$\frac{2 A_{L}}{L_{oa}} = 0,105; \qquad \frac{L_{oa}}{B} = 7,90$$

$$R_n = 3,16 \cdot 10^6$$

ර දි	°R	°c	°D	°x	с _Y	с _М
· · · · · · · · · · · · · · · · · · ·						
0	0,168	0,000	0,168	_ 0,168	0,000	0,0000
10	0,185	0,054	0,177	- 0,164	0,084	0,0215
20	0,262	0,140	0,220	- 0,159	0,208	0,0430
. 30	0,372	0,178	0,326	- 0,194	0,318	0,0540
40	0,47722	0,220	0,419	- 0,179	0,438	0,0598
50	0,570	0,237	0,519	- 0 , 152	0,549	0,0606
60	0,634	0,212	0,597	- 0,115	0,623	0,0484
70	0,664	0,145	0,648	- 0,086	0,659	0,0335
3 0	0,693	0,055	0,691	- 0,067	0,690	0,0179
061	0,681 .	- 0,052	0,680	- 0,052	0,680	- 0.0033
100	0,668	- 0,136	0,654	- 0,021	0,668	- 0.0152
110	0,641	- 0,206	0,609	0,015	0,641	- 0.0254
120	0,585	- 0,243	0,532	0,056	0,582	- 0.0347
130	0,530	- 0,263	0,460	0,092	0,522	- 0.0388
140	0,441	- 0,203	0,355	0,103	0,429	- 0.0400
150	0,337	- 0,144	0,269	0,132	0,310	- 0,0370
160	0,252	- 0,064	0,206	0,145	0,206	- 0,0299
170	0,165	- 0,026	0,152	0,138	0,090	- 0.0188
180	0,150	0,000	0,150	0,150	0.000	0,0000
190				•	,	•,••••

Tabelle 12 (vgl. Fig. 15a und 15b)

Modell Frachter B2

.

$$\frac{2 A_{L}}{L_{oa}} = 0,146; \qquad \frac{L_{oa}}{B} = 7,90$$

_

$$R_n = 3,16 \cdot 10^6$$

ε	°R	°C	с ^р	°X	°Y	с _М
0	0,138	0,000	0,138	- 0,138	0,000	0,0000
10	0,159	0,076	0,139	- 0,124	0,099	0,0258
20	0,260	0,173	0,194	- 0,123	0,230	0,0514
30	0,391	0,251	0,300	- 0,134	0,367	0,0699
40	0,521	0,307	0,422	- 0,126	0,506	0,0793
50	0,620	0,317	0,533	- 0,099	0,612	0,0806
60	0,678	0,281	0,616	- 0,065	0,675	0,0645
70	0,735	0,212	0,704	- 0,041	0,734	0,0475
<u>8</u> 0	0,755	0,105	0,749	- 0,026	0,755	0,0245
90	0,753	- 0,020	0,753	- 0,020	0,753	0,0007
100	0,740	- 0,138	0,728	- 0,009	0,740	- 0,0232
110	0,713	- 0,238	0,672	0,006	0,713	- 0,0383
120	0,681	- 0,314	0,605	0,030	0,680	- 0,0540
130	0,634	- 0,363	0,519	0,055	0,632	- 0,0619
140	0,542	- 0,358	0,408	0,081	0,536	- 0,0595
150	0,388	- 0,276	0,273	0,099	0,375	- 0,0505
160	0,310	- 0,219	0,219	0,131	0,281	- 0,0417
170	0,151	- 0,089	0,122	0,105	0,109	- 0,0252
180	0,126	0,000	0,126	0,126	0,000	0,0000

•

Tabelle 13 (vgl. Fig. 16a und 16b)

Modell Frachter C1

 $\frac{2 A_{\rm L}}{L_{\rm oa}^{2}} = 0,1060;$

$$\frac{L_{oa}}{B} = 7,90$$

 $R_n = 3,16 \cdot 10^6$

3	° _R	с ^с С	сD	°x	°Y	° _М	
0	0,167	0,000	0,167	_ 0,167	0,000	0,0000	
10	0,168	0,071	0,152	± 0,198	0,097	0,0192	
20	0,255	0,139	0,214	- 0,15 3	·,0,204	9,0346	
30	0,362	0,197	0,304	_ 0,165	0,322	0,0420	
40	0,464	0,233	0,401	- 0,158	0,436	0,0467	
50	0,528	0,230	0,475	- 0,129	0,512	0,0461	
60	0,581	0,199	0,546	- 0,101	0,572	0,0314	
70	0,633	0,143	0,616	_ 0,076	0,629	0,0175	
80	0,660	0,081	0,655	- 0,035	0,659	0,0044	
90	0,6 8 0	- 0,021	0,680	- 0,021	0,680	- 0,0121	
100	0,650	- 0,106	0,641	0,007	0,650	- 0,0242	
110	0,626	- 0,178	0,601	0,038	0,625	- 0,0361	
120	0,586	- 0,229	0,540	0,072	0,582	- 0,0470	
130	0,536	- 0,264	0,467	0,09 8	0,52 8	- 0 , 0553	
140	0,464	- 0,281	0,369	0,102	0,452	- 0,0576	
150	0,362	- 0,23 8	0,273	0,117	0,343	- 0 , 0526	
160	0,250	_ 0,157	0,195	0,129	0,214	- 0,0399	
170	0,166	_ 0,076	0,147	0,132	0,101	- 0,0234	
180	0,144	0,000	0,144	0,144	0,000	0,000	

Fabelle 14 (vgl. Fig. 17a und 17b)

Modell Frachter C2

$$\frac{2 A_{\rm L}}{L_{\rm oa}^2} = 0,1470; \qquad \frac{L_{\rm oa}}{B} = 7,90$$

 $R_n = 3,16 \cdot 10^6$

.

ε ^ο	e _R	°C	e _D	°X	°Y	с _М	
0	0,133	0,000	0,133	- 0,133	0,000	0,0000	
10	0,154	0,091	0,125	- 0,107	0,111	0,0239	
20	0 ,2 64	0,184	0,189	- 0,115	0,238	0,0434	
3 0	0,438	0,298	0,321	- 0,129	0,419	0,0553	
40	0,521	0,312	0,419	- 0,119	0,508	0,0627	
50	0,595	0,307	0,510	- 0,093	0,588	0,0620	
60	0,656	0,262	0,603	- 0,074	0,652	0,0452	
70	[©] 0,701	0,192	0,675	- 0,050	0,700	0,0297	
80	0,740	0,090	0,735	- 0,039	0,739	0,0088	
90	0,769	- 0,023	0,768	- 0,023	0,769	- 0,0111	
100	0,745	- 0,136	0,733	- 0,007	0,745	- 0,0337	
110	0,705	- 0,229	0,666	0,012	0,705	- 0,0531	
12 0	0,655	- 0,298	0,583	0,033	0,654	- 0,0646	
130	0,605	- 0,347	0,495	0,053	0,604	- 0,0773	
140	0,531	- 0,353	0,397	0,078	0,525	- 0,0746	
150	0,398	- 0,294	0,269	0,086	0,389	- 0,0660	
160	0,266	- 0,196	0,180	0,102	0,246	- 0,0467	
170	0,154	- 0,093	0,123	0,105	0,113	- 0,0278	
180	0,118	0,000	0,118	0,119	0,000	0,0000	

Tabelle 15 (vgl. Fig. 18a und 18b)

Modell Fahrgastschiff D

 $\frac{2 A_{L}}{L_{oa}^{2}} = 0,1732; \qquad \frac{L_{oa}}{B} = 8,26$

$$R_n = 2,44 \cdot 10^6$$

.

0 3	°R	°c	с ^D	°x	с _Y	° _М	
0	0,074	0,000	0,074	- 0,074	0,000	0,0000	
10	0,141	0,102	0,098	- 0,079	0,117	0,0230	
20	0,263	0,210	0,158	- 0,077	0,252	0,0472	
30	0,409	0,320	0,254	- 0,060	0,404	0,0624	
40	0,536	0,386	0,372	- 0,038	0,535	0,0720	
50	0,602	0,369	0,476	- 0,023	0,601	0,0673	
60	0,634	0,308	0,553	- 0,010	0,634	0,0511	
70	0,649	0,222	0,610	0,000	0,649	0,0378	
80	0,670	0,116	0,660	0,000	0,670	0,0236	
90	0,665	0,000	0,665	0,000	0,665	0,0011	
100	0,641	- 0,111	0,632	0,000	0,641	- 0,0169	
110	0,620	- 0,212	0,583	0,000	0,620	- 0,0356	
120	0,600	- 0,286	0,527	0,016	0,600	- 0,0515	
130	0,536	- 0,323	0,429	0,028	0,535	- 0,0595	
140	0,529	- 0,382	0,366	0,035	0,528	- 0,0800	
150	0,420	- 0,334	0,256	0,055	0,416	- 0,0673	
160	0,268	- 0,217	0,157	0,074	0,258	- 0,0485	
170	0,134	- 0,106	0,081	0,061	0,119	- 0,0228	
180	0,073	0,000	0,073	0,073	0,000	0,0000	

Tabelle 16 (vgl. Fig. 19a und 19b)

Modell Fahrgastschiff D

 $\frac{2 A_{L}}{L_{oa}^{2}} = 0,1732; \qquad \frac{L_{oa}}{B} = 8,26$

$$R_n = 2,44 \cdot 10^6$$

ර උ	°R	°c	с _р	°X	°Y	° _M	
0	0,089	0,000	0,089	- 0,089	0,000	0,0000	
10	0,163	0,117	0,113	- 0,091	0,135	0,0268	
20	0,308	0,246	0,185	- 0,090	0,295	0,0554	
30	0,485	0,380	0,302	- 0,072	0,480	0,0735	
40	0,635	0,457	0,440	- 0,044	0,634	0,0853	
50	0,714	0,438	0,565	- 0,027	0,713	0,0787	
60	0°,758	0,369	0,662	- 0,012	0,758	0,0603	
70	0,774	0,264	0,726	0,000	0,774	0,0446	
80	0,799	0,139	0,786	0,000	0,799	0,0277	
90	0,791	0,000	0,791	0,000	0,791	0,0022	
100	0,764	- 0,133	0,752	0,000	0,764	- 0,0200	
110	0,735	- 0,251	0,691	0,000	0,735	- 0,0396	
120	0,710	- 0,338	0,624	0,019	0,710	- 0,0601	
130	0,630	- 0,379	0,503	0,033	0,629	- 0,0696	
140	0,635	- 0,458	0,440	0,042	0,634	- 0,0956	
150	0,495	- 0,393	0,301	0,065	0,491	- 0,0791	
160	0,313	- 0,253	0,184	0,086	0,301	- 0,0570	
170	0,158	- 0,125	0,096	0,072	0,140	- 0,0277	
180	0,087	0,000	0,087	0,087	0,000	0,0000	
			-	\	-	•	

.

.

Bemerkung: Diese Tabelle enthält die Ergebnisse des Fahrgastschiffes D von Tabelle 15 nach Umrechnung auf einen Windgradienten, der dem Maßstab der übrigen Modelle entspricht (M 1:64).

Fig: 1 Kräfte am Überwasserschiff

_

_

Fig. 2 : Windgeschwindigkeitsprofil in Relation zur Modellgröße (aus Long [10] ; amerikan. Messungen)

-

(EEB) A.4 210 x 297 mm LA

EER) A.4 210 + 297 mm , B

NELECCE A & 210 + 207 mm ... R'"

-HEHIN A 4 210 x 297 mm . . .

HALECER A 4 210 + 297 mm - 10

SELECTE A 4 210 - 297 mm

-

-EFECES A & 210 - 29' mm

SELECTE A 4 710 . 297 mm

SELECT) A 4 210 + 297 mm

(SERCE) A 4 210 - 297 mm

SELECTA A & 210 + 297 mm

