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Abstract. In this survey paper we present an
overview on recent results for the bicharacteris-
tics based finite volume schemes, the so-called fi-
nite volume evolution Galerkin (FVEG) schemes.
These methods were proposed to solve multidimen-
sional hyperbolic conservation laws. They combine
the usually conflicting design objectives of using
the conservation form and following the charac-
teritics, or bicharacteritics. This is realized by com-
bining the finite volume formulation with approxi-
mate evolution operators, which use bicharacteris-
tics of multidimensional hyperbolic system. In this
way all of the infinitely many directions of wave
propagation are taken into account. The main goal
of this paper is to study long-time behaviour of the
FVEG schemes. We present several numerical ex-
periments which confirm the fact that the FVEG
methods are well-suited for long-time simulations.

Key words Multidimensional finite volume
methods, Bicharacteristics, Hyperbolic systems,
Wave equation, Euler equations

1 Introduction

In general numerical solution of trully multidimen-
sional systems of conservation laws is a challenging
task. The main reason is that even for small ini-
tial data we do not have existence and qualitative
results for the solution of multidimensional Rie-
mann problems. In principle, we have two finite
volume approaches to overcome this fact. Firstly,
the are the so-called central finite volume meth-
ods (FVM), which does not use the Riemann prob-
lem, see e.g. [4] and the references therein. How-
ever if no characteristic information is taken into
account they may not provide a satisfactory reso-
lution when small time steps are enforced by the
stability condition. Note that for multidimensional
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problems the central schemes have the CFL stabil-
ity restrictions strongly less than 1.

The second approach is based on a quasi-dimen-
sional splitting and on the use of approximate so-
lution to the one-dimensional Riemann problem,
which structure is well-understood. If main fea-
tures, that we want to approximate are just one-
dimensional, this approach can produce good qual-
itative results. But for complex genuinely multidi-
mensional structures, such as oblique shocks or cir-
cular expansions, dimensional splitting approach
can yield spurious local wave structure resolutions.
Looking back to the literature of the last decade we
find several new genuinely multidimensional meth-
ods. For example, the wave propagation algorithm
of LeVeque [5], the method of transport (MoT) of
Fey [3] and its simplified version of Noelle [17], or
the multistate FVM of Brio et al. [2]. The latter
approach is based on the use of the Kirchoff for-
mulae for the wave equation or the linearized Eu-
ler equations in order to correct multidimensional
contributions in corners of the computational cells.
In fact, our approach is similar to that of Brio.
However, instead of the Kirchhoff formulae which
are explicit in time but singular over the sonic cir-
cle, we use a different method. We work with a
general theory of bicharacteristics for linear hyper-
bolic systems of first order and derive the so-called
approximate evolution operators. This is the most
involved part of the derivation of our schemes.
The basic idea of the evolution Galerkin schemes
(EG), introduced by Morton, see e.g. [15], is the
following. Transport quantities are shifted along
characteristics and then projected onto a finite ele-
ment space. Following the work of Ostkamp [18] we
have derived in [7] several new evolution Galerkin
methods for the linear system of the wave equa-
tion, which have better stability properties as well
as global accuracy. Their generalization to the sec-
ond order EG method was done in [11] for lin-
ear two-dimensional systems. In [6] we have stud-
ied the two-dimensional Riemann problem for the
wave equation system and demonstrated good ac-
curacy of the EG schemes as well as correct mul-
tidimensional resolution of oblique shocks.
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In their dissertation [19] Ostkamp proposed a gen-
eralization of the EG method to the nonlinear Eu-
ler equations. However, in order to implement her
scheme quite tedious calculations of three-dimen-
sional integrals had to be done. It was barely fea-
sible for practical applications, such as the shal-
low water equations and the Euler equations, espe-
cially for higher order methods. The decisive step
was to take a different approach, which yield us
to the finite volume framework. In the so-called fi-
nite volume evolution Galerkin (FVEG) methods
the approximate evolutions are used only on cell
interfaces to evaluate the numerical fluxes.

Note that there is a connection between the FVEG
method and the interface centered MoT of Noelle.
Both methods use multidimensional evolution only
on cell-interfaces instead of on whole computa-
tional cells. This leads to the crucial simplification
of original methods within the FV framework.
The aim of this paper is to give a self-contained
introductory overview on the recent results of the
evolution Galerkin schemes. We want to present
basic ideas of the theory of bicharacteristics, which
are used for the derivation of exact and approxi-
mate evolution operators for general multidimen-
sional hyperbolic systems. We illustrate the ap-
plication of these techniques on the Euler equa-
tions system. Further interesting applications are,
for example, the wave equation system, the shallow
water equations, the magneto-hydrodynamic equa-
tions or the equations of nonlinear elasticity. In the
last section the long-time behaviour of the FVEG
schemes is studied. We present new numerical re-
sults confirming that the schemes are well-suited
for long-time simulations.

The paper is organized as follows. In Section 2
the exact integral representation for the linearized
Euler equations are presented. Approximation of
the so-called mantle integrals is discussed in Sec-
tion 3. We describe the EG3 approximate evolution
operator [7] and following the lines of our recent
paper [10] present new approximate evolution op-
erators, which yield numerical schemes stable up
to the CFL number 1. The formulation of the fi-
nite volume evolution Galerkin scheme is given in
Section 4. Second order resolution is obtained by
means of a bilinear recovery in space and the mid-
point rule approximation in time. In order to apply
the approximate evolution operator to fully non-
linear systems, such as the Euler equations of gas
dynamics or the shallow water equations, first a
suitable linearization is needed. It is done by freez-
ing the Jacobian matrices locally around suitable
constant states. Despite the linearization proce-
dure the FVEG methods authomatic satisfy the
entropy condition on sonic rarefaction waves and
no entropy fix is needed, see [9], [10] for numerical
experiments.

The error analysis of the FVEG methods was pre-
sented in [10]. For linear or linearized systems it
was proved that if a bilinear recovery is used the
method is of second order in space and time. In
Section 5 we show through numerical expeiments

that the constant of the leading error is consid-
erably smaller in comparison to other commonly
used methods. This leads us to the conclusion that
the FVEG methods are well-suited for long-time
simulations, which will be confirmed by several nu-
merical experiments.

2 Linerized Euler equations and evolution
operator

In order to derive an evolution operator for the Eu-
ler equations it is suitable to work with this system
in primitive variables

V¢ + Al (U)U:v + A2(U)vy = Ov €T = (xvy)Ta (1)
where v := (p,u,v,p)T is the vector of primitive
variables and the Jacobian matrices are given by

up 00 v0 p O
0uo01l 0v 00

= P =
Aq: 00 ub , Ag: OO’U%
0vp 0w 00ypw

Here p denotes the density, u and v components
of velocity, p pressure and ~ isentropic exponent;
~v = 1.4 for dry air. In what follows we briefly de-
scribe main technique for deriving an integral rep-
resentation (or an exact evolution operator). First,
we linearise system (1) by freezing the Jacobian

matrices at a suitable point P = (&, g,t). Denote
by © = (p,a,,p) the local variables at the point
P and by ¢ the local speed of sound there, i.e.
¢ = ,/7735. Thus, the linearised system (1) with
frozen constant coefficient matrices has the form
vy + A1 (D), + As(B)v, =0, == (z,y)". (2)
The eigenvalues of the matrix pencil A(D) =
A1 (V)ng+A2(0)ny, where n = n(0) = (ng,n,)T =
(cosf,sin )T € R? are

A1 =1u cos O+ U sin 0 — ¢,

Ao = A3 =1u cos 0 + ¥ sin 0,

Ay =1 cos O+ ¥ sin 0 + ¢,

and the corresponding linearly independent right
eigenvectors are

T
ry = <—€,cos9,sin9,—ﬁ6> ,
¢

T2 = (1707070)T )

r3 = (0,sinf, — cos b, O)T ,

T
ry = (@,cosQ,sin@,ﬁE) .
¢

Let R(®) be the matrix of the right eigenvectors
and R~ (®) its inverse. Denote by w the vector of
characteristic variables

%(—% + ucosf + vsin9)
p—%
usinf — vcos
%(% +ucosf + vsin6)

w=R(d)v =



Multiplying system (2) by R~ () from the left we
obtain the following system written in character-
istic variables

wi + By (#)w, + By(®)w, =0, (3)

where B, By are transformed Jacobian matrices.
Being in one space dimension the system (3) re-
duces to a diagonal system consisting of separated
advection equations. Their exact evolution opera-
tor reads

we(z,t) = we(x — A\et, 0), £=1,...,4. (4)

In the multidimensional case the system (3) will
reduce to a diagonal one only if the Jacobian ma-
trices A;, Ao commute, which is not the case of
the two-dimensional Euler equations. We rewrite
the system (3) in the form of the following quasi-
diagonalised system

4 —c¢cosf 00 0
0 u 0 0
we + 0 0@ 0 Wo
0 00 @+ écosb
9 —¢sinf 00 0
0 20 0
+ 0 0% 0 wy =S
0 00U+ ¢sind
()
with
ic (smt?aw3 7C089387u;3)
B 0
csm9( D %) - ccost9(‘9w1 — 85“;)
6(7 5,11193“’3 +cos96“’3)
Each characteristic variable wy, £ = 1,...,4, is

evolved in time along the corresponding bichar-
acteristic curve x, defined by

o = buln) = (bge, be) ™ (6)

t

where B, = (bjlk)1<] k<4, Bo = (bjk)1<_] k<a. The
set of all bicharacteristics creates a mantle of the
so-called Mach cone, see Fig. 1. In order to obtain
the exact evolution of each characteristic variable
wy we integrate the f-th equation of the system
(5) from the apex P = (x,y,t + At) down to the
corresponding footpoint Q,(6):

Q1(0) = (z — (@ — écos§)At,y —

Q2 = Q3 = (z — alt,y — VAL T),
Q4(0) =
Multiplying the resulting system from the left by

the matrix R yields the exact integral equations
for the original primitive variables.

p(g 2) | %/2’7 [p(gl)

p(P) = p(Q2) —

_ g“(Ql) cos 6 — gv(Ql) sin 0} de

(0 — ésin0)At, t),

(x — (@ + ¢cosO)At,y — (0 + ¢sin ) At, t).
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Fig. 1. Bicharacterestics along the Mach cone through
P and Q((9).

(ST}

1 2m t+At B 5
0

t

27
u(P) = %/0 [— p(gél) cos 0 +u(Q;) cos? 0

v(Q1)sinb cosH|dd

o1 pt+At o
/ cos 6 S(&,t,0)dtdd
t

1 t+At 5 5
<Q2>——p / (@@, (8)

1 2

Py =5 [ ]-

p(?f) sin @ + u(Q1) cos O sin O
pe
0(Q1) sin? 9] a0

1 2 ot o
+% / sin0S(&,t,0)dedo
o Ji

%
p(P) = % O%[p(czn ~ peu(Q) cos
— pe0(Q1) sin 0]d6
—pc— " /Mt S(e,7,0)dido,  (10)
where € = ( — (@ —n(0)) (t+ At —£)) = (z— (@

écosO)(t+At—1),y— (0 —csind)(t+At—t)), and
the so-called source term S is given in the following
form

S(x,t,0) := &[uy(z,t,0)sin? 0 — (u,(z,t,0)

(z,y,t + At)
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+ v, (2, t,0)) sin 0 cos 6 + v, (x, t,0) cos® ).

3 Approximate evolution operators

Note that the above exact integral representation
(7)-(10) is implicit in time. In order to derive a
numerical scheme, which is explicit in time, time
integrals of the source term, the so-called mantle
integrals, have to be approximated with suitable
numerical quadratures. In this way several approx-
imate evolution operators were derived and eval-
uated with respect to its accuracy and stability,
see [7]. We have shown in [7] that the rectangle
rule in time in the source term leads an approx-
imate evolution operator, the so-called EG3 op-
erator, whose accuracy is the best among other
approximate operators obtained by the “classical”
numerical quadratures. See [7] for the EG1, EG2
operators and [20] for the EG4 approximate oper-
ator.

In what follows we write equations for approximate
evolution of p, u, p; the approximate evolution op-
erator for v is analogous to that of w.

3.1 Approzimate evolution operator EG3

_ 1% 1p(Q1)
P(P)*p(QQH'%/O {T—

2§ (u(Q1) cos + v(Q1) sin b) } dé

+0(A%),  (11)
u(P) = %U(Qz)-k %/0 ! [— p(pg} ) cos @ +
u(Q1) (3cos? O — 1) + 3v(Q1) sinf cos 0| df
+0(A1?), (12)
oP) = 5 [ @)~ 2p0(ul@r) coso
+0(Q1)sin6)]dd + O(AL?). (13)

Our numerical experiments for the wave equation
system demonstrate that the second order FVEG3
scheme is 7 times more accurate than the com-
monly used numerical scheme, e.g. the Lax-Wendroff
scheme (rotated Richtmyer version), the wave prop-
agation algorithm of LeVeque [5], quasi-dimensional
splitting finite volume schemes; see [8].

On the other hand the above FVEG methods suf-
fered from the restrictive stability limits. For ex-
ample, for the FVEG3 scheme a typical CFL sta-
bility limit was 0.63 and 0.56 for first and sec-
ond order schemes, respectively. Note that inte-
grals around the sonic circle, i.e. foQﬁ df, are eval-
uated for the piecewise constant data or piecewise
bilinear ansatz data exactly. Therefore, obviously

the only step where the stability could be reduced
was the time approximation of the mantle inte-
gral. For example, in the first order EG scheme we
work with piecewise constant data, in which case
a discontinuity cuts through the cone mantle. Nat-
urally, classical quadratures, such as the rectangle
or the trapezoidal rule, which were used for the
EG1 - EG4 schemes, cannot correctly reproduce
integration of discontinous data.

From one-dimensional advection on a uniform mesh
we know that any scheme that is stable for CFL
numbers up to 1 reproduces the exact solution
to the advection problems, i.e. the data shifted
by one mesh cell for CFL= 1, cf. (4) for the ex-
act evolution operator. In our forthcomming paper
[10] we look for the approximate evolution opera-
tors by postulating the following design principle.
Each one-dimensional planar wave propagating in
x— or y— direction has to be reproduced exactly
by the approximate evolution operator. Thus, we
consider piecewise constant or piecewise bilinear
ansatz data in order to derive corresponding ap-
proximate evolution operators for the first or sec-
ond order FVEG schemes, respectively. See [10] for
a detailed derivation as well as for numerical ex-
periments, which demonstrate the full stability up
to CFL=1.

3.2 Approzimate evolution operator ES™! for
piecewise constant data

o L Q)
pP) = (1= Dp(Q)+ 5= [ [H2
g (u(Q1)sgn(cosb) + v(Q1)sgn(sin b)) } dé
+0(A?),  (14)
2w
u(P) = %/0 [f p—(ﬁél)sgn(cos 0)
+u(Q1) (5 + cos?0) + v(Q1) sin f cos 0] de
+0(A?), (15)
§P) = 5= [ @) = petu(@)sn(eoss)
+0(Q1)sgn(sin #))]dd + O(At?). (16)

3.8 Approxzimate evolution operator E%”” for
piecewise bilinear data

2
pP) = p(@)+ 7 [~ 1(@) - pl@)] a0
—l 27ré U cos v sin
~ [ 2@ cost-+ u(Qu)sind] as

+0(A1?), (17)



u(P) = u(Q2) — l/0 ’ p(g?) cos 6do

™

1

27
+Z /0 {B(u(Qﬂ cosf + v(Q1)sin @) cos @

—u(@) - Su(@2)]do + 0(Ar),  (18)

2T
pP) =p(Q)+ 7 [ Q1) = p(Qu)] a0

_% / " pa [u(Q1) cosf + v(Q1) sin 6] d9
0
+0(At?). (19)

4 Finite volume evolution Galerkin method

Let 2 be our two-dimensional computational do-
main covered by the regular square mesh cells

2 = [ = Dhs G+ DA X (G = i, G+ DA

= [Ti—1/2: Tig1y2] X [Yj—1/2, Yj41/2];

where 7,5 € Z, and h > 0 is the mesh size param-
eter.

In finite volume schemes typically the one-dimen-
sional Riemann problems in the normal direction
to cell interfaces are used to approximate fluxes on
cell interfaces. Instead of this dimensional-splitting
technique we use in our scheme a genuinely multi-
dimensional approach. In order to compute fluxes
on cell interfaces the value of U will be determined
by means of a suitable approximate evolution oper-
ator. In this way all directions of wave propagation
are explicitly taken into account.

Consider the Euler equations written in the con-
servative variables

ut + f1(u)e + fo(u)y =0, (20)

where the vector of conservative variables is u :=
(p, pu, pv,e)T and the fluxes are

pu pv
2
| pu+tp - puv
fi(u) = puv » Fa(u) = o2+ p
(e+p)u (e +pv

Here e stands for the total energy, i.e. e = p/(y —
1) + p(u? +v?)/2.

Let us integrate (20) over a mesh cell {2;; and time
interval [t,, tn4+1]. Applying the Gauss theorem for
the flux integrals and rewriting the cell volume in-
tegrals by the cell interface integrals yield the fi-
nite volume formulation. The crucial point of the
FVEG schemes is the use of the approximate evo-
lution operators for the evaluation of fluxes at cell
interfaces.

The time integral of fluxes is approximated by the
midpoint rule. If no recovery is used the whole
method is of first order. In this case the finite vol-
ume evolution Galerkin scheme reads

n n At 2 n
U“:U—ijmnw+wx (21)
k=1
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1
7@ = 3 [ pBaUmas e

where ., f,(U n+1/2) represents an approximation
to the edge flux difference at the intermediate time
level t,,+At /2. The cell interface fluxes f, (U™ +/2),
are evolved using an approximate evolution oper-
ator denoted by E¢/s to t, + At/2 and averaged
along the cell interface £.

It is possible to define a second order FVEG scheme
just by using the first order approximate evolution
operators EY%!™ (17) - (19) or the operator EG3
(11) - (13) and discontinuous conservative bilinear
recovery. In fact, in such a way the second order
FVEG3 scheme was constructed in [12]. However,
our experience from [10] shows that the desirable
scheme, i.e. the best stability range as well as the
best accuracy, is the scheme, which is given by a
suitable combination of ES™s and EY%!". We use
Ebln to evolve slopes and EX™! to evolve the
corresponding constant part:

n 1 ilin n
FLU™/?) = E/gfk(EbAl R, U

+ Eeonst(1 — uiui)U”)dS. (23)

where p2U;; = 1/4(Ui41,;+2U;;+U;—1 ;); an anal-
ogous notation is used for the y—direction.
Here Rj; denotes the continuous bilinear recov-
ery, the so-called isoparametric bilinear approxi-
mation. Each vertex value is obtained as a mean
of the cell averages from all the cells that share
the vertex. Unfortunately such a recovery does not
preserve the cell averages, which leads to reduced
total accuracy of the scheme, see [10] for numeri-
cal experiments and [1], [16] for further arguments.
Therefore our aim is to recover conservation over
cells, i.e. to construct such a reconstructed approx-
imation U that the following property holds

This can be done by changing the constant part of
the approximate function, so that we have on each
cell Qij7 i,j, cZ

U=RyU+(1—p2p2)U.

This is now conservative and discontinuous across
cell boundary.

In order to compute fluxes on cell interfaces by
means of (22) or (23) double integrals along the cell

interface and around the Mach cone | P 0277 dods
have to be computed. Since our goal is to take
all infinitely many directions of wave propagation
into account, integrals around the Mach cone will
be evaluated exactly. This can be done for any ba-
sis function, such as 1, z, y, xy, xcosh, xsinb,
xsinfcos, etc., which are defined on each (2,
1,7, € Z. The results of exact integration yield new
weights in finite difference stencils, which corre-
spond to the approximate evolution operators.



Finite volume schemes for multidimensional hyperbolic systems based on the use of bicharacteristics 7

In order to simplify the derivation and implemen-
tation of the second order scheme for the Euler
equations we approximate cell interface integrals
by Simpson’s rule and evaluate fluxes at vertices
and midpoints. They are these points P where the
linearization of the nonlinear Euler equations is
done. The local flow information u,?,a are com-
puted by an averaging process; we average over
four cells adjacent to the vertex or over two cells
adjacent to the midpoints.

The approach described above can be generalized
to the third order FVEG schemes, see [13] for more
details. In [14], [20] implementations of different
boundary conditions are studied.

5 Numerical experiments

In this section, through long-time numerical simu-
lations, we illustrate the performance of the FVEG
method for the linear wave equation system, see
[10] for its approximate evolution operators, and
for fully nonlinear Euler equations of gas dynam-
ics.

5.1 Comparison of global accuracy for long-time
simulations

First we present comparison of global accuracy of
the second order FVEG scheme (21), (23), the sec-
ond order FVEG3 scheme and other commonly
used numerical schemes for approximation of hy-
perbolic conservation laws. As an example we have
chosen the Lax-Wendroff (LW) scheme (rotated
Richtmyer version) and the wave propagation algo-
rithm of LeVeque (the second order T%? version)
[5]. Consider the initial value problem for the wave
equation system

¢t + c(ug +vy) = 0 (24)
Us + C¢f€ =0
v+ cpy =0

with the initial data

o(x,0) = f%(sin 27x + sin 27y),
u(x,0) = 0 =v(x,0).

In this case the exact solution is known

1
@(x,t) = —= cos 2mct(sin 27 + sin 27y),
c
1.
u(x,t) = — sin 2wct cos 2,
¢

1.
v(x,t) = — sin 2wct cos 2my.
c

In the following table we compare the accuracy of
the above schemes for long-time simulations and
take an end time 7' = 10. The CFL number is
taken to be v = cAt/h = 0.9 for the FVEG scheme
(21), (23), the Lax-Wendroff scheme and the
LeVeque T??2 scheme. For computations with the

FVEGS3 scheme we can only use smaller CFL num-
ber, say v = 0.55, due to its reduced stability
range.

Note that due to zero advection velocity « = v = 0
we can approximate the cell interface integrals in
both FVEG schemes by the trapezoidal rule, which
generally leads to a stable scheme if @ = v.

We present the L2— errors for meshes of 20 x 20,
40 x 40,...,160 x 160 cells, together with the ex-
perimental order of convergence (EOC) computed
from two meshes of sizes N1 x N1 and Ny x Ny as

lun, (T) — Uy, |l No

2= /In | =] .
lun, (T) = U, |l Ny
Here we have denoted by un(T) and by U7, the

exact and the approximate solutions on a mesh of
size N x N, respectively.

EOC =1n

Table 1. Accuracy of the FVEG schemes, the Lax-
Wendroff scheme and the T%? scheme for long-time
simulations.

[[u(T) —U"[|/N] FVEG |FVEG3| Lw [ T?? |
20 0.386944(1.419723[1.294829]1.294829
40 0.087802[0.335918]0.383314[0.383314
80 0.021017[0.062675[0.098100[0.098099
160 0.005196[0.013484[0.024551[0.024550
EOC 2.01608 | 2.21664 | 1.99847 | 1.99852

The global L?—error of the FVEG scheme is al-
most 5 times smaller than the error of the Lax-
Wedroft scheme and the LeVeque wave propaga-
tion algorithm. These results demonstrate that the
constant of the leading order error of the FVEG
scheme is also for long-time simulations consider-
ably smaller than that of other commonly used
schemes. Note also that the new FVEG scheme
(21), (23) has not only better stability but it has
also higher global accuracy than the FVEG3
scheme, which is due to reduced number of pro-
jection steps. In fact the L?— error of the FVEG
scheme (21), (23) is 2.5 times smaller than the er-
ror of the FVEG3 scheme. It should be also pointed
out that generally the CPU costs for the FVEG
scheme and the LeVeque scheme are comparable.

5.2 Water waves propagation

It is known that the approximation of circular waves
on rectangular meshes can cause difficulties. Par-
ticularly, if the dimensional splitting approach is
used the spurious mesh oriented structures can be
developed, see e.g. [5], [7], [17] and the references
therein.

We consider the wave equation system (24) with
the following initial data modelling a pointwise dis-
turbance

d(x,0) = —cexp(—152% — 15¢?),
u(z,0) =0 =v(x,0).



The computational domain [—3,3] x [—3,3] is di-
vided into 100 x 100 cells. The solution obtained by
the second order FVEG scheme at different times
from T'= 0.2 until T" = 8.0 is shown in Figures 2 -
4. We can notice well resolved symmetric circular
wave. As time evolves the wave propagates and is
being reflected from the left boundary. The Mach
steam which is evolving behind the main wave can
be recognized in Figure 4. This problem can be
considered as a model for a pointwise disturbance
of a still water surface, e.g. as it occurs when a
stone is thrown into a lake.
As mentioned above, we set reflected boundary
conditions on the left vertical boundary and ab-
sorbing boundary conditions elsewhere. In numer-
ical experiments presented in this paper we have
implemented absorbing boundary conditions by lin-
ear extrapolation of all quantities to the so-called
ghost cells, which are adjacent to the boundary of
the computational domain. Thus, we have, e.g. for
the pressure wave ¢,

$_15 = Poj, ¢—2j = $15, JEL,
where §2_1;, £2_5; and (2y;, £21; are the ghost cells
and the cells belonging to {2, respectively.
Note that due to the second order method two
layers of the ghost cells are needed. The reflected
boundary conditions are easily modelled by reflect-
ing the interior data across the boundary and negat-
ing the normal component of velocity. Thus, we
have on the left vertical boundary

U_15 = —Ugj, U_2j = —u1j, JE€ZL

Other quantities, i.e. ¢,v, are extrapolated.

5.8 Interaction between circular shocks and
reflected waves

In this example we consider again the wave equa-
tion system (24) with the following discontinuous
initial data

o=1, u=0, v=0,
=0, u=0, v=0,

lz|| < 0.4
else.

The computational domain [—1,1] x [—1,1] is di-
vided into 200 x 200 cells. We implemented re-
flected boundary conditions on the vertical bound-
aries and absorbing boundary conditions on the
horizontal ones. In Figure 5 the pressure wave dis-
tribution at different times 7" = 0.3,1.0,1.3 is de-
picted. We can notice a well-resolved circular shock
travelling away from the center of the computa-
tional domain. As time evolves the shock reaches
the vertical boundaries and is reflected into the
computational domain. Due to the linear model
interactions between the linear circular shock and
reflected waves can be observed very well.
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5.4 Fuler equations and cylindrical explosion

The third example is a two-dimensional circular
Riemann problem for the nonlinear system of Eu-
ler equations with the initial data

p=1 u=0, v=0,
p=0.125, u=0,

p=1, || <04

v=0, p=0.1, else.
Figure 6 shows the density distribution as a func-
tion of x and y at different output times T =
0.0, 0.23, 0.38, 0.6, 1.3, 2.0. The computational do-
main [—1,1] x[—1, 1] is divided into 100 x 100 cells.
As time evolves a complex wave pattern emerges.
The solution exhibits a circular shock travelling
away from the center, a circular contact disconti-
nuity travelling in the same direction and a circular
rarefaction wave travelling towards the origin at
(0,0). We have inserted absorbing boundary condi-
tions on the whole 042. This result illustrates good
multidimensional resolution for long-time simula-
tions and preservation of rotational symmetry of
the numerical solution to nonlinear systems. Note
that this example can be considered as a bench-
mark problem for the entropy fix. In fact we need
no special treatment in order to resolve the sonic
rarefaction wave correctly, see also [12] for further
experiments confirming this point.
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Fig. 2. Propagation of circular water waves
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Method FVEG-2nd, Gridsize 100 x 100, T=2.5

T=3.5

Fig. 3. Propagation of circular water waves (con-
tinues)
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Fig. 4. Propagation of circular water waves (finished)
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Method FVEG-2nd, Gridsize 200 x 200 ... T=0.3
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Fig. 5. Interaction between the circular shock and re-
flected waves
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