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Abstract

The Graphics Processing Unit (GPU) is a highly parallel, many-core streaming archi-
tecture that can execute hundreds of threads concurrently. The data parallel architec-
ture of the GPU is suitable to perform computation intensive applications. In recent
years, the use of GPUs for general purpose computation has increased and a large set
of problems can be tackled by mapping onto GPUs. The programming model CUDA
enables to design C like programs with some extensions which leverages programmers
to efficiently use the graphics API.

Alignment is the fundamental operation used to compare biological sequences and
in this way to identify regions of similarity that are eventually consequences of struc-
tural, functional, or evolutionary relationships. Multiple sequence alignment is an
important tool for the simultaneous alignment of three or more sequences. Efficient
heuristics exist to cope with this problem.

In the thesis, progressive alignment methods and their parallel implementation
by GPUs are studied. More specifically, the dynamic programming algorithms of
profile-profile and profile-sequence alignment are mapped onto GPU. Wavefront and
matrix-matrix product techniques are discussed which can deal well with the data
dependencies. The performance of these methods is analyzed. Simulations show that
one order of magnitude of speed-up over the serial version can be achieved.

ClustalW is the most widely used progressive sequence alignment method which
aligns more closely related sequences first and then gradually adds more divergent
sequences. It consists of three stages: distance matrix calculation, guide tree compila-
tion, and progressive alignment. In this work, the efficient mapping of the alignment
stage onto GPU by using a combination of wavefront and matrix-matrix product tech-
niques has been studied.

In the hidden Markov model, the Viterbi algorithm is used to find the most prob-
able sequence of hidden states that has generated the observation. In the thesis, the
parallelism exhibited by the compute intensive tasks is studied and a parallel solution
based on the matrix-matrix product method onto GPU is devised. Moreover, the op-
portunity to use optimized BLAS library provided by CUDA is explored. Finally, the
performance by fixing the number of states and changing the number of observations
and vice versa is portrayed.

At the end, general principles and guidelines for GPU programming of matrix-
matrix product algorithms are discussed.
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Chapter 1

Introduction

The Graphics Processing Units (GPUs) [78] are many-core massively parallel comput-
ing processors. GPUs offer orders of magnitude more computation power than CPUs
and are becoming popular for general purpose computations to achieve good speed-up.
Since the 1980s, GPUs have been used for graphics applications like 3D models and
digital video related functions. NVIDIA introduced the flexible programming model
for general purpose computation on graphics card, Compute Unified Device Architec-
ture (CUDA), which provides extension to the C language. CUDA uses the Single
Instruction Multiple Threads (SIMT) model to execute a single instruction with differ-
ent data elements by parallel threads. GPUs have already been employed to general
purpose computing in several areas such as molecular dynamics, physics simulations,
and scientific computing [78, 80].

Synchronization is a major problem in current GPUs due to lack of inter-thread
communication between multiprocessors. This can be done by re-launching the kernel
again from CPU, which is a costly operation. Therefore, the applications having task or
data parallelism with no inter-multiprocessor communication are well suited to GPU
architecture [12, 126]. The Kepler architecture of GPU has dynamic parallelism to
invoke a CUDA kernel from another, which provides more flexibility and efficiency [80,
82].

Dynamic programming is a technique to solve search and optimization problems [6].
This works by dividing the problem into sub-problems in a recursive way. Then small-
est sub-problems are solved and the results are combined to achieve a solution of
the initial problem. Dynamic programming can be divided into Serial Monadic Dy-
namic Programming (SMDP), Non-serial Monadic Dynamic Programming (NMDP),
Serial Polyadic Dynamic Programming (SPDP), and Non-serial Polyadic Dynamic
Programming (NPDP) classes corresponding to data dependencies and cost func-
tion [34, 60, 119].

However, high complexity restricts the use of dynamic programming. One approach
is to utilize parallel processing to achieve massive speed-up. We can achieve huge per-
formance boosts by mapping dynamic programming based algorithms onto GPUs. In
this thesis, we will focus on the performance optimization of dynamic programming al-
gorithms by discussing the opportunities to convert dynamic programming algorithms
into a form which matches the vector-processing architecture of commodity GPUs.
For this, the algorithms are redesigned into matrix-matrix product and the resultant
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2 1. Introduction

algorithms are mapped to GPU architecture using custom kernel or by optimized
BLAS routines. In addition, we will also present the wavefront technique to parallelize
dynamic programming algorithms. In the wavefront approach, parallelism is exposed
by breaking up the computations with recurrences into segments and pipelining the
execution of segments. This is achieved by computing anti-diagonals of the forward
matrix in order to avoid data dependencies [1].

Alignment is a fundamental operation in bioinformatics to compare sequences.
Dynamic programming based algorithms are commonly used for sequence alignment.
However, the computational complexity of these algorithms restricts their usage for
longer sequence lengths [115]. Moreover, the availability of high throughput sequenc-
ing technologies results in exponential growth of the size of biomolecular sequence
databases [102]. Therefore, fast alignment techniques are required to find similarities
in large data sets. Simultaneous alignment of multiple sequences is a very costly oper-
ation in terms of computation and storage. Many heuristic methods run in reasonable
time with less accuracy. The most popular method to generate multiple sequence
alignment is progressive alignment in which the most similar sequences are aligned
first and then less related sequences are added to the alignment [28, 43, 76].

In this work, we will investigate the use of GPUs to align multiple sequences to
achieve better speed-up compared to contemporary CPUs. We will discuss profile-
profile alignment and profile-sequence alignment using matrix-matrix product and
wavefront methods. Previously, a matrix-matrix product based algorithm was de-
signed to enhance the performance of profile-sequence alignment [5]. Due to the
limited amount of GPU memory, it cannot handle longer sequences. For this, the
algorithm will be redesigned to process large sequence lengths and to improve the
performance. Furthermore, this algorithm will be implemented using the wavefront
method. ClustalW is a widely used alignment method to align multiple sequences.
In this thesis, we will present a parallelization strategy for the progressive alignment
stage of the ClustalW using a mixture of wavefront and matrix-matrix multiplica-
tion.

Hidden Markov model [92] is a statistical tool to represent probability distribution
for the sequence of observations. Hidden Markov models have been used in many
areas including computational biology [52], speech recognition [91], and pattern recog-
nition [29]. However, the algorithms using the hidden Markov model require a high
computational complexity. For this purpose, there is a need to improve the processing
time and to reduce the complexity. Three basic problems for hidden Markov model
are evaluation, decoding, and learning. Decoding a hidden sequence of states is an
important task and the most widely used method is the Viterbi algorithm. The Viterbi
algorithm [31, 117] is a dynamic programming algorithm to find the most likely se-
quence of hidden states that generated the observed sequence. There will be ln possible
routes for n observations and l possible states for an observation. The Viterbi algo-
rithm finds the route through l states that maximizes the probability of observations
with time complexity O(nl2). To speed-up the Viterbi algorithm, we will formulate a
matrix-matrix product based solution which is suitable for the GPU architecture.

We will show a performance comparison of different types of dynamic program-
ming algorithms to better understand the mapping process onto GPU. Finally, general
guidelines for implementing dynamic programming based algorithms will be discussed.
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1.1 Contribution of this Work

The major contributions of this work are as follows:

• Multiple sequence alignment algorithms are studied. In particular, the parallel
versions of profile-profile and profile-sequence alignment algorithms are designed
using the wavefront and the matrix-matrix product techniques. We have dis-
cussed the performance of these methods for the GPU hardware architecture.

• Proposed an improved matrix-matrix product based solution for profile-sequence
alignment. This method uses less memory space, which helps to align longer
sequences.

• Parallelization of the progressive alignment stage of the ClustalW algorithm
using a combination of wavefront and matrix-matrix product methods has been
investigated.

• Provided the design, implementation, and experimental setup of matrix-matrix
product based solution for the Viterbi algorithm. This is achieved by dividing the
Viterbi algorithm into dependent and independent parts. The data independent
part is executed on the GPU to improve performance.

• Explored the strategies for mapping of dynamic programming problems on GPUs
and described the general principles for GPU programming of matrix-matrix
product.

1.2 Organization

The rest of the thesis is organized as follows:

• Chapter 2 starts with a brief introduction to dynamic programming, followed
by the fundamental concepts related to sequence alignment and hidden Markov
model. First, dynamic programming algorithms for the pairwise and multiple
sequence alignment are presented. Next, the most widely used progressive align-
ment algorithm ClustalW is discussed. We have also given a brief introduction
to tropical algebra. This chapter ends by introducing the hidden Markov model
and the Viterbi algorithm.

• Chapter 3 introduces the GPU computing model. This includes the program-
ming model and GPU architecture. We have described the Fermi and Kepler
architectures.

• Chapter 4 describes the parallel design of multiple sequence alignment algo-
rithms. First, a parallel solution of profile-profile alignment is discussed and
implemented onto GPU. Next, a parallel version for profile-sequence alignment
is described. This chapter concludes with the parallel formulation of the pro-
gressive alignment stage of the ClustalW algorithm.
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• Chapter 5 presents the strategies to parallelize the Viterbi algorithm. We have
discussed both the matrix-vector and matrix-matrix product methods.

• Chapter 6 discusses the mapping of different types of dynamic programming
problems onto GPU. General guidelines of matrix-matrix product based algo-
rithms on GPU are also presented.

• Chapter 7 concludes the thesis with a discussion about the results and future
work.



Chapter 2

Fundamentals

Dynamic programming is a widely used technique to solve optimization problems.
Sequence alignment is the method to compare sequences for searching the regions of
similar character patterns. Sequence alignment is use to determine protein family,
pattern identification, phylogenetic analysis, and structure prediction [23, 115]. The
sequence alignment problem can be tackled using dynamic programming. However,
exponential growth in the size of sequence databases demands for sophisticated analysis
techniques.

This chapter begins with a brief introduction to dynamic programming. We will
present the necessary concepts related to sequence alignment and the associated al-
gorithms for the sequence alignment. Then we will give basic concepts related to
the tropical algebra. Finally, the Viterbi algorithm to solve the decoding problem of
hidden Markov model will be discussed.

2.1 Dynamic Programming

Dynamic programming is a technique for solving a problem by dividing into inter-
dependent sub-problems. The results of the sub-problems are used to solve larger
sub-problems until the entire problem is solved. In the divide-and-conquer technique,
a problem depends only on the solution of its sub-problems. However, there may be
relationships between the sub-problems for dynamic programming technique [34].

A dynamic programming formulation is usually represented as recurrences on inter-
mediate solutions to a problem. An optimal solution is defined in terms of the objective
function involving the minimization (or maximization) of some cost function [119]. The
computation of dynamic programming problems is based on establishing a matrix. An
optimal solution of the smallest sub-problems is calculated first, then the optimal so-
lution for the smaller sub-problems are used to solve larger sub-problems according
to the recursive function. This property will guarantee the optimal solution for the
whole problem.

Consider the dynamic programming problem as multistage problem consisting of
many sub-problems. If the solution of the sub-problems at all levels depends only
on the immediately preceding levels, it is called serial; otherwise, non-serial. The cost
function involving only single recursive term is monadic; otherwise, polyadic. Based on
this criteria, Grama et al. [34] classifies the dynamic programming problems into four

5



6 2. Fundamentals

categories: serial monadic dynamic programming, serial polyadic dynamic program-
ming, non-serial monadic dynamic programming, and non-serial polyadic dynamic
programming. The sample problems for each of these classes and their parallelization
strategies will be discussed later.

2.2 Biomolecular Sequences

The fundamental principle of molecular biology, which states that the genetic infor-
mation flows from the DeoxyriboNucleic Acid (DNA) to the proteins, is known as the
central dogma of biology. The genetic information required to make proteins resides
in the DNA. First, this encoded information is transmitted into the RiboNucleic Acid
(RNA). This process is called transcription. Then the RNA is translated into a protein
by the translation process [88].

The DNA is the double-helical structure that encodes the genetic information re-
quired to build and functioning of an organism. The genetic information is coded
by the sequence of four nucleotides: Adenine (A), Cytosine (C), Guanine (G), and
Thymine (T). A gene is the basic physical and functional unit of heredity which is
made up of DNA. It acts as an instruction to make a molecule called protein. The
quantity and organization of the genes are different from one organism to another.
The whole genetic information encoded in the DNA is called genome. DNA in the
human cell is organized into large linear structures called chromosomes.

Sequence alignment is the technique in molecular biology used to compare se-
quences and to arrange sequences of biomolecules for identifying regions of similarity
that are eventually consequences of structural, functional, or evolutionary relation-
ships [23, 38, 122, 128]. Sequence alignment can be performed for DNA, RNA, or
protein sequences.

The alignment of two sequences is called pairwise alignment which corresponds to
either global alignment, where sequences are aligned to their entire length, or local
alignment, where portion of sequences are aligned. Multiple sequence alignment is the
technique to align three or more sequences simultaneously. The aligned sequences are
obtained by inserting gaps and have equal length. A column of blanks is not allowed.
Two identical characters in a column means match; otherwise, mismatch. There are
different scoring schemes which give scores for match, mismatch, and gap.

The sequence alignment problem can be tackled using two computational ap-
proaches: optimal methods following the paradigm of dynamic programming [37] and
heuristic methods [28, 115]. Note that these methods assume that the columns are
aligned independent of each other. The size of biomolecular sequence databases grows
exponentially due to the recent availability of high-throughput sequencing technolo-
gies [102]. This upsurge demands for fast alignment techniques rendering the more
time-consuming optimal alignment techniques less useful for searching similarities in
larger data sets. In particular, dynamic programming algorithms for simultaneously
aligning k sequences of length O(n) necessitates O(2knk) steps and thus are only fea-
sible for a handful of sequences [128]. This is the reason why fast heuristic techniques
such as BLAST [2] and FASTA [89] are preferred that are an order of magnitude faster
than the optimal algorithms. However, the downside of heuristic approaches is that
they are less sensitive (i.e., missing more homologous) than the optimal ones [128].
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MNSFSTSAFGPVAFSLGLLLVLPAAFP-APVPPGEDSKDVAAPHRQPLTS

|...|...|.|||| |||:||...||| :.|..|:.::| ..|:| |:.:

MKFLSARDFHPVAF-LGLMLVTTTAFPTSQVRRGDFTED-TTPNR-PVYT

SERIDKQIRYILDGISALRKETCNKSNMCESSKEALAENNLNLPKMAEKD

:.::...|.::|..|..:|||.||.::.|.::.:|||||||.||::...|

TSQVGGLITHVLWEIVEMRKELCNGNSDCMNNDDALAENNLKLPEIQRND

GCFQSGFNEETCLVKIITGLLEFEVYLEYLQNRF-ESSEEQARAVQMSTK

||:|:|:|:|.||:||.:||||:..||||::|.. ::.:::||.:|..|:

GCYQTGYNQEICLLKISSGLLEYHSYLEYMKNNLKDNKKDKARVLQRDTE

VLIQFLQKKAKNLDAITTPDPTTNASLLTKLQAQNQWLQDMTTHLILRSF

.||....::.|:|..|..|.|.:||.|..||::|.:||:..|...||:|.

TLIHIFNQEVKDLHKIVLPTPISNALLTDKLESQKEWLRTKTIQFILKSL

KEFLQSSLRALRQM

:|||:.:||:.||.

EEFLKVTLRSTRQT

Fig. 2.1: Pairwise sequence alignment between Interleukin-6 proteins from human
and mouse calculated by the EMBOSS pairwise alignment algorithm from EMBL-
EBI taking the substitution matrix BLOSUM62, gap penalty 10.0, and gap extension
penalty 5.0; the alignment has length 214 with 41.6% matches, 56.1% mismatches,
and 2.3% indels.

2.2.1 Pairwise Sequence Alignment

Pairwise sequence alignment is the technique to compare and align two sequences.
Aligned sequences are usually represented as rows of a matrix. Gaps are inserted
between the residues such that identical or related residues can be aligned in cor-
responding columns (Fig. 2.1). Sequences can be represented in several text-based
formats like the FASTA format that can be read by most web-based or GUI tools
supporting alignment routines [128].

Pairwise sequence alignment for two sequences x = x1x2 . . . xm and y = y1y2 . . . yn
is the method to find new sequences x

′

and y
′

of equal length such that there are
minimum number of steps to transform x into y (vice versa) using insertion, deletion,
or replacement of characters.

x
′

= x
′

1 x
′

2 x
′

3 . . . x
′

k

y
′

= y
′

1 y
′

2 y
′

3 . . . y
′

k

(2.1)

The minimum number of transformations to convert one sequence into another is
called edit distance. The goal is to find the alignment with minimum edit distance.
The maximum length of aligned sequences, in worst case, can be m+ n [128].

There are (2n)!/(n!)2 ≈ (2)2n/
√

(πn) possible alignments and to find the best align-
ment is a difficult task [23]. An optimal pairwise alignment is the pairwise alignment
with highest alignment score. For this, we have to use a specific scoring scheme to score
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matches, mismatches, and gaps. The BLOck SUbstitution Matrix (BLOSUM) [41] and
Point Accepted Mutation (PAM) [18] are most widely used scoring matrices for pro-
tein sequences. Choosing the different scoring matrices can lead to different optimal
solutions. Here, the focus is to use an appropriate alignment technique. The scoring
model for the sequence alignment algorithms presented in this work assumes that the
aligned columns are statistically independent of each other.

Pairwise sequence alignment can be solved by dynamic programming in O(n2) steps
if both sequences have length O(n). The Needleman-Wunsch and Smith-Waterman
algorithms are the basic pairwise sequence alignment methods following the paradigm
of dynamic programming.

Needleman-Wunsch Algorithm

The Needleman-Wunsch algorithm provides a global alignment of two sequences align-
ing every residue in both sequences (Fig. 2.2). It is most useful when the sequences are
similar and of roughly equal length [73]. This algorithm works in three steps. Firstly,
the forward matrix is initialized. Then the forward matrix is calculated. Finally,
alignment is deduced using traceback. The basic idea is to make optimal decisions at
each stage and gradually adding sequences by one at a time using the optimal score
at that stage. In this way, an optimal alignment can be determined.

V S P A G M A S G Y D C A

I − P − G K A S − Y D A C

Fig. 2.2: Global pairwise sequence alignment using Needleman-Wunsch algorithm of
amino acid sequences VSPAGMASGYDCA and IPGKASYDAC taking scoring matrix BLO-
SUM50.

For two given sequences x and y over the alphabet Σ of lengthm and n, respectively
and scoring matrix σ(a, b), the Needleman-Wunsch algorithm can be defined as:

Di,j =







0, if i = 0 and j = 0,
∑i

k=1 σ(xk,−), if 1 ≤ i ≤ m and j = 0,
∑j

k=1 σ(−, yk), if 1 ≤ j ≤ n and i = 0,

max{Di−1,j−1 + σ(xi, yj), Di−1,j+

σ(xi,−), Di,j−1 + σ(−, yj)},
if 1 ≤ i ≤ m and 1 ≤ j ≤ n.

(2.2)

The routine NeedlemanWunschAlign implements the Needleman-Wunsch al-
gorithm. Its input is given by two sequence x and y. The algorithm begin by initial-
izing D0,0 = 0. The first row and column are filled according to the selected scoring
scheme which represents gap penalties at the start of either sequence. The Di,j value
depends on Di−1,j−1 (match or mismatch), Di,j−1 (insertion), or Di−1,j (deletion). The
entry Dm,n gives the global alignment score. The global alignment can be retrieved
by tracing back the optimal decision made at each step. There is also the possibil-
ity to have multiple alignment paths for the same optimal score. For sequences of
comparable length, the runtime and memory complexity is O(n2) [128].
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Algorithm 2.1 NeedlemanWunschAlign(x,y)

Require: two sequences x = x1, . . . , xm and y = y1, . . . , yn
Ensure: D = (Dij) forward matrix
1: D0,0 ← 0 // initialization
2: for i← 1 to m do
3: Di,0 ←

∑i

k=1 σ(xk,−)
4: end for
5: for j ← 1 to n do
6: D0,j ←

∑j

k=1 σ(−, yk)
7: end for
8: for i← 1 to m do // computation and maximization
9: for j ← 1 to n do

10: Di,j ← max{Di−1,j + σ(xi,−), Di,j−1 + σ(−, yj), Di−1,j−1 + σ(xi, yj)}
11: end for
12: end for
13: return D

Smith-Waterman Algorithm

The Needleman-Wunsch algorithm aligns sequences for their entire length. However,
finding the common sub-sequences for dissimilar sequences that are suspected to con-
tain regions of similarity is also important [106]. Aligning similar regions of sequences
while leaving highly divergent regions unaligned is referred as local alignment. A local
alignment between two amino acid sequences VSPAGMASGYDCA and IPGKASYDAC is illus-
trated in Figure 2.3. The local alignment gives only the best matching sub-sequence.

P A G M A S G Y D − C

P − G K A S − Y D A C

Fig. 2.3: Local pairwise sequence alignments using Smith-Waterman algorithm of
amino acid sequences VSPAGMASGYDCA and IPGKASYDAC taking scoring matrix BLO-
SUM50.

The Smith-Waterman algorithm yields a local alignment of two sequences in which
only part of the residues participate [106]. For two given sequences x and y over
the alphabet Σ having length m and n, respectively and scoring matrix σ(a, b), the
Smith-Waterman algorithm can be defines as:

Di,j =







0, if i = 0 and j = 0,

0, if 1 ≤ i ≤ m and j = 0,

0, if 1 ≤ j ≤ n and i = 0,

max{0, Di−1,j−1 + σ(xi, yj), Di−1,j+

σ(xi,−), Di,j−1 + σ(−, yj)},
if 1 ≤ i ≤ m and 1 ≤ j ≤ n.

(2.3)

The algorithm initializes the first row and column to zero instead of the gap penal-
ties. The Di,j value depends on Di−1,j−1 (match or mismatch), Di,j−1 (insertion), or
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Algorithm 2.2 SmithWatermanAlign(x,y)

Require: two sequences x = x1, . . . , bxm and y = y1, . . . , yn
Ensure: D = (Dij) forward matrix
1: D0,0 ← 0 // initialization
2: for i← 1 to m do
3: Di,0 ← 0
4: end for
5: for j ← 1 to n do
6: D0,j ← 0
7: end for
8: for i← 1 to m do // computation and maximization
9: for j ← 1 to n do

10: Di,j ← max{0, Di−1,j + σ(xi,−), Di,j−1 + σ(−, yj), Di−1,j−1 + σ(xi, yj)}
11: end for
12: end for
13: return D

Di−1,j (deletion). The recurrence to calculate Di,j also has zero which avoids negative
scores. The reason is to start a new local alignment instead of extending it. The opti-
mal local alignment can be anywhere in the matrix instead of Dm,n. Local alignment
can be retrieved by starting at the maximum value of Di,j and tracing back the opti-
mal decision made at each step until we reach an entry 0. There is also possibility to
have multiple alignment paths for the same optimal score. The Smith-Waterman algo-
rithm has the runtime and memory complexity O(n2) for the sequences of comparable
length [128].

2.2.2 Multiple Sequence Alignment

Multiple sequence alignment corresponds to the simultaneous alignment of three or
more sequences. It helps to establish evolutionary relationships that are useful for
constructing phylogenies and revealing conserved and variable sites within protein
families [23, 115, 128]. For k sequences to be aligned i.e., x = (x1 . . .xk), multiple
sequence alignment is the process such that all resulting sequences have equal length
by inserting gaps.

x1 = x11 x12 x13 . . . x1,m1

x2 = x21 x22 x23 . . . x2,m2

...
xk = xk1 xk2 xk3 . . . xk,mk

(2.4)

Eqn. (2.5) gives the alignment of k sequences, where all the sequences have equal
length i.e., n.

x
′

1 = x
′

11 x
′

12 x
′

13 . . . x
′

1,n

x
′

2 = x
′

21 x
′

22 x
′

23 . . . x
′

2,n
...

x
′

k = x
′

k1 x
′

k2 x
′

k3 . . . x
′

k,n

(2.5)
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Columns consisting solely of blanks are not allowed [128]. The original sequences
can be obtained by removing gaps (Fig. 2.4).

− A G C G G −
A C G T C G −
− T G C T G C

− − − G A A A

G T C T A − −
− C T C A T −

Fig. 2.4: Two multiple sequence alignments of DNA sequences. The first alignment
is formed by AGCGG, ACGTCG, and TGCTGC, and the second by GAAA, GTCTA, and CTCAT.
These alignments are calculated by the ClustalW algorithm [33, 55] from EMBL-
EBI taking the substitution matrix IUB, gap penalty 5.0, and gap extension penalty
1.0.

However, multiple sequence alignment is very time consuming. Therefore, a vari-
ety of heuristic methods have been developed for the simultaneous alignment of three
or more sequences [75]. The most popular method to generate a multiple sequence
alignment is based on trees which are used to describe a relationship between the se-
quences based on their pairwise comparison. Progressive alignment is the most widely
accepted heuristic method for aligning multiple sequences [42, 76]. The progressive
method first aligns the most similar sequences and then less related sequences or groups
of sequences are successively added to the alignment [28]. In order to improve align-
ment accuracy, some progressive methods additionally assess the sequences according
to their relatedness.

Progressive alignment works in three steps. First, the optimal alignments between
each pair of sequences are computed. Second, the so-called guide tree is built that
reflects similarities (or distances) among the sequences. Third, the guide tree is used
to combine the sequences into a multiple alignment. For this, intermediate alignments
are formed from the leaves to the root such that two neighboring sequences are pair-
wisely aligned, a sequence and a neighboring alignment are aligned by profile-sequence
alignment, and two neighboring alignments are aligned by profile-profile alignment [28].

The progressive alignment algorithms can cope with a larger number of sequences
in practical time scales. The most widely used multiple sequence alignment programs
are Clustal [15, 42, 114] and T-Coffee [76]. ClustalW is faster than T-Coffee but
less sensitive [48].

Profile-Profile Alignment

Multiple sequence alignment is used to determine the protein structures, evolutionary
relationship, and conservation of homologous regions. Classification of proteins into
their respective protein families, finding relatedness of proteins within same family,
and detecting similarity between proteins belonging to different families are important
tasks [23, 115]. This can be achieved by aligning a multiple alignment against another
multiple alignment. Profile-profile alignment is more accurate over profile-sequence
and sequence-sequence alignment methods for multiple sequence alignment [26].

A multiple sequence alignment can be represented as a profile which can be helpful
for more accurate alignments. A profile is a statistical representative produced from
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an alignment and contains the probability of finding each amino acid type at each
position [26, 35]. It can be pictured by an l×m matrix P = (pij), where l is the size of
the extended alphabet Σ′ = Σ∪{−} andm is the length of the alignment. The entry pij
gives the relative frequency of the symbol (residue) i to occur in the j-th column of the
alignment (Fig. 2.5). RNA and DNA alphabets consist of four respective nucleotides
while the amino acid alphabet has 20 (naturally occurring) amino acids [50].









A 0.33 0.33 0.00 0.00 0.00 0.00 0.00
C 0.00 0.33 0.00 0.66 0.33 0.00 0.33
G 0.00 0.00 1.00 0.00 0.33 1.00 0.00
T 0.00 0.33 0.00 0.33 0.33 0.00 0.00
− 0.66 0.00 0.00 0.00 0.00 0.00 0.66









Fig. 2.5: Profile of the first multiple sequence alignment given in Fig. 2.4; the rows
are labelled in turn by the symbols A, C, G, T, and −.

Progressive alignment describes alignments by profiles. The alignment between the
two sequence alignments represented by profiles P and Q is [128]

P
′

= p
′

1 p
′

2 p
′

3 . . . p
′

k

Q
′

= q
′

1 q
′

2 q
′

3 . . . q
′

k

(2.6)

The resultant alignment has both sequences of equal length which are derived from
the corresponding profiles by inserting blank columns (Figs. 2.6 and 2.7). There are
several profile-profile alignment approaches. The major difference between them is
choosing a particular scoring function [27, 84, 96, 118]. We have used the score of a
profile-profile alignment (P′,Q′) as the sum of so-called column scores

d(P′,Q′) =
k∑

i=1

d(p′
i, q

′
i), (2.7)

where each column is scored by the Euclidean distance [128]

d(p′
i, q

′
i) =

√
√
√
√

l∑

j=1

(p′ij − q′ij)
2. (2.8)

p1 p2 p3 p4 p5 p6 p7 −p −p

−p −p q1 q2 q3 q4 q5 q6 q7

Fig. 2.6: A profile-profile alignment between the profiles describing the multiple
alignments in Fig. 2.4.

The dynamic programming algorithm for profile-profile alignment is specified by
the routine ProfProfAlign. Its input is given by two profiles, an l×m matrix P =
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− A G C G G − − −
A C G T C G − − −
− T G C T G C − −
− − − − − G A A A

− − G T C T A − −
− − − C T C A T −

Fig. 2.7: The overall multiple alignment resulting from profile-profile alignment in
Fig. 2.6.

(p1, . . . ,pm) and an l× n matrix Q = (q1, . . . , qn). In particular, a column consisting
solely of blanks is associated with the profile column −p = (0, . . . , 0, 1)T , where blank
occurs with relative frequency 1. The objective of a profile-profile alignment is to find
an alignment with minimum score [38, 128].

Algorithm 2.3 ProfProfAlign(P,Q)

Require: two profiles P = p1, . . . ,pm and Q = q1, . . . , qn

Ensure: S = (Sij) forward matrix
1: S0,0 ← 0 // initialization
2: for i← 1 to m do
3: Si,0 ←

∑i

k=1 d(pk,−p)
4: end for
5: for j ← 1 to n do
6: S0,j ←

∑j

k=1 d(−p, qk)
7: end for
8: for i← 1 to m do // computation and minimization
9: for j ← 1 to n do

10: Si,j ← min{Si−1,j + d(pi,−p), Si,j−1 + d(−p, qj), Si−1,j−1 + d(pi, qj)}
11: end for
12: end for
13: return S

The routine ProfProfAlign evaluates an m × n table S = (Sij). The first
row and column are initilized by calculating the Euclidean distance between a profile
and a gap. Then the minimum value of Si,j is obtained by aligning pi and qj, where
Si,j = Si−1,j−1 + d(pi, qj); aligning pi to gap −p, where Si,j = Si−1,j + d(pi,−p);
or aligning qj to gap −p, where Si,j = Si,j−1 + d(−p, qj). The backward algorithm
retrieves the optimal alignments from the forward table. This is achieved by tracing
back through the table from the last entry Sm,n to the first entry S0,0 considering the
optimal decisions made at each step. The paths from the last entry Sm,n to the first
entry S0,0 established in this way correspond one-to-one with the optimal alignments.
In this work, we will focus on the parallelization of the algorithm by calculating the
forward table. The implementation of traceback is not considered, since it has very
low inherent parallelism.
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Profile-Sequence Alignment

For the given sequences of a protein family, finding whether a new sequence belong
to this family is an important feature which will be useful to determine the common
structure and functionality of the sequence. The alignment between a sequence and a
multiple alignment is more effective as it can match against a family of protein instead
of single members of the protein family [35, 36].

The profile-sequence alignment is the alignment of a sequence with a profile which
is statistical representation of an alignment. The alignment between the sequence x

and the profile O is a pair of sequences [128]

O
′

= o
′

1 o
′

2 o
′

3 . . . o
′

k

x
′

= x
′

1 x
′

2 x
′

3 . . . x
′

k

(2.9)

Both sequences are of equal length and are derived from the corresponding se-
quences by inserting blank columns (Figs. 2.8 and 2.9).

o1 o2 o3 o4 o5 o6 o7 o8 −o −o o9 −o

− − − − − − A T A C A C

Fig. 2.8: A profile-sequence alignment describing the multiple alignments correspond-
ing to sequence ATACAC and alignment in Fig. 2.6.

− A G C G G − − − − − −
A C G T C G − − − − − −
− T G C T G C − − − − −
− − − − − G A A − − A −
− − G T C T A − − − − −
− − − C T C A T − − − −
− − − − − − A T A C A C

Fig. 2.9: The overall multiple alignment resulting from profile-sequence alignment in
Fig. 2.8.

The algorithm ProSeqAlign depicts the sequential version of profile-sequence
alignment. The sequence x = x1 . . . xn over the alphabet Σ and an l × m matrix
O = (o1, . . . ,om) that provides the profile of an alignment serves as input to the
algorithm ProSeqAlign [5, 128]. In particular, the blank corresponding to the profile
O is −o = (0, . . . , 0, 1)T , where blank occurs with relative frequency 1. The score
between a column o of the profile and a character a ∈ Σ′ is

σ(o, a) =
∑

b∈Σ′

σ(a, b) · ob. (2.10)

A pre-defined substitution matrix (e.g., BLOSUM62, PAM240) is used to score
matches, mismatches, and gaps. This algorithm fills an m × n table S = (Sij). The
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Algorithm 2.4 ProSeqAlign(x,O)

Require: sequence x = x1 . . . xn and profile O = o1 . . .om

Ensure: S = (Sij) forward matrix
1: S0,0 ← 0 // initialization
2: for i← 1 to m do
3: Si,0 ←

∑i

k=1 σ(ok,−)
4: end for
5: for j ← 1 to n do
6: S0,j ←

∑j

k=1 σ(−o, xk)
7: end for
8: for i← 1 to m do // computation and maximization
9: for j ← 1 to n do

10: Si,j ← max{Si−1,j + σ(oi,−), Si,j−1 + σ(−o, xj), Si−1,j−1 + σ(oi, xj)}
11: end for
12: end for
13: return D

first row and column are calculated by aligning the profile and the sequence to gaps,
respectively. The computation of Si,j depends on the upper-left, upper, and left table
entries. The optimal alignment path is established using the backward algorithm which
traces backward through the table from the last entry Sm,n to the first entry S0,0 by
considering optimal decisions made at each step.

ClustalW Algorithm

ClustalW is a progressive alignment algorithm making use of the policy ”once a
gap, always a gap” i.e., gaps introduced earlier in the alignment remain valid as new
sequences are added. This approach first aligns more closely related sequences, gradu-
ally adding divergent sequences [43, 114]. This algorithm consists of three main stages
(Fig. 2.10). The first stage calculates the distances between each pair of sequences by
pairwise sequence alignment. Due to symmetry, only the upper- or lower-triangular
part of the distance matrix is required. Pairwise sequence alignment can be calcu-
lated by a slower and accurate dynamic programming based method or a fast heuristic
method [4, 62, 63, 114]. The fast pairwise alignment method calculates scores using
exactly matching fragments (k-tuples) in the best alignment minus fixed penalty for
gaps. The value of k-tuples can be increased for speed or decreased for sensitivity. The
slower full pairwise alignment calculate scores by counting the number of identities in
the optimal alignment and dividing them by the number of residues. The scores of
attained pairwise alignments are converted into distances which are input for the next
stage [114].

The second stage of ClustalW uses the distance matrix calculated in the first
stage to build the guide tree which serves as a guide for the calculation of the overall
multiple sequence alignment. This tree can be constructed by the Neighbour-Joining
(NJ) method [97] or by the Unweighted Pair Group Method with Arithmetic mean
(UPGMA) method [55].

The last stage uses the guide tree to progressively align the sequences. The se-
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Table 2.1: Complexity of the ClustalW algorithm [63].

Stage O(Time)
Distance matrix O(n2l2)
Guide tree O(n3)
Progressive alignment O(nl2 + n2l)
Total O(n2l2 + n3)

quences correspond one-to-one with the leaves of the tree. The inner nodes represent
the alignment of two existing alignments or sequences. Three cases can occur:

• An inner node whose descendants are leaves is associated with the pairwise
alignment of the sequences corresponding to these leaves.

• An inner node whose descendants are a leaf and an inner node is associated to
the alignment given by the sequence and the multiple alignment. This can be
achieved by profile-sequence alignment where the given multiple alignment is
represented by a statistical representative called profile.

• An inner node whose descendants are two inner nodes is associated to the align-
ment given by the corresponding multiple alignments. This can be attained by
profile-profile alignment where the given multiple alignments are represented by
statistical representatives.

The root of the tree corresponds to the overall multiple sequence alignment. The
basic algorithm uses one weight matrix and fixed gap opening and extension penalties.

However, this approach is not suitable for more divergent sequences. In this case,
sequence weights are calculated from the guide tree. Closely related sequences have
lower weights while the divergent ones have higher weights. Moreover, different sub-
stitution matrices are used at different alignment stages. The initial gap opening and
gap extending penalties are given. New penalties are calculated based on the length of
sequences, similarity of sequences, weight matrix, and existing gap positions [114, 128].
An example using tat and vpu proteins from HIV 1 (Human Immunodeficiency Virus)
is shown in Figure 2.11. Table 2.1 presents the complexity of the ClustalW algorithm
where n is the number of sequences and l is the average sequence length [62, 63].

2.3 Tropical Algebra

The term tropical was given in honor of the Brazilian mathematician Imre Simon [105],
who was one of the pioneers of min-plus algebra. It is employed in many optimization
problems, e.g., Floyd-Warshall and Dijkstra algorithms and found extremely useful.
The tropical algebra or min-plus algebra (R∪{∞},⊕,⊙) is a semiring that consists of
the field of real numbers R together with an extra symbol∞ representing infinity, and
two arithmetic operations ⊕ and ⊙, called addition and multiplication [88], defined as

x⊕ y = min{x, y}, x, y ∈ R ∪ {∞}, (2.11)



2.3. Tropical Algebra 17

A DB C

B

C

D

E

(a) Stage 1: Distance matrix

B

A

C

D

E

(b) Stage 2: Guide tree

A

B

C

D

E

Profile1
Pairwise sequence

alignment

Pairwise sequence

alignment
Profile2

Profile-Sequence

alignment
Profile3

Profile4
Profile-Profile

alignment

(c) Stage 3: Progressive alignment

Fig. 2.10: Stages of the ClustalW algorithm. The first stage computes pairwise
distance between sequences. The guide tree is built in stage two using the distance
matrix. In stage three, the sequences are progressively aligned.

x⊙ y = x+ y, x, y ∈ R ∪ {∞}. (2.12)

The tropical sum of two elements is their minimum and the tropical product of two
elements is their ordinary sum. The neutral elements for addition and multiplication
are ∞ and zero, respectively.

x⊕∞ = x and x⊙ 0 = x, x ∈ R ∪ {∞}.

The additive and multiplicative inverses may not exist. For instance, there are no
solutions for equations 5⊕ x = 8 and ∞⊙ x = 2, x ∈ R∪ {∞} [129]. The addition of
vectors in the two-dimensional space over the tropical algebra is

(
u1

u2

)

⊕

(
v1
v2

)

=

(
u1 ⊕ v1
u2 ⊕ v2

)

=

(
min{u1, v1}
min{u2, v2}

)

and the multiplication of matrices is

(
u11 u12

u21 u22

)

⊙

(
v11 v12
v21 v22

)

=

(
u11 ⊙ v11 ⊕ u12 ⊙ v21 u11 ⊙ v12 ⊕ u12 ⊙ v22
u21 ⊙ v11 ⊕ u22 ⊙ v21 u21 ⊙ v12 ⊕ u22 ⊙ v22

)

=

(
min{u11 + v11, u12 + v21} min{u11 + v12, u12 + v22}
min{u21 + v11, u22 + v21} min{u21 + v12, u22 + v22}

)

.
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Sequence ACE69182.1 ACE69229.1 ACE69184.1
ACE69229.1 15.38
ACE69184.1 79.41 15.38
ACE69231.1 15.38 80.77 15.38

(a) Distance matrix

(b) Rooted tree using
UPGMA method

ACE69182.1 --------ESEGDQEELSALVEMGHHAPWDIDDL-------

ACE69229.1 --------ESDGDQEELSALVEMGDHAPLVINDL-------

ACE69184.1 PTSQPRGDQTGPKESEKKVERETATDQEDQWMDSYHLSGSI

ACE69231.1 PASQPRGDPTGPKESKKKVESETETDQGDQQMDS-------

: .:.: .. * . *

(c) Multiple alignment

Fig. 2.11: ClustalW based sequence alignment between the tat and vpu proteins
from HIV 1 calculated from EMBL-EBI using the BLOSUM substitution matrix. The
gap opening and the gap extension penalties for the full pairwise alignment are 10
and 0.1, respectively, and the initial gap penalty and the gap extension penalty for
multiple alignments are 25 and 0.2, respectively.

These operations can be extended to matrices of arbitrary dimension. The identity
matrix for the tropical matrix multiplication is

I =









0 ∞ · · · ∞

∞ 0
. . .

...
...

. . .
. . . ∞

∞ · · · ∞ 0









.

An antitone bijective mapping (x 7→ − log x) from the natural semiring (R≥0,+, .)
onto the tropical semiring is called tropicalization of the natural semiring [129].

2.4 Hidden Markov Model

The hidden Markov model is a stochastic model widely used in areas such as speech
recognition [91], computational biology [52], and pattern recognition [29]. The hidden
Markov model represents the probability distribution of a sequence of observations
and has two basic properties: the states that generated the observation sequence are
hidden and the Markov process in which the future state depends only on the current
state, not on the past states. In this thesis, we assume limited, discrete, and countable
number of states.

The initial probability is the probability of an inital state. It is given by a vector
π of length l, where l is the number of states.

π =
(
π1, π2, . . . , πl

)
.

The transition probability is the probability to transit from one state to another
and must be equal or greater than 0. The sum of all the probabilities from one state
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to all other states must be 1. The matrix T of size l × l holds the state transition
probabilities, where l is the finite number of states.

T =








t1,1 t1,2 . . . t1,l
t2,1 t2,2 . . . t2,l
...

...
. . .

...
tl,1 tl,2 . . . tl,l








.

The probability to emit a particular symbol from a given state is called emission
probability. The emission probability matrix E has size l × l

′

, where l is the number
of states and l

′

is the number of output symbols. The row sums for the transition
probability and emission probability matrices must be equal to 1.

E =








e1,1 e1,2 . . . e1,l′

e2,1 e2,2 . . . e2,l′

...
...

. . .
...

el,1 el,2 . . . el,l′








.

The formal definition of hidden Markov mode is [23, 92]:

• Finite number of states l drawn from an alphabet Σ = {σ1, σ2, . . . , σl};

• Number of observation symbols l
′

per state drawn from an alphabet Σ
′

=
{o1, o2, . . . , ol′};

• Length of observation sequence n;

• Observed sequence τ = τ1, . . . , τn ∈ Σ
′n

;

• State transition probability matrix T ;

• Emission probability matrix E;

• Initial probability vector π.

The hidden Markov model assumes that the transition probability and emission
probability matrices are time invariant. The large number of states are inefficient
to use as they are difficult to analyze and a large transition matrix is required. An
example of a hidden Markov model at time k is illustrated in Figure 2.12. Here, the
states σi are hidden (shaded area) from the observations τi. The transition (shown
as rectangles) from one states to the next one depends on the transition probability.
At each step, the hidden Markov model selects a new state according to the tran-
sition probability and emits a symbol according to the emission probability. Some
major applications of hidden Markov models in the field of bioinformatics are pairwise
and multiple sequence alignment, gene finding, secondary structure prediction, and
phylogenetic analysis [23, 25, 53, 65, 87, 103, 104, 113, 124].

Example 2.4.1. The CpG islands are regions of DNA characterized by a large number
of adjacent CG nucleotides linked by the phosphodiester bonds. The CpG islands
are typically 300-3,000 base pairs in length and found in approximately 40% of the
promoter region of the mammalian genes (70% in the human promoter region). The
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· · · σk−1 Tσk−1,σk
σk Tσk,σk+1

σk+1 · · ·

τk−1 τk τk+1

Fig. 2.12: Hidden Markov model at state σk.

methylation modifies C in a CpG pair i.e., CH3-group replaces the H-atom to mutate it
into T. This methylation process is suppressed in a short region called CpG islands [7,
23].

The problem, whether a nucleotide comes from a CpG island or not, can be imple-
mented by a hidden Markov model. For this, we have eight hidden states drawn from
the alphabet Σ = {A+, C+, G+, T+, A−, C−, G−, T−} where + represents the nu-
cleotide emitted by the CpG island and - represents the nucleotide emitted by the non
CpG island, four observed symbols Σ

′

= {A,C,G, T}, transition probability matrix,
and emission probability matrix (Fig. 2.13).

The hidden Markov model addresses three basic problems [91, 92]:

• Evaluation:
Given the hidden Markov model M = (T ,E,π) and the observation sequence
τ = τ1τ2 . . . τn, calculate the probability that the model M has generated the
observation sequence τ .

• Decoding:
Given the hidden Markov model M = (T ,E,π) and the observation sequence
τ = τ1τ2 . . . τn, calculate the most likely sequence of hidden states that produced
this observation sequence τ .

• Learning:
Given the training observation sequence τ = τ1τ2 . . . τn and the general struc-
ture of the HMM (numbers of hidden and visible states), determine the hidden
Markov model parameters M = (T ,E,π) that best fit training data.

The decoding problem can be solved by the Viterbi algorithm. For the CpG island
problem, the Viterbi algorithm is used to find the most likely sequence of states that
generated the given sequence. In this work, we will focus on the Viterbi algorithm by
discussing the parallel design suitable for the GPU architecture.
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Fig. 2.13: The CpG island trellis diagram.

2.4.1 Viterbi Algorithm

Given a hidden Markov model and an observed sequence, deducing the sequence of
(hidden) states that generated the observed sequence is an important task. There are
several approaches which can predict the sequence of states that generated the observed
sequence. The dynamic programming based Viterbi algorithm is the most widely used
method to find the most probable sequence of (hidden) states that generated the
observed sequence [31, 117]. Figure 2.14 shows an example of the most probable path
for the CpG island problem for a given observed sequence.

The most probable path of hidden data that generated the observed sequence is
the path with maximum posteriori probability [23, 92, 129].

θ
′

= argmaxσ{pσ,τ}. (2.13)

The Viterbi algorithm is given by

M [0, σ] = πσ, σ ∈ Σ, (2.14)

M [k, σ] = max
σ
′

(tσ′
,σ · eσ′

,τk
·M [k − 1, σ

′

]), 1 ≤ k ≤ n− 1, (2.15)

M [n, σ] = eσ,τn ·M [n− 1, σ], σ ∈ Σ, (2.16)

pτ = max
σn

M [n, σn]. (2.17)

The value of M [k, σ] is calculated using the previous values of M [k − 1, σ], the
transition probability from the state σ−1 to the state σ, and the probability of emitting
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the sequence τk. The last step computes the probability pτ of the most probable path.
This gives the algorithm Viterbi. The inputs are the observation sequence τ , the
l × l transition probability matrix T , and the l × l

′

emission probability matrix E.
The algorithm fills in a dynamic programming matrix. The elements of the matrix
are derived from one of the elements in previous row. This probability denotes the
most probable path to generate the prefix of the observation sequence ending in the
corresponding symbol τk.

Algorithm 2.5 Viterbi(τ ,T ,E,π)

Require: sequence τ ∈ Σ
′n, probabilities T , E, and π

Ensure: term pτ
1: M ← matrix[0 . . . n, 1 . . . l]
2: for σ ← 1 to l do
3: M [0, σ]← π[σ]
4: end for
5: for k ← 1 to n− 1 do
6: for σ ← 1 to l do
7: M [k, σ]← 0
8: for σ

′

← 1 to l do
9: M [k, σ]← max{M [k, σ], T [σ

′

, σ] · E[σ
′

, τk] ·M [k − 1, σ
′

]}
10: end for
11: end for
12: end for
13: for σ ← 1 to l do
14: M [n, σ]← E[σ, τn] ·M [n− 1, σ]
15: end for
16: pτ ← 0
17: for σ ← 1 to l do
18: pτ ← max{pτ ,M [n, σ]}
19: end for

The multiplication of many probabilities can yield very small numbers. To avoid
this problem, the logarithmic workspace is used. Another advantage is that the
computational expensive multiplication operation is replaced by addition. The maxi-
mum probability that generated the observed sequence can be evaluated using semir-
ing homomorphism in Section 2.3. θ

′

is evaluated in tropical algebra by putting
qσ,τ = − log(pσ,τ ) [88, 129]

θ
′

= argminσ{qσ,τ}. (2.18)

For this, take the transition probability and emission probability matrices T
′

and
E

′

, where t
′

ij = − log(tij) and e
′

ij = − log(eij). The initial probability vector π
′

is

π
′

i = − log(πi).
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Fig. 2.14: The Viterbi algorithm shows an example of the most probable path for
the CpG island problem.

The computation of tropicalized term qτ for the Viterbi algorithm is [88, 129]

M [0, σ] = π
′

σ, σ ∈ Σ, (2.19)

M [k, σ] =
⊕

σ
′

(t
′

σ
′
,σ
⊙ e

′

σ
′
,τk
⊙M [k − 1, σ

′

]), 1 ≤ k ≤ n− 1, (2.20)

M [n, σ] = e
′

σ,τn
⊙M [n− 1, σ], σ ∈ Σ, (2.21)

qτ =
⊕

σn

M [n, σn]. (2.22)

The l × l matrix T
′

is

T
′

= − log(T ) =








− log(t1,1) − log(t1,2) . . . − log(t1,l)
− log(t2,1) − log(t2,2) . . . − log(t2,l)

...
...

. . .
...

− log(tl,1) − log(tl,2) . . . − log(tl,l)








,

the l × l
′

matrix E
′

is

E
′

= − log(E) =








− log(e1,1) − log(e1,2) . . . − log(e1,l′ )
− log(e2,1) − log(e2,2) . . . − log(e2,l′ )

...
...

. . .
...

− log(el,1) − log(el,2) . . . − log(el,l′ )








,
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and the initial probability vector π
′

is

π
′

= − log(π) =
(
− log(π1) − log(π2) . . . − log(πl)

)
.

This gives the algorithm TropViterbi. Its input is given by the observation
sequence τ , the transition probability matrix T

′

, the emission probability matrix E
′

,
and the initial probability vector π

′

. The algorithm initialize the first row of the matrix
M with initial probability. Next, entry M [k, σ] is computed by having minimum
value at the current state using the transition and emission probabilities. Finally,
the tropicalized term qτ is calculated. The computational complexity of Viterbi

and TropViterbi algorithms are O(nl2).

Algorithm 2.6 TropViterbi(τ ,T
′

,E
′

,π
′

)

Require: sequence τ ∈ Σ
′n, probabilities T

′

, E
′

, and π
′

Ensure: tropicalized term qτ
1: M ← matrix[0 . . . n, 1 . . . l]
2: for σ ← 1 to l do
3: M [0, σ]← π

′

[σ]
4: end for
5: for k ← 1 to n− 1 do
6: for σ ← 1 to l do
7: M [k, σ]←∞
8: for σ

′

← 1 to l do
9: M [k, σ]← min{M [k, σ], T

′

[σ
′

, σ] + E
′

[σ
′

, τk] +M [k − 1, σ
′

]}
10: end for
11: end for
12: end for
13: for σ ← 1 to l do
14: M [n, σ]← E

′

[σ, τn] +M [n− 1, σ]
15: end for
16: qτ ←∞
17: for σ ← 1 to l do
18: qτ ← min{qτ ,M [n, σ]}
19: end for



Chapter 3

Graphics Processing Unit

The growth of microprocessor systems is hugely limited by the heat-dissipation and
energy consumption factors. Due to these restrictions, the silicon based semiconductor
industry has switched from single core to the multiple processing cores. This change
enabled the design of parallel programs onto desktop computers. NVIDIA introduced
the application of the graphics processor for general purpose computations that are
traditionally treated by personal computers or workstations. A large set of problems in
molecular dynamics, physics simulations, and scientific computing have been tackled
by mapping them onto a GPU [78].

We will begin by outlining the design policy of the GPU. Then we will describe the
programming model of the GPU. Finally, we will present the general GPU architecture
and discuss the Fermi and Kepler architectures.

3.1 Design Policy of GPU

The fundamental difference between CPU and GPU is the design policy. The CPU is
latency oriented while the GPU is throughput oriented. The CPU is designed to have
sophisticated control logic and large cache memories to reduce instruction and data
access latencies.

However, the GPU is used for data parallel applications which appeal high arith-
metic intensity. Therefore, small cache memory and simple control logic is required to
achieve high performance [51, 78]. The memory access latency can be minimized by
overlapping computation and data transfer.

Both CPU and GPU should be used to achieve better performance i.e., CPU for
the sequential part and GPU for the parallel part. The CUDA programming model
introduced by NVIDIA supports the CPU/GPU execution.

3.2 Programming Model

Earlier, OpenGL and DirectX exploited the power of GPU for many data parallel algo-
rithms to achieve huge speed-up. However, this approach has several drawbacks [77]:

• Random memory reads and writes are not supported.
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Fig. 3.1: Grid of thread blocks.

• Programmers need to have knowledge of the graphics API.

• Problems need to be expressed in terms of vertex coordinates, textures, and
shader programs.

For this, NVIDIA introduced the CUDA programming model which enables the
programmer to write C – like functions called kernels with some extensions. Each kernel
is executed by a batch of parallel threads. CUDA provides three key abstractions: a
hierarchy of thread groups, shared memories, and barrier synchronization [78].

3.2.1 Thread Hierarchy

CUDA enables programmers to generate lightweight threads grouped into blocks that
are executed in parallel. Each block can be organized as a one-, two-, or three-
dimensional array of threads. The maximum number of threads per block is limited
by the hardware architecture [78].

Each block is assigned to only one streaming multiprocessor running until comple-
tion without pre-emption. A grid of size 2×2 is shown in Figure 3.1, where each block
has 3 × 3 threads. A kernel launch with this configuration can execute maximum 36
parallel threads. The number of thread blocks in a grid usually depends on the size of
data or the number of processors. The blocks in a kernel are subject to a scheduler in
order to assign them to the streaming multiprocessors. The thread blocks are executed
in serial or parallel manner which enables to schedule them in any order requiring spe-
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cial attention of the programmers about block dependencies. The threads belonging
to different blocks within a kernel cannot communicate during the execution [78].

3.2.2 Memory Model

The data need to be transferred into the GPU memory in order to be processed. CUDA
memory size is a limiting factor to achieve good performance. CUDA provides access
to several types of memory that helps the programmer to develop efficient parallel
programs (Fig. 3.2). The choice to use memory type typically depends on the factors
such as address space, scope, lifetime, and access latency [78].

The on-chip memories such as registers and shared memory can be accessed at very
high speed. The registers are allocated to the individual threads and have lifetime of
thread execution. The private variables to each thread are typically stored in the
registers. The threads within the thread block can share data using shared memory
and can read from and write to the shared memory within the kernel. The shared
memory has lifetime of a block and cannot be accessed after the block finishes its
execution. The size of shared memory is a limiting factor. Synchronization mechanism
should be provided to avoid concurrent read and write problems [78].

The variables declared in the global scope are stored in global memory and have
the lifetime of a whole application. The threads within a grid can read from and
write to the global memory. The data can be transferred directly from host memory
to the global memory. The size of the global memory is much larger than the shared
memory. The global memory access latency is very high (almost 100 times slower than
the shared memory). Therefore, the number of accesses to global memory should be
reduced within the kernel [51, 78].

The constant variables should be declared in the global scope and have the life-
time of application. It can be accessed by all threads and cannot be written from
within the kernel. The access latency of the constant memory is faster than the global
memory because it is cached but there is only limited amount of the constant memory
available [78].

The texture memory is a read-only memory that resides in the device memory and
is cached in the texture cache. The process of reading a texture is called a texture
fetch. The texture, which is a piece of the texture memory that is fetched, can be
a one-, two-, or three-dimensional array where the elements of the arrays are called
texels [78].

3.2.3 Thread Synchronization

In order to avoid the concurrent read/write problem for shared data, CUDA provides
a synchronization mechanism. To share the data by means of shared memory among
threads within a thread block, use syncthreads(), which is for synchronization pur-
poses. For the threads belonging to different thread blocks, data must be shared by
virtue of the global memory using separate kernel invocations. However, the perfor-
mance is degraded by the additional kernel invocation and global memory traffic [78].
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Fig. 3.2: CUDA memory model.

The efficiency of GPU programs depends on the utilization of the allocated hard-
ware, hardware configuration (number of threads, number of blocks, and memory
type), and the amount of parallelism exhibited by the problem [78, 90].

3.2.4 CUBLAS Library

CUDA also provides Compute Unified Basic Linear Algebra Subprograms (CUBLAS)
library [79, 81] which is an implementation of Basic Linear Algebra Subprograms
(BLAS). It enables the programmer to use the GPU without direct operation of the
CUDA drivers. In order to utilize the optimized library, vectors and matrices should
be created and filled in the device memory, invoking the required CUBLAS routines,
and transferring the results in host memory.

The CUBLAS library provides helper functions and BLAS routines. Helper func-
tions are used to move the data to or from the GPU memory. There are also methods
to create and destroy objects. BLAS functions are organized in three levels i.e., vector-
vector, matrix-vector, and matrix-matrix operations. The CUBLAS library uses the
column-major storage with 1-based indexing.

3.3 GPU Hardware Architecture

The NVIDIA GPU consists of Streaming Multiprocessors (SMs) each of which consists
of many Streaming Processors (SPs). The thread blocks are allocated to multipro-
cessors with the available execution capacity. Multiple thread blocks can execute
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concurrently on one SM and new blocks are allocated on the SM after some blocks
have finished their execution. However, one thread block is executed only on one
allocated SM [78].

A multiprocessor works in the SIMT manner to execute hundreds of threads con-
currently which helps to write thread level parallel code for independent threads as
well as data parallel code for coordinated threads. The threads are executed in groups
of 32 parallel threads called warps [78]. Next, we discuss briefly the Fermi and Kepler
based GPU hardware architectures.

3.3.1 Fermi Architecture

The first Fermi based GPU features up to 512 CUDA cores which are organized in
16 SMs of 32 cores each. Floating point and integer instructions are exectuted on a
CUDA core per clock for a thread. GPU is connected to CPU via PCI-Express [77].

A Fermi based streaming multiprocessor architecture is illustrated in Figure 3.3.
Each SM features 32 CUDA processors having a fully pipelined integer Arithmetic
Logic Unit (ALU) and Floating Point Unit (FPU) and 16 load/store units (LD/ST),
allowing source and destination addresses to be calculated for 16 threads per clock.
Special Function Units (SFUs) execute transcendental instructions such as sin, cosine,
reciprocal, and square root. Each SM features two warp schedulers and two instruction
dispatch units, allowing two warps to be issued and executed concurrently. The Fermi
architecture also allows a 64 KB configurable shared memory and L1 cache which can
be adjusted according to the problem nature [77].

3.3.2 Kepler Architecture

The next generation CUDA compute architecture called Kepler provides the capability
to invoke the kernel or other library routines such as BLAS functions within the kernel.
The Kepler architecture also provide a feature called Hyper-Q which enables multiple
CPU cores to launch work on a single GPU by increasing the total number of work
queues (32) between host and GPU. This will allow efficient hardware utilization [82].

Kepler GK110 is designed for power efficiency to provide high performance per
Watt. A full Kepler GK110 implementation includes 15 Streaming Multiprocessor
(SMX) units each with 192 single precision CUDA cores and six 64 bit memory con-
trollers [82].

The Kepler GK110 SMX features 192 single precision CUDA cores and 64 double
precision math units (DP unit). Each core has fully pipelined floating point and integer
arithmetic logic units (Fig. 3.4). Each SMX also has 32 load/store units (LD/ST)
and 32 Special Function Units (SFU). Four warp schedulers and eight instruction
dispatch units allow four concurrent warps executions. The memory hierarchy of the
Kepler architecture is similar to the Fermi architecture except it allows 32KB / 32KB
split between the shared memory and L1 cache and 48 KB read-only data cache [82].
Table 3.1 shows a comparison between Fermi and Kepler architectures.
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Table 3.1: Comparison of Fermi and Kepler architectures [82].

Fermi GF104 Kepler GK110
compute capability 2.1 3.5
threads/warp 32 32
max warps/multiprocessor 48 64
max threads/multiprocessor 1536 2048
max thread blocks/multiprocessor 8 16
32bit registers/multiprocessor 32768 65536
max registers/thread 63 255
max threads/thread block 1024 1024
max x grid dimension 216 − 1 232 − 1

Table 3.2: NVIDIA GeForce GTX 560 Ti properties.

CUDA version 4.0
compute capability 2.1
multiprocessors 8
CUDA cores per multiprocessor 48
GPU clock speed 1.8 GHz
constant memory 64 KB
global memory 1024 MB
shared memory per block 48 KB
registers per block 32768
maximum number of threads per block 1024
maximum sizes of each dimension of a block 1024 x 1024 x 64
maximum sizes of each dimension of a grid 65535 x 65535 x 65535

3.4 Hardware

The hardware and software used for implementing the parallel algorithms is an Intel
Core 2 Duo 6600 CPU (2.40 GHz) running openSUSE 11.4 linux distribution using
the Intel Math Kernel Library (MKL) 10.3, and the CUDA version 4.0 on an NVIDIA
GeForce GTX 560 Ti graphics card. The tests are conducted using a serial gcc compiler
(version 4.4.1) and an NVIDIA nvcc compiler. Table 3.2 provides the key features of
NVIDIA GeForce GTX 560 Ti.



3.4. Hardware 31

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

Register File (32,768 x 32-bit)

Interconnect Network

64 KB Shared Memory / L1 Cache

Uniform Cache

Instruction Cache

Warp Scheduler

Dispatch Unit

Warp Scheduler

Dispatch Unit

SPU

SPU

SPU

SPU

FP Unit

Dispatch Port

Operand Collector

INT Unit

Result Queue

CUDA Core

Fig. 3.3: Fermi streaming multiprocessor architecture [77].



32 3. Graphics Processing Unit

Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU

Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU

Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU

Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU

Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU

Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU

Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU

Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU

Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU

Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU

Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU

Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU

Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU

Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU

Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU

Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU Core Core Core DP Unit Core Core Core DP Unit LD/ST SPU

Register File (65,536 x 32-bit)

Interconnect Network

64 KB Shared Memory / L1 Cache

48 KB Read only Data Cache

Tex Tex Tex Tex Tex Tex Tex Tex

Tex Tex Tex Tex Tex Tex Tex Tex

Instruction Cache

Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch

Fig. 3.4: Kepler GK110 streaming multiprocessor (SMX) architecture [82].



Chapter 4

Sequence Alignment

Alignment is the basic operation in molecular biology for comparing sequences. It
provides a means to arrange biomolecular sequences in order to identify regions of
similarity that may be a consequence of functional, structural, or evolutionary relat-
edness. Although, the heuristic methods are faster but they are still costly due to
rapid increase in sequence databases. Therefore, a variety of techniques are employed
to parallelize heuristic methods.

In this chapter, we will present different strategies to implement progressive se-
quence alignment on the GPU. We will investigate the profile-profile alignment and
profile-sequence alignment by using the matrix-matrix product and the wavefront
methods. We will conclude with a parallelization technique to map the progressive
alignment stage of the ClustalW algorithm on the GPU.

4.1 Related Work

In recent years, there were several attempts to improve the execution speed of sequence
alignment algorithms using GPUs. Manavski et al. [67] and Munekawa et al. [71] have
accelerated the Smith-Waterman algorithm on a GPU gaining moderate performance
boosts. The methods to reduce the amount of data transfer and data fetches help
further to increase the speed-up. Schatz et al. [100] have provided an implementation of
a local sequence alignment algorithm (MUMmer) on a GPU attaining a 10-fold speed-
up over a serial CPU version. Similarly, Dzivi [90] has implemented the Needleman-
Wunsch algorithm and gained performance peaks of an 80-fold speed-up. All these
algorithms follow the wavefront approach utilizing the fact that the anti-diagonals in
the forward table are independent of each other. Xiao et al. [126] used a fine-grained
parallelization strategy by distributing the tasks of a single problem across all threads
on the GPU. These are just few examples of the work which is done to parallelize the
sequence alignment on the GPU architecture.

Several parallel algorithms have been developed to improve the efficiency of multi-
ple sequence alignment [3, 19, 46, 62, 64]. However, most of these methods discuss the
profile-profile and profile-sequence alignment as part of progressive sequence alignment.
There is hardly any GPU based implementation that solely focuses the profile-profile
alignment.

The conversion of the alignment problem into a form that matches the vector-
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processing architecture of GPU can result in a huge performance boost. Recently,
Bassoy et al. [5] formulated a matrix-matrix product algorithm by separating the
profile-sequence alignment algorithm into a data dependent and a data independent
part to attain an order of magnitude speed-up on an GPU. However, they have ig-
nored the time taken by executing the data dependent part on the CPU which is the
reason for their huge speed-up given. In this work, profile-profile alignment problem
will be transformed into matrix-matrix product to utilize the parallel GPU architec-
ture. Moreover, the space requirements for the matrix-matrix product based profile-
sequence alignment algorithm presented by Bassoy et al. [5] will be improved to process
sequences of larger length.

Several efforts have been made to accelerate the performance of the ClustalW

algorithm. ClustalW-MPI [57], Ebedes et al. [24], and pCLUSTAL [14] use MPI to
parallelize ClustalW on a cluster. ClustalW-MPI parallelizes all three stages and
achieves approximately 4.3 speed-up using 16 processors. Ebedes et al. demonstrate
speed-up of 5.5 by parallelizing the stages one and three. Similarly, Tan et al. [111]
use MPI/OpenMP for symmetric multiprocessors to parallelize the stages one and
three. Mikhailov et al. [69] show a 10-fold speed-up by parallelizing all three stages
with OpenMP on a shared-memory SGI machine. Oliver et al. [86] map stage one on
FPGA and attain speed-up between 45 and 50. MT-ClustalW [10] utilize pthreads
to parallelize all three stages. GPU-ClustalW [61] parallelize the first stage on a
GPU with OpenGL to obtain approximately 7 speed-up. MSA-CUDA [62] exploits
the parallel architecture of the GPU by implementing all three stages and achieve
maximum average speed-up of approximately 37 for a small number of long sequences.
In this chapter, a combination of matrix-matrix product and wavefront methods will
be used to parallelize the progressive alignment stage of ClustalW.

4.2 Profile-Profile Alignment

The operation to align two existing alignments is called profile-profile alignment.
Profile-profile alignment is better to detect distantly related proteins and provide bet-
ter alignment accuracy when compared with profile-sequence alignment [26]. There are
many strategies to implement profile-profile alignment depending on scoring function,
gap-penalties, and alignment method [84].

In this section, we will formulate parallel solutions for profile-profile alignment on
the GPU. It is straight-forward to design parallel algorithms when there is no data
dependency between elements. However, the algorithm ProfProfAlign shows that
the cell Si,j in the interior of the forward table can only be computed if the neighboring
entries Si−1,j , Si,j−1, and Si−1,j−1 are already known. The entries of the forward table
depend on one or three previous entries (Fig. 4.1). These data dependent elements
impact the algorithm design and performance. In the following, we will present two
approaches that fit to the parallel architecture of the GPU.

4.2.1 Matrix Approach

The algorithm ProfProfAlign will be redesigned and implemented onto GPU by
separating the data independent and data dependent parts. The score of a profile-
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Fig. 4.1: Data dependencies in the forward table.

profile alignment (P′,Q′) defined by Eqn. (2.7) can also be calculated using the squared
Euclidean distance which amounts to a scalar product,

d(p, q)2 = (p− q)T · (p− q). (4.1)

First, the data independent part is implemented on GPU by calculating Euclidean
distances d(pi,−p), d(−p, qj), and d(pi, qj) making use of scalar products. These
values are pre-stored in three m × n matrices V = (Vij), H = (Hij), and D =
(Dij). Second, the data dependent part uses these matrices to compute the entries
of the forward table. This part requires to take the minimum of three values and is
implemented onto CPU. This gives the algorithm ProfProfAlignScalProd.

The algorithm ProfProfAlignScalProd can be reformulated by using matrix
multiplications. For this, define the l ×m matrix

P− = (−p, . . . ,−p) (4.2)

and the l × n matrix

Q− = (−p, . . . ,−p) , (4.3)

and form the l × n matrix

H1 = Q− −Q

= (−p − q1, . . . ,−p − qn) ,
(4.4)

the l ×m matrix

V 1 = P−P−

= (p1 −−p, . . . ,pm −−p) ,
(4.5)

and the l × (m · n) matrix

D1 = (p1 − q1, . . . ,p1 − qn, . . . ,pm − q1, . . . ,pm − qn) . (4.6)
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Algorithm 4.1 ProfProfAlignScalProd(P,Q)

Require: two profiles P = p1, . . . ,pm and Q = q1, . . . , qn

Ensure: S = (Sij) forward matrix
1: S0,0 ← 0 // initialization
2: for i← 1 to m do
3: Si,0 ←

∑i

k=1 d(pk,−p)
4: end for
5: for j ← 1 to n do
6: S0,j ←

∑j

k=1 d(−p, qk)
7: end for
8: for i← 1 to m do // calculation
9: for j ← 1 to n do

10: Vi,j ← d(pi,−p)
11: Hi,j ← d(−p, qj)
12: Di,j ← d(pi, qj)
13: end for
14: end for
15: for i← 1 to m do // minimization
16: for j ← 1 to n do
17: Si,j ← min{Si−1,j + Vij , Si,j−1 +Hij, Si−1,j−1 +Dij}
18: end for
19: end for
20: return S
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Then the squared Euclidean distances of the entries in the matrix H can be cal-
culated by multiplying the newly formed matrix H1 with its transpose and extracting
the diagonal entries. This similarly holds for the matrices V and D.

H = diag[HT
1 ·H1] =

(
d(−p − qj)

2
)

j
, (4.7)

V = diag[V T
1 · V 1] =

(
d(pi −−p)

2
)

i
, (4.8)

D = diag[DT
1 ·D1] =

(
d(pi − qj)

2
)

i,j
. (4.9)

Theorem 4.1. The matrix identity in (4.7) holds.

Proof. Take the l × n matrix

H1 = Q− −Q = (−p − q1, . . . ,−p − qn) ,

where Q− is the l × n matrix defined in (4.3). Expanding the matrix H in (4.7) gives

H = diag[HT
1 ·H1]

= diag











−p1 − q1,1 . . . −pl − q1,l
...

. . .
...

−p1 − qn,1 . . . −pl − qn,l




 ·






−p1 − q1,1 . . . −p1 − qn,1
...

. . .
...

−pl − q1,l . . . −pl − qn,l











= diag






(−p1 − q1,1)
2 + . . .+ (−pl − q1,l)

2 . . .
...

. . .
...

. . . (−p1 − qn,1)
2 + . . .+ (−pl − qn,l)

2






= diag






d(−p − q1)
2 . . .

...
. . .

...
. . . d(−p − qn)

2




 .

Taking diagonal entries, we obtain the squared Euclidean distances

H = (d(−p − qj)
2)j .

Theorem 4.2. The matrix identity in (4.8) is valid.

The proof is similar to that of Theorem 4.1.

Theorem 4.3. The matrix identity in (4.9) holds.

Proof. Pick the l × (m · n) matrix

D1 = (p1 − q1, . . . ,p1 − qn, . . . ,pm − q1, . . . ,pm − qn) .

By (4.9), we obtain

D = diag[DT
1 ·D1]

= diag











p1,1 − q1,1 . . . p1,l − q1,l
...

pm,1 − qn,1 . . . pm,l − qn,l




 ·






p1,1 − q1,1 . . . pm,1 − qn,1
...

p1,l − q1,l . . . pm,l − qn,l











= diag







d(p1 − q1)
2 . . .

...
. . .

...
... d(pm − qn)

2






.
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By taking diagonal entries, we obtain the squared Euclidean distances given by

D = (d(pi − qj)
2)i,j .

These identities give rise to algorithm ProfProfAlignMatProd [39].

Algorithm 4.2 ProfProfAlignMatProd(P,Q)

Require: two profiles P = p1, . . . ,pm and Q = q1, . . . , qn

Ensure: S = (Sij) forward matrix
1: S0,0 ← 0 // initialization
2: for i← 1 to m do
3: Si,0 ←

∑i

k=1 d(pk,−p)
4: end for
5: for j ← 1 to n do
6: S0,j ←

∑j

k=1 d(−p, qk)
7: end for
8: H1 ← Q− −Q // calculation
9: V 1 ← P−P−

10: D1 ←
(
pi − qj

)

ij

11: H ← diag[HT
1 ·H1]

12: V ← diag[V T
1 · V 1]

13: D ← diag[DT
1 ·D1]

14: for i← 1 to m do // minimization
15: for j ← 1 to n do
16: Si,j ← min{Si−1,j + Vi, Si,j−1 +Hj, Si−1,j−1 +Dij}
17: end for
18: end for
19: return S

4.2.2 Wavefront Approach

The entries of the forward table depend on one or three previous entries (Fig. 4.1). The
cells can be filled column by column, row by row, or anti-diagonal by anti-diagonal.
The first two approaches limit the number of cells that can be simultaneously calcu-
lated, since entries in one column depend on other entries in the same or previous
columns. The situation is similar for rows.

However, an anti-diagonal consists of all cells Sij such that i+j is constant. There-
fore, the elements on the same anti-diagonal are independent of each other and only
depend on the previous two anti-diagonals. The anti-diagonals of the 6 × 6 forward
table are shown in Figure 4.2. In order to calculate value for S2,2, we require the cells
S1,1, S1,2, and S2,1. Therefore, we need the previous two anti-diagonals i.e., k − 1 and
k − 2. The approach of calculating all entries in each anti-diagonal at once is called
wavefront method [54]. Most of the GPU implementations of sequence alignment
follow this paradigm [13, 67, 71, 90, 100].
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Fig. 4.2: The forward table for profile-profile alignment showing the anti-diagonals.

S0,0 S0,1 S0,2 S0,3 S0,4 S0,5

S1,0 S1,1 S1,2 S1,3 S1,4 S1,5

S2,0 S2,1 S2,2 S2,3 S2,4 S2,5

S3,0 S3,1 S3,2 S3,3 S3,4 S3,5

S4,0 S4,1 S4,2 S4,3 S4,4 S4,5

S5,0 S5,1 S5,2 S5,3 S5,4 S5,5

Fig. 4.3: Portion of a decomposition of the forward table into blocks of size 2× 2.

In the basic wavefront approach, the forward table is divided into blocks of the
same size (Fig. 4.3). Each block inherits the data dependencies from the forward table.
Moreover, there are data dependencies between the blocks (Fig. 4.4). For instance,
at the beginning all entries of the block B1,1 can be computed. Then the cells of the
blocks B1,2 and B2,1 can be filled depending on the availability of the boundary entries
of block B1,1. Moreover, block B2,2 needs both the boundary entries of B1,2 and B2,1 as
well as the last entry of B1,1. Thus the complete forward matrix exhibits parallelism
at two levels: intra-block and inter-block. Both forms show a similar anti-diagonal
pattern of parallelism.

Suppose each block has r rows and c columns. Then by the wavefront approach,
there are r + c − 1 anti-diagonals such that the block can be computed in r + c − 1
parallel steps. To compute r·c cell entries in each block, r+c−1 boundary cells requires
values from adjacent blocks. Each block takes r+ c+1 boundary cells to compute r · c
cell entries. Thus the communication-to-computation ratio becomes (r+ c+1)/(r · c).
This ratio decreases when the block size increases.

A typical implementation of a wavefront algorithm on a GPU launches two kernels,
one for initialization and one for filling the forward table [90]. The kernel for initial-
ization calculates the values of the boundary cells, while the kernel for computation of
the forward table provides a grid of blocks such that the blocks (of threads) correspond
one-to-one with the blocks in the decomposition of the forward table. Moreover, the
threads in a block are associated one-to-one with the cells of the corresponding block
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Fig. 4.4: Block structure of the forward table.

in the forward table each of which calculating the value of the cell. The kernel nat-
urally emulates the anti-diagonal parallelism inside each block. For this, the threads
in each block need to synchronize due to the dependencies among the anti-diagonals
using the GPU function syncthreads.

However, CUDA does not provide global barrier synchronization between blocks
and blocks exhibit producer-consumer relationship (due to data dependencies). There-
fore, the anti-diagonal parallelism among blocks needs to be implemented on the host
CPU.

4.2.3 Performance

In order to establish which approach is preferable for implementation of profile-profile
alignment, we have compared matrix and wavefront approaches using execution time,
speed-up, and Cell Updates Per Second (CUPS). FLoating-point Operations Per Sec-
ond (FLOPS) depicts one dimension of algorithm efficiency. It ignores memory traffic
and other overheads related to program execution. Moreover, the number of actual
FLOPS are hardware architecture dependent. For these reasons, we have not consid-
ered FLOPS as performance measure.

The profiles have been generated at random for various lengths ranging from 32
to 992 with a step size of 32. The reasons are that CUDA has a fixed warp size
of 32 threads. Additionally, profiles of higher length up to 10,000 are considered to
analyze the behaviour of the different versions of the profile-profile alignment. Profiles
of length longer than 10,000 are not taken into account due to hardware limitations
since then the tables become so huge that they may occupy the whole GPU memory.
Moreover, only profiles of comparable length are considered. Execution times have
been averaged over ten runs for each profile length.

Four basic implementations of the algorithm ProfProfAlignScalProd have
been evaluated; in each case, the forward table is decomposed into blocks of size k×k:

• Simple k: each thread calculates one cell of the forward table (k2 threads per
block).

• Row k: each thread computes one row of a block (k threads per block).
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Fig. 4.5: Runtime (in seconds) of ProfProfAlignScalProd on NVIDIA.

• Column k: each thread yields one column of a block (k threads per block).

• Mix k: each thread evaluates one row and one column of a block (k threads per
block).

The results are illustrated in Figure 4.5 for block sizes k = 64 and 256 by consid-
ering kernel execution and transfer of results back to CPU. It appears that all four
approaches yield similar execution times for alignments of profiles longer than 500.
Moreover, the block size seems to have no influence on the performance. The reason
is that the four variants implementing the data independent part exploit parallelism
quite similarly.

Next, the algorithm ProfProfAlignScalProd has been implemented by calcu-
lating the forward table using the CUBLAS library functions SAXPY (which takes the
difference between two profiles) and SNRM2 (which calculates Euclidean distance). A
comparison of this implementation with two implementations of Simple k (considering
only kernel execution and transfer of results back to host memory) and an Intel CPU
implementation via MKL using the library functions SAXPY and SNRM2 to establish the
forward table is given in Figure 4.6. It appears that Simple k outperforms both the
CUBLAS and the Intel CPU implementations by one order of magnitude. Moreover,
the Intel CPU implementation is faster than the CUBLAS one up to profiles of length
700. The reason is that the CUBLAS function SNRM2 stores results back into the host
memory for each cell.

The algorithm ProfProfAlignMatProd is difficult to implement for larger
profiles. Indeed, the memory required to store the intermediate matrices on the device
can become huge when compared with the size of the results, since only the data on
the major diagonal are used. However, the algorithm ProfProfAlignMatProd

can be realized using vector multiplication.
For this purpose, two variants have been considered:

• MatProd V1: use CUBLAS functions.

• MatProd V2 k: perform all calculations on the GPU (k threads per block).
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Fig. 4.6: Runtime (in seconds) of ProfProfAlignScalProd on NVIDIA and
Intel CPU using MKL.

Note that MatProd V1 can be implemented with the CUBLAS functions gemm for
subtraction of matrices and dot for component-wise multiplication of vectors, which
corresponds to the multiplication of the diagonals of the involved matrices. Indeed,
gemm performs the operation

C ← αAB + βC. (4.10)

Thus the subtraction of two matrices can be carried out by setting α = 1, β = −1,
and taking the identity matrix for B. But the identity matrix has the same size as
the matrix A so that unnecessary computations are performed. Hence, the idea to
implement ProfProfAlignMatProd by MatProd V1 has been discarded.

On the other hand, we have specified the wavefront approach in Section 4.2.2. This
approach is implemented by the SMwavefront k method where the data produced by
the blocks are stored in global memory. These data will be transferred to shared
memory when a new block is being launched that requires access to these data. The
anti-diagonal parallelism among blocks is exploited by the CPU. This will incur some
delay due to switching between GPU and CPU.

Furthermore, we have compared five implementations of the profile-profile align-
ment algorithm: Simple k, MatProd V2 k, SMwavefront k (for block sizes k = 64
and 256) and the Intel CPU implementation with and without the MKL. First, kernel
execution and transfer of results back to host have been considered. The results in
Figure. 4.7 exhibit that the Simple k approach performs best for profile lengths up
to 500 while Simple k and SMwavefront k have almost similar execution times with
a slight edge in performance to SMwavefront k for lengths longer than 500. The per-
formance degradation of SMwavefront k for smaller length is due to the computation-
to-communication cost since a smaller number of blocks is executed concurrently. As
the profile lengths increase, multiple anti-diagonal block executions for SMwavefront k
result in superior performance when compared with Simple k and MatProd V2 k.

Second, kernel execution, memory allocation, and transfer of results back to host
have been taken into account (Fig. 4.8). MatProd V2 k has almost the same perfor-
mance as the Intel CPU implementation (with and without MKL) because duplication
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Fig. 4.7: Runtime (in seconds) of profile-profile alignment algorithms on NVIDIA
and Intel CPU (with and without MKL) by considering kernel execution and transfer
of results back to CPU.

of profiles for the purpose of vector subtraction is time consuming. When using the
MKL BLAS routine SAXPY to calculate the difference between profile vectors, the new
data will overwrite the old ones. To avoid this, the profiles should be pre-stored caus-
ing a degradation in performance. The SMwavefront k execution time is calculated by
excluding switching delay between CPU and GPU. However, the impact of this delay
on the performance of SMwavefront k is not significant for profiles of length < 1000,
but the switching delay for longer profile lengths becomes a significant factor for the
superior performance of SMwavefront k when compared with Simple k. For profiles of
length > 1000, the runtime performance of MatProd V2 k is almost similar to that of
Simple k and SMwavefront k.

Next, the speed-ups attained with the NVIDIA implementations when compared
with the Intel CPU implementation using MKL have been calculated. First, kernel
execution and transfer of results back to the host have been considered. The results in
Figure. 4.9 illustrate that NVIDIA implementations of Simple k and SMwavefront k
achieve speed-up factors of one order of magnitude when compared with the Intel CPU
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Fig. 4.8: Runtime (in seconds) of profile-profile alignment algorithms on NVIDIA and
Intel CPU (with and without MKL) by considering memory allocation, data transfer,
and kernel execution.

implementation using MKL. For the profile lengths > 1000, SMwavefront k exhibits
maximum speed-up factor of about 38.5 (mean 30) while Simple k and MatProd V2 k
achieve average speed-up factor of about 20. Second, this result remains valid when
overheads for memory allocation are taken into account (Fig. 4.10). Note that MatProd
V2 k does not have a significant speed-up due to duplication of profiles for subtraction
purposes. Tables 4.1 and 4.2 provide more details which depicts that SMwavefront k
performs much better than other implementations for longer profiles.

To sum up, the CUPS attained with NVIDIA implementations and CPU-MKL
have been calculated (Fig. 4.11). For each cell to calculate the squared Euclidean
distance, we require three times 21 multiplications, 21 additions, and 21 subtractions
(20 amino acids plus blank). This large number of floating point operations is the
reason for smaller values of CUPS. Another factor that contributes to small values of
CUPS for Simple k and MatProd V2 k is due to the processing of the data dependent
part on the host CPU. Table 4.3 provide more details about CUPS. SMwavefront k
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Fig. 4.9: Speed-ups of profile-profile alignment algorithms for Simple k, MatProd
V2 k, and SMwavefront k over CPU-MKL by considering kernel execution and transfer
of results back to CPU memory.

achieves about 42 MCUPS on average and clearly outperforms Simple k and MatProd
V2 k implementations.

In this section, the parallel formulation of profile-profile alignment was studied
using the matrix-matrix product and the wavefront methods. These results exhibit
that the SMwavefront 256 is a very good candidate for the implementation of profile-
profile alignment on a GPU because it has better hardware utilization and speed-up
compared to Simple k and MatProd V2 k. The matrix approach is not a suitable
option since the elements at diagonal are of interest and unnecessary operations are
performed for other matrix entries.
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Table 4.1: Maximum and average speed-ups of profile-profile alignment algorithms
for Simple k, MatProd V2 k, and SMwavefront k over CPU-MKL by considering kernel
execution and transfer of results back to CPU memory.

Speed-up
profile length < 1000 profile length > 1000
max mean max mean

Simple 64 191.6012 23.0617 23.5844 18.6107
Simple 256 167.0107 21.8563 23.3564 19.3647
MatProd V2 64 107.9910 14.7831 25.8997 20.2941
MatProd V2 256 102.1288 13.1962 23.8790 19.6056
SMwavefront 64 110.5914 18.9352 38.1476 29.4485
SMwavefront 256 114.7355 20.0702 38.5810 29.9065

Table 4.2: Maximum, and average speed-ups of profile-profile alignment algorithms
for Simple k, MatProd V2 k, and SMwavefront over CPU-MKL by considering kernel
execution, memory allocation, and data transfer between CPU and GPU memory.

Speed-up
profile length < 1000 profile length > 1000
max mean max mean

Simple 64 66.4489 15.5892 18.6781 15.3341
Simple 256 66.1113 16.9095 18.5901 15.1040
MatProd V2 64 28.3095 2.1860 19.4008 15.7134
MatProd V2 256 29.2206 2.3378 19.4863 15.8976
SMwavefront 64 50.0176 13.5337 26.3981 19.5776
SMwavefront 256 43.6919 15.4248 26.5118 19.7270

Table 4.3: Maximum, and average MCUPS of profile-profile alignment algorithms.

MCUPS
profile length < 1000 profile length > 1000
max mean max mean

CPU-MKL 1.4146 1.1668 1.6275 1.4588
Simple 64 19.6801 16.5991 27.4666 26.6164
Simple 256 19.1384 16.2904 29.6419 27.9431
MatProd V2 64 13.5027 11.4729 31.0323 29.3160
MatProd V2 256 10.8376 9.8933 30.0492 28.3202
SMwavefront 64 29.6980 19.0420 44.4270 41.9456
SMwavefront 256 31.6278 20.0917 44.9318 42.6131



4.3. Profile-Sequence Alignment 47

Profile Length

S
p
ee
d
-u
p

Simple 64
Simple 256
MatProd V2 64
MatProd V2 256
SMwavefront 64
SMwavefront 256

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

(a) Profile length < 1000

Profile Length

S
p
ee
d
-u
p

Simple 64
Simple 256
MatProd V2 64
MatProd V2 256
SMwavefront 64
SMwavefront 256

2000 3000 4000 5000 6000 7000 8000 9000 10000
12

14

16

18

20

22

24

26

28

(b) Profile length > 1000

Fig. 4.10: Speed-ups of of profile-profile alignment algorithms for Simple k, MatProd
V2 k, and SMwavefront k over CPU-MKL by considering kernel execution, memory
allocation, and data transfer between CPU and GPU memory.

4.3 Profile-Sequence Alignment

The algorithm ProSeqAlign exhibits similar properties to ProfProfAlign. The
data dependency among the forward table entries impacts the parallel design of the
algorithm and its performance (Fig. 4.1). For this reason, two approaches are discussed
to parallelize profile-sequence alignment i.e., wavefront and matrix approaches. The
wavefront approach for profile-sequence alignment is similar to profile-profile alignment
(Section 4.2.2). The matrix approach is discussed in the following section.

4.3.1 Matrix Approach

Profile-sequence alignment was parallelized using the matrix approach by Bassoy et.
al. [5]. The alignment algorithm was designed using matrix-vector and matrix-matrix
product methods. However, the methods discussed have a drawback by introducing
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Fig. 4.11: Performance (MCUPS) of profile-profile alignment algorithms.

some matrices which require additional memory and clock cycles. Next, we will discuss
these methods and redesign them to achieve better performance.

To gain the benefits of parallelization, the algorithm ProSeqAlign is divided
into the data independent and data dependent parts. First, the data independent
part calculates three scalar products and store the results in m × n matrices H , V ,
and D. Second, these matrices are used in the data dependent part for calculation
of the forward table entries. Take the extended alphabet Σ′ = {a1, . . . , al}, where al
equals blank, and assign

wa = (σ(a, a1), . . . , σ(a, al))
T , a ∈ Σ′. (4.11)

The matrices are computed as

H i,j = σ(−o, xj) =
∑

b

σ(xj, b) · −o = −
T
o ·wxj

, (4.12)

V i,j = σ(oi,−) =
∑

b

σ(−, b) · oi,b = oT
i ·w−, (4.13)
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Di,j = σ(oi, xj) =
∑

b

σ(xj, b) · oi,b = oT
i ·wxj

. (4.14)

Now, the algorithm ProSeqAlign can be easily converted into matrix-vector
product. For this, take the l × n matrix W given as

W = (wx1 , . . . ,wxn
) . (4.15)

The i-th row of matrices H , V , and D can be calculated using matrix-vector
product

H i = −
T
o ·W , (4.16)

V i = oT
i ·w−, (4.17)

Di = oT
i ·W . (4.18)

To calculate first column of the table S, take the lower triangular m ×m matrix
Bm

Bm[O
T ·w−] =








1
1 1
...

. . .

1 1 . . . 1


















oT
1
...
oT
m




 ·w−






=







oT
1 ·w−

oT
1 ·w− + oT

2 ·w−

. . .
oT
1 ·w− + oT

2 ·w− + . . .+ oT
m ·w−







. (4.19)

Similarly, the first row is calculated by having the n × n upper triangular matrix
Bn

[−T
o ·W ]Bn =

[
−T

o ·
(
wx1 wx2 . . . wxn

)]








1 1 . . . 1
1 . . . 1

. . .
...
1








=
(
−T

o ·wx1 . . . −T
o ·wx1 + . . .+−T

o ·wxn

)
. (4.20)

The matrix-vector product based algorithm in [5] have n × n matrices H and
D. This will generate error when profile and sequence lengths are not equal. This
deficiency is corrected in algorithm ProSeqAlignMatVecProdV1.

The algorithm ProSeqAlignMatVecProdV1 can be redesigned as matrix mul-
tiplication by having the l × n matrix

W− = (w−, . . . ,w−) (4.21)

and the l ×m matrix
O− = (−o, . . . ,−o) . (4.22)



50 4. Sequence Alignment

Algorithm 4.3 ProSeqAlignMatVecProdV1(x,O)

Require: sequence x = x1 . . . xn and profile O = o1 . . .om

1: S0,0 ← 0 // initialization
2: S∗,0 ← Bm[O

T ·w−]
3: S0,∗ ← [−T

o · · ·W ]Bn

4: for i← 1 to n do // calculation
5: V i ← OT ·w−

6: end for
7: for i← 1 to m do
8: H i ← −

T
o ·W

9: Di ← oT
i ·W

10: end for
11: for i← 1 to m do // maximization
12: for j ← 1 to n do
13: Si,j ← max{Si−1,j + Vij, Si,j−1 +Hij, Si−1,j−1 +Dij}
14: end for
15: end for
16: return S

The matrices H , V , and D can be computed by matrix multiplication as

H = OT
− ·W , (4.23)

V = OT ·W−, (4.24)

D = OT ·W . (4.25)

This gives the algorithm ProSeqAlignMatProdV1.

Algorithm 4.4 ProSeqAlignMatProdV1(x,O)

Require: sequence x = x1 . . . xn and profile O = o1 . . .om

1: S0,0 ← 0 // initialization
2: S∗,0 ← Bm[O

T ·w−]
3: S0,∗ ← [−T

o · · ·W ]Bn

4: V ← OT ·W− // calculation
5: H ← OT

− ·W
6: D ← OT ·W
7: for i← 1 to m do // maximization
8: for j ← 1 to n do
9: Si,j ← max{Si−1,j + Vij, Si,j−1 +Hij, Si−1,j−1 +Dij}

10: end for
11: end for
12: return S

These algorithms are taken from [5] with some modifications. However, these two
algorithms have redundant data calculations for matrices H and V . The calculation
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of matrix H

H =








−T
o ·wx1 . . . −T

o ·wxn

−T
o ·wx1 . . . −T

o ·wxn

...
−T

o ·wx1 . . . −T
o ·wxn








and matrix V is

V =








oT
1 ·w− . . . oT

1 ·w−

oT
2 ·w− . . . oT

2 ·w−

...
oT
m ·w− . . . oT

m ·w−







.

Here, the first row of matrix H is repeated m times. For matrix V , the first
column is repeated n times. These redundant calculations will affect the overall per-
formance. The storage of these matrices is a problem for large profile and sequence
lengths. Therefore, vectors h and v are used to hold these values. In this way, we
have avoided unnecessary multiplications and memory space is reduced to n and m,
respectively. The resulting matrix-vector product and matrix product algorithms are
ProSeqAlignMatVecProdV2 and ProSeqAlignMatProdV2.

Algorithm 4.5 ProSeqAlignMatVecProdV2(x,O)

Require: sequence x = x1 . . . xn and profile O = o1 . . .om

1: S0,0 ← 0 // initialization
2: v ← OT ·w−

3: h← −T
o ·W

4: S∗,0 ← Bmv

5: S0,∗ ← hBn

6: for i← 1 to m do // calculation
7: Di ← oT

i ·W
8: end for
9: for i← 1 to m do // maximization

10: for j ← 1 to n do
11: Si,j ← max{Si−1,j + vi, Si,j−1 + hj, Si−1,j−1 +Dij}
12: end for
13: end for
14: return S

4.3.2 Performance

The performance of the above mentioned approaches is compared using execution time,
speed-up, and CUPS. The profiles and amino acid sequences have been generated at
random for various lengths ranging from 32 to 992 with a step size of 32. We have
considered sequence length up to 10,000 for comparing different versions of profile-
sequence alignment. Moreover, only profiles of comparable length are considered.
Execution times have been averaged over ten runs for each sequence length. We have
also neglected the time for memory allocation and data transfer to or from GPU.
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Algorithm 4.6 ProSeqAlignMatProdV2(x,O)

Require: sequence x = x1 . . . xn and profile O = o1 . . .om

1: S0,0 ← 0 // initialization
2: v ← OT ·w−

3: h← −T
o ·W

4: S∗,0 ← Bmv

5: S0,∗ ← hBn

6: D ← OT ·W
7: for i← 1 to m do // maximization
8: for j ← 1 to n do
9: Si,j ← max{Si−1,j + vi, Si,j−1 + hj, Si−1,j−1 +Dij}

10: end for
11: end for
12: return S

Six implementations of profile-sequence alignment have been considered.

• CPU: serial implementation of ProSeqAlign on Intel CPU.

• MatVecProd V1: GPU implementation of ProSeqAlignMatVecProdV1

with cublasSgemv.

• MatVecProd V2: GPU implementation of ProSeqAlignMatVecProdV2

with cublasSgemv.

• MatProd V1: GPU implementation of ProSeqAlignMatProdV1 with
cublasSgemm.

• MatProd V2: GPU implementation of ProSeqAlignMatProdV2 with
cublasSgemm.

• SMwavefront 256: wavefront approach with shared memory and 256 threads per
block.

For MatVecProd V1 and MatProd V1, results are taken up to sequence length
6,000. Sequence length 10,000 require approximately 1145 MB to hold matrices H ,
V , and D. This is well beyond the capacity of available global memory (1024 MB).
So the approaches MatVecProd V2 and MatProd V2 are devised to allow simulations
to run on large length which does not require the calculation of the matrices H and
V .

The performance results presented here compare the GPU based methods with
an optimized serial ProSeqAlign. Not unexpectedly, the parallel implementations
outperformed the serial ones. First, these algorithms are evaluated based on their
runtime (Fig. 4.12 and 4.13). The time to perform the matrix operation on NVIDIA
GPU for MatVecProd V1, MatVecProd V2, MatProd V1, and MatProd V2 is depicted
in Figure 4.12. Matrix-matrix product based algorithms are faster than others due to
the use of the optimized CUBLAS library routines [79]. The results also show the effect
of unnecessary matrix operations in MatVecProd V1 and MatProd V1. Moreover, the
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Fig. 4.12: Runtime (in milliseconds) of profile-sequence alignment algorithms on
NVIDIA and Intel CPU.

performance of cublasSgemm over cublasSgemv is exhibited. The complexity of both
methods is O(lmn). The difference lies in reusing of data by cublasSgemm. This
result is valid for sequence length > 1000. The performance of SMwavefront depends
on computation-to-communication cost. The execution of small number of blocks
concurrently means the data transfer time cannot be hidden by executing the program
on a highly parallel GPU architecture. As the profile lengths increase, multiple anti-
diagonal blocks are executed for SMwavefront k which results in better hardware
utilization.

Table 4.4 shows MatProd V1 and MatProd V2 are faster when compared with
other implementations by considering only matrix operations performed on GPU. Here,
SMwavefront k has worst timing than other GPU implementations because calculation
of the entire forward table is performed on GPU.

Moreover, when evaluating the runtime for calculation of the forward table, the
performance of GPU based implementations are significantly better than the pure CPU
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Table 4.4: Maximum and average runtime (in milliseconds) of profile-sequence align-
ment algorithms on NVIDIA and Intel CPU.

Runtime
sequence length < 1000 sequence length > 1000

max mean max mean
CPU 1241.6000 424.2226 123432.7000 51585.0600
MatVecProd V1 14.0996 7.1375 123.3552 70.5263
MatVecProd V2 4.8919 2.4844 127.6302 53.3725
MatProd V1 0.2196 0.1276 0.1704 0.1489
MatProd V2 0.1087 0.0842 0.1398 0.1092
SMwavefront 256 97.2716 38.7848 6217.2935 2836.5884

Table 4.5: Maximum and average runtime (in milliseconds) of maximization step for
profile-sequence alignment algorithms on CPU.

Runtime
sequence length < 1000 sequence length > 1000
max mean max mean

MatVecProd V1 53.0004 18.7186 1927.7484 1001.79256
MatVecProd V2 41.6634 14.377 4714.3644 2005.03408
MatProd V1 54.6049 18.5096 2078.4036 1109.70057
MatProd V2 42.206 13.9491 4129.8077 1831.43366

version. The results exhibit that the performance of GPU based implementations is
approximately same. The matrix based solution is best if we consider only calculation
on the GPU. However, the maximization step of the forward table is performed on
CPU which dominates the total computational cost. MatProd V2 performs better than
other algorithms because unnecessary matrix operations are not required. Table 4.5
provides more detail. MatVecProd V1 and MatProd V1 take almost the same time
for calculation on CPU. For sequence length greater than 1000, the mean value for
MatVecProd V1 and MatProd V1 is small because it is averaged for sequence length
up to 6,000. The vectors h and v are the main reason behind the less time taken by
algorithms MatVecProd V2 and MatProd V2.

Next, the speed-ups attained with the NVIDIA implementations when compared
with the Intel CPU implementation have been computed. The speed-up is calcu-
lated using the time required by the serial algorithm divided by the time required by
the GPU (Fig. 4.14). The results illustrate that NVIDIA implementations achieve
speed-up factors of one order of magnitude when compared with the Intel CPU imple-
mentation. The matrix approach has better speed-up than the wavefront approach.
MatVecProd V2 and MatProd V2 exhibit good speed-up over MatVecProd V1 and
MatProd V1. Table 4.6 shows that the maximum average speed-up obtained is a factor
of about 28.

Finally, the CUPS with NVIDIA implementations and Intel CPU are calculated
(Fig. 4.11) . For each cell to calculate the score, we require 3 times 21 multiplications



4.3. Profile-Sequence Alignment 55

Sequence Length [aa]

T
im

e
[m

s]

CPU
MatVecProd V1
MatVecProd V2
MatProd V1
MatProd V2
SMwavefront 256

0 100 200 300 400 500 600 700 800 900 1000
10−1

100

101

102

103

104

(a) Sequence length < 1000

Sequence Length [aa]

T
im

e
[m

s]

CPU
MatVecProd V1
MatVecProd V2
MatProd V1
MatProd V2
SMwavefront 256

2000 3000 4000 5000 6000 7000 8000 9000 10000
102

103

104

105

106

(b) Sequence length > 1000

Fig. 4.13: Runtime (in milliseconds) for calculation of the forward table for profile-
sequence alignment algorithms.

and 20 additions (20 amino acids plus blank). The processing of the data dependent
part on the host CPU contributes to small CUPS values for the matrix approach.
Table 4.7 provides more details about CUPS. MatProd V2 achieves about 24 MCUPS
on average and clearly outperforms other implementations.

In this section, performance of parallel techniques for profile-sequence alignment
has been discussed. A parallel solution of profile-sequence alignment for GPU was pro-
posed by Bassoy et al. [5]. In this study, an improved solution for matrix-vector and
matrix-matrix product by avoiding the redundant operations is presented which en-
ables to process larger sequences using profile-sequence alignment. The results exhibits
that calculation of data dependent part of the forward table on CPU is a slow opera-
tion and it effects the overall performance of the algorithm. The maximum speed-up
attained is approximately a factor of 28 using matrix-matrix product.
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Fig. 4.14: Speed-ups of profile-sequence alignment algorithms.

4.4 ClustalW Algorithm

ClustalW is a widely used progressive alignment method to align multiple sequences.
Due to the large computational complexity of the ClustalW algorithm, alignment
of multiple sequences can take a huge amount of processing time (Table 2.1). The
performance of the ClustalW algorithm can be improved using the parallel archi-
tecture of the GPU. In this section, an efficient mapping of the progressive alignment
stage of the ClustalW algorithm onto GPU is described.

The guide tree is used as input to the progressive alignment stage. The leaves of
the guide tree represent the sequences and are aligned by pairwise sequence alignment.
The alignment at the intermediate nodes is obtained by pairwise, profile-sequence, or
profile-profile alignment and can only be performed if the left and right sub-trees have
aligned sequences. The root of the guide tree corresponds to the overall multiple
sequence alignment.

Sections 4.2 and 4.3 provide the techniques to parallelize the profile-profile align-
ment and profile-sequence alignment. The results show that a mixture of wavefront
and matrix-matrix product methods can be useful for the parallelization of the pro-
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Table 4.6: Maximum and average speed-ups of profile-sequence alignment algorithms.

Speed-up
sequence length < 1000 sequence length > 1000
max mean max mean

MatVecProd V1 19.8654 13.5625 19.5723 19.0686
MatVecProd V2 27.8019 22.2021 28.4557 25.1844
MatProd V1 26.6299 21.7256 19.7366 18.8212
MatProd V2 34.4063 28.9226 29.8872 26.5587
SMwavefront 256 12.7643 8.5719 19.8531 16.8525

Table 4.7: Maximum and average MCUPS of profile-sequence alignment algorithms.

MCUPS
sequence length < 1000 sequence length > 1000
max mean max mean

CPU 1.024 0.8345 0.9143 0.8804
MatVecProd V1 16.4581 11.0688 17.5515 17.1803
MatVecProd V2 21.9147 18.1709 25.5178 22.1639
MatProd V1 21.0505 17.9315 18.0445 16.9695
MatProd V2 27.8728 23.8165 24.8433 23.3179
SMwavefront 256 10.1708 6.9614 16.0842 14.7754

gressive alignment stage of the ClustalW algorithm.

We have used a similar approach mentioned to that in [62]. First, the intermediate
nodes of the guide tree are labeled by post-order traversal. Two vectors are used to
maintain the right child and left child of the nodes. One flag vector is required to keep
track whether the node has been aligned. The flag for the leaf nodes is set to 1 when
the alignment is not required. The left and right children indices are 0 for the leaf
nodes.

The flag vector is checked to identify the nodes of the guide tree to be aligned. An
alignment at an intermediate node can only be performed if the right and left children
have been aligned. In first phase, the leaf nodes are aligned using pairwise sequence
alignment since the left and right children are assumed to be aligned as indicated in the
flag vector. In next phase, the flag vector is again checked to find potential candidates
for which alignments can be performed. This process continues until the final multiple
sequence alignment is obtained and the flag vector contains 1 for each node.

The frequency based profiles are constructed for the intermediate nodes. A profile
and a sequence are aligned by the matrix-matrix product while two profiles are aligned
using the wavefront method on the GPU. The traceback is performed on the CPU to
find the overall multiple sequence alignment by adding gaps in the aligned sequences.
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Fig. 4.15: Performance (MCUPS) of profile-sequence alignment algorithms.

4.4.1 Performance

The performance of the parallel progressive alignment stage has been measured by the
speed-up. The dataset for the implementation of the ClustalW algorithm is similar
to that in [62]. The protein sequence dataset consists of the HIV dataset available at
the NCBI database. The dataset has been divided into several subsets:

• 400 sequences of average length 856 and 1000 sequences of average length 858;

• 2000 sequences of average length 266 and 4000 sequences of average length 247;

• 4000 sequences of average length 57 and 8000 sequences of average length 73.

The execution times have been averaged over ten runs for each data subset. The
times for memory allocation and data transfer to or from the GPU have been neglected.
The input to the progressive alignment stage is a guide tree which has been generated
by the ClustalW program from the EMBL-EBI website.

The speed-up for the progressive alignment stage is illustrated in Figure 4.16.
Note that profile creation and traceback have been performed on the CPU which
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Fig. 4.16: Speed-up for the progressive alignment stage of the ClustalW algorithm.

impacts the performance. The data subsets given by longer sequences have achieved
a speed-up of one order of magnitude since the matrices to be multipled utilize the
hardware resources rather efficiently. The data subsets given by shorter sequences
show a similar behavior due to the possibilty to process multiple sequences in each
pass. The computation-to-communication ratio of wavefront approach for sequences
and profiles of average length is low which impacts the speed-up exhibited by the
data subsets of average length sequences. The maximum speed-up attained is much
better than the speed-up of approximately 6 exhibited by progressive alignment stage
of MSA-CUDA [62].

This section has provided a parallel algorithm for the progressive alignment stage
of the ClustalW algorithm onto the GPU using a mixture of algorithms: matrix-
matrix product for profile-sequence alignment and wavefront method for profile-profile
alignment. The results have shown a performance increase of more than one order of
magnitude for several data sets considered.





Chapter 5

Viterbi Algorithm

The Viterbi algorithm is a popular method used to find the most likely sequence of
hidden states which generated the output. In this chapter, we will present a parallel
formulation of the Viterbi algorithm in terms of matrix-vector and matrix-matrix
product. The resultant matrix-matrix product based algorithm will be implemented
on GPU.

5.1 Related Work

The high computational complexity of the hidden Markov model demands improve-
ment in processing time. There have been many efforts to achieve high speed-up for
the hidden Markov model applications. A substantial contribution has come forth
to speed-up the hidden Markov model based applications by taking advantage of
GPUs [8, 16, 20, 44, 47, 99, 120, 127].

CuHMM [59] provides an implementation of discrete hidden Markov model al-
gorithms for GPU. This generic training engine uses single model and multiple ob-
servation sequences to achieve 800-fold speed-up for the forward algorithm. In this
approach, element-by-element multiplication is performed between the emission prob-
ability and the previous states. The resultant matrix is multiplied with the transition
probability matrix. Li et al. [56] parallelized the evaluation problem of the hidden
Markov model on GPUs. The forward probabilities of an observation sequence were
calculated and summed up in parallel to achieve maximum 25-fold speed-up.

ClawHMMER [8, 44] and GPU-HMMER [120] are hidden Markov model based
sequence alignment applications that parallelize the general purpose Viterbi algorithm
by concurrently executing several sequence alignment tasks. The strategy was to
decode the sequence independently using task parallelism. They have used shared and
texture memories to store and retrieve probabilities. Ganesan et al. [32] employed a
combination of task and data parallel techniques to resolve dependencies in HMMER.

Zhihui et al. [22] proposes a tile-based parallel Viterbi algorithm for biological
sequences. The data dependency between different tiles is eliminated by finding the
homologous segments. They have also discussed the wavefront and streaming methods
for the GPU architecture. Zhang et al. [127] explored the parallel implementation of
the Viterbi algorithm for keyword spotting systems and achieved speed-up factor of 3
over serial implementation. They have used multiple parallel threads to compute the

61
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transition probability.
Matrix product based solutions for the hidden Markov model problems were dis-

cussed by [58, 70, 74, 98]. The Mozes et al. [70] and Lifshits et al. [58] approaches
are based on finding the repeated substring and reusing the computation. Nielsen and
Sand [74] parallelizes the workload across the observed sequence to achieve a speed-up
factor of 7 for the Viterbi algorithm. We have used a similar matrix-matrix product
approach for the GPU architecture.

5.2 Parallel Viterbi Algorithm

Improving performance of the Viterbi algorithm is a key task due to its popularity in
many scientific applications including biological sequence alignment, speech recogni-
tion, and probabilistic inference. By avoiding the dependencies among forward table
elements, the matrix-matrix product based solution can be formulated. The recur-
sive part of the algorithm TropViterbi can be reformulated to fit into the parallel
architecture of the GPU by separating the data independent and dependent parts.
The data independent part is processed on GPU while data dependent is executed
on CPU. The values of transition and emission probabilities are known and can be
pre-calculated. For this, take n matrices of size l × l to store these calculated values.
For simplicity, these n matrices are stored in a one-dimensional array S where each
array element has size l× l. So n× l2 memory elements are required to store this data.
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′

l,l + e
′

l,τk









where 1 ≤ k ≤ n− 1.
By separating the data dependent and independent parts in Eqn. (2.20), we get

Sk[σ
′

, σ] = t
′

σ
′
,σ
⊙ e

′

σ
′
,τk

, σ
′

, σ ∈ Σ, 1 ≤ k ≤ n− 1, (5.1)

M [k, σ] =
⊕

σ
′

(Sk[σ
′

, σ]⊙M [k − 1, σ
′

]), σ ∈ Σ, 1 ≤ k ≤ n− 1. (5.2)

The resultant dynamic programming algorithm is TropScalProdViterbi.
Eqn. (5.2) can easily be written into a matrix-vector product using the tropical

matrix-vector multiplication. The k-th row of the matrix M is obtained by matrix-
vector multiplication of the k− 1 row of matrix M with the matrix Sk (Eqn. 5.3). In
this way, we get the tropicalized term qτ which is the probability of the most probable
sequence. The resulting algorithm is TropMatVecProdViterbi.

M [k, ∗] = M [k − 1, ∗]⊙ Sk, 1 ≤ k ≤ n− 1. (5.3)
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Algorithm 5.1 TropScalProdViterbi(τ ,T
′

,E
′

,π
′

)

Require: sequence τ ∈ Σ
′n, probabilities T

′

, E
′

, and π
′

Ensure: tropicalized term qτ
1: M ← matrix[0 . . . n, 1 . . . l]
2: for σ ← 1 to l do
3: M [0, σ]← π

′

[σ]
4: end for
5: for k ← 1 to n− 1 do
6: for σ ← 1 to l do
7: for σ

′

← 1 to l do
8: Sk[σ

′

, σ]← T
′

[σ
′

, σ] + E
′

[σ
′

, τk]
9: end for

10: end for
11: end for
12: for k ← 1 to n− 1 do
13: for σ ← 1 to l do
14: M [k, σ]←∞
15: for σ

′

← 1 to l do
16: M [k, σ]← min{M [k, σ], Sk[σ

′

, σ] +M [k − 1, σ
′

]}
17: end for
18: end for
19: end for
20: for σ ← 1 to l do
21: M [n, σ]← E

′

[σ, τn] +M [n− 1, σ]
22: end for
23: qτ ←∞
24: for σ ← 1 to l do
25: qτ ← min{qτ ,M [n, σ]}
26: end for
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Proposition 5.2.1. Equations (2.20) and (5.3) generate the same result.

Proof. k-th row of Eqn. (5.3) is computed as

M [k, ∗] = M [k − 1, ∗]⊙ Sk

=
(
mk−1,1 mk−1,2 . . . mk−1,l

)
⊙









t
′

1,1 + e
′

1,τk
. . . t

′

1,l + e
′

1,τk

t
′

2,1 + e
′

2,τk
. . . t

′

2,l + e
′

2,τk
...

. . .
...

t
′

l,1 + e
′

l,τk
. . . t

′

l,l + e
′

l,τk









=
(

min(t
′

1,1 + e
′

1,τk
+mk−1,1, . . . , t

′

l,1 + e
′

l,τk
+mk−1,l) . . .min(t

′

1,l + e
′

1,τk
+

mk−1,1, . . . , t
′

l,l + e
′

l,τk
+mk−1,l)

)

= min
σ
′

(

t
′

σ
′
,σ
+ e

′

σ
′
,τk

+mk−1,σ
′

)

, σ
′

, σ ∈ Σ, 1 ≤ k ≤ n− 1.

Hence, we obtain the k-th row of Eqn. (2.20).

Algorithm 5.2 TropMatVecProdViterbi(τ ,T
′

,E
′

,π
′

)

Require: sequence τ ∈ Σ
′n, probabilities T

′

, E
′

, and π
′

Ensure: tropicalized term qτ
1: M ← matrix[0 . . . n, 1 . . . l]
2: for σ ← 1 to l do
3: M [0, σ]← π

′

[σ]
4: end for
5: for k ← 1 to n− 1 do
6: for σ ← 1 to l do
7: for σ

′

← 1 to l do
8: Sk[σ

′

, σ]← T
′

[σ
′

, σ] + E
′

[σ
′

, τk]
9: end for

10: end for
11: end for
12: for k ← 1 to n− 1 do
13: M [k, ∗]←M [k − 1, ∗]⊙ Sk

14: end for
15: for σ ← 1 to l do
16: M [n, σ]← E

′

[σ, τn] +M [n− 1, σ]
17: end for
18: qτ ←∞
19: for σ ← 1 to l do
20: qτ ← min{qτ ,M [n, σ]}
21: end for

The calculation part in the algorithm TropMatVecProdViterbi consists of
a series of matrix-vector multiplications which can be easily converted into matrix-
matrix product. Eqn. (5.3) can also be treated as matrix-matrix multiplication if
matrices are multiplied first. The matrix S is populated with the transition and
emission probabilities. A series of tropical matrix-matrix multiplications are performed



5.3. Performance 65

and the result is stored in the S1 matrix. Then tropical matrix-vector multiplication is
carried out between the matrix S1 and initial probability vector π

′

. Next, the tropical
multiplication is performed between the emission probability of the n-th observation
and the vector a. Finally, we obtain the tropicalized term qτ by having minimum
element in the vector a which is the probability of the most likely sequence of states
that generated the observation sequence (Eqns. 5.4–5.8).

Sk[σ
′

, σ] = t
′

σ
′
,σ
⊙ e

′

σ
′
,τk

, σ
′

, σ ∈ Σ, 1 ≤ k ≤ n− 1, (5.4)

S1 = S1 ⊙ Sk, 2 ≤ k ≤ n− 1, (5.5)

a = π
′

⊙ S1, (5.6)

a = e
′

σ,τn
⊙ a, σ ∈ Σ, (5.7)

qτ =
⊕

σn

a[σn]. (5.8)

The corresponding algorithm is TropMatProdViterbi. We can formulate the par-
allel algorithm for evaluation problem of hidden Markov model in a similar manner by
replacing minimum with sum operation.

Algorithm 5.3 TropMatProdViterbi(τ ,T
′

,E
′

,π
′

)

Require: sequence τ ∈ Σ
′n, probabilities T

′

, E
′

, π
′

Ensure: tropicalized term qτ
1: for k ← 1 to n− 1 do
2: for σ ← 1 to l do
3: for σ

′

← 1 to l do
4: Sk[σ

′

, σ]← T
′

[σ
′

, σ] + E
′

[σ
′

, τk]
5: end for
6: end for
7: end for
8: for k ← 2 to n− 1 do
9: S1 ← S1 ⊙ Sk

10: end for
11: a← π

′

⊙ S1

12: for σ ← 1 to l do
13: a[σ]← E

′

[σ, τn] + a[σ]
14: end for
15: qτ ←∞
16: for σ ← 1 to l do
17: qτ ← min{qτ , a[σ]}
18: end for

5.3 Performance

We have implemented the serial and parallel version of the Viterbi algorithm. These
implementations are compared by means of execution time and speed-up. For our
experiments, we have assumed single precision arithmetic and the generalized Viterbi
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algorithm. The hidden Markov model can be further optimized for known problems
such as speech recognition [91] and the biological sequence alignment [22]. However,
these optimizations are out of scope for this work.

In order to evaluate performance, the test data are generated randomly by using
MATLAB [68]. The execution times have been averaged over ten runs. Moreover, the
time for memory allocation and data transfer to or from the GPU are ignored. Three
implementations of the Viterbi algorithm have been considered:

• Viterbi: serial implementation of TropViterbi on Intel CPU.

• SMemViterbi: TropMatProdViterbi on GPU using shared memory.

• TMemViterbi: TropMatProdViterbi on GPU using texture memory.

The number of threads per block is 256. The performance for the above mentioned
approaches is evaluated by fixing the state space and varied sequence length and vice
versa. We have considered the state space up to 256, maximum 32,768 sequence length.
The length of observation alphabet is 8.

TMemViterbi stores the matrices into texture memory and then the sub-matrix
is transferred into the shared memory for the matrix multiplication. The MAGMA
library [72] provides optimized dense linear algebra operations for the heterogeneous
and the GPU architectures. We have modified the MAGMA BLAS routines to accom-
modate the tropical matrix multiplication for TropMatProdViterbi.

The algorithm TropMatProdViterbi can be implemented using several ap-
proaches. One approach is to pre-calculate the transition and emission probabilities
and store in the matrix S for the entire sequence length. The matrix S will take O(nl2)
memory space. For the computation on GPU, this matrix should be copied into the
GPU memory which limits the algorithm effectiveness. The maximum sequence length
and the number of states which can be processed is also limited due to the small size
of GPU memory. Therefore, this approach is not considered.

Another approach is to pre-calculate the S matrix and transfer only part of the
matrix required for the matrix multiplication. However, there is a limitation of maxi-
mum array size which restricts the sequence length to be processed. To accommodate
large sequence lengths, the matrices are created at runtime for each sequence using
the transition and emission probabilities. In this way, only O(2l2) memory space is
required on GPU for the matrix multiplication.

First, the matrix-matrix product based solution is compared with the optimized
serial Viterbi algorithm based on execution time (Fig. 5.1 and 5.2). Both X- and Y-
axes are plotted using the logarithm for better display of results. The time to perform
the matrix operation using the shared and texture memories is depicted in Figure 5.1.
These results are taken by fixing the number of states (8, 16, 32, 64, 128, and 256)
and varying sequence length. The execution time of the TMemViterbi include time
for the texture binding, unbinding, and movement of the data from texture memory
to the shared memory. This result in performance degradation for the TMemViterbi
approach. The computational complexity of the serial Viterbi algorithm isO(nl2) while
the matrix-matrix product based algorithm has O(nl3). There are several methods to
perform faster matrix-matrix product [11, 17, 108]. However, such methods for small
matrix dimensions are not considered.
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The computational complexity and processing overhead for a small number of
states results into better or almost the same runtime of Viterbi when compared with
SMemViterbi. However, SMemViterbi outperforms the serial version by an order of
magnitude for the state space greater than or equal to 32. This is because the number
of states (l) are squared for each observation sequence and the arithmetic intensity
increases by using a large number of states. At this point, we take advantage of parallel
processing and use the parallel matrix-matrix product to attain better running time.

For small state space, SMemViterbi is not a suitable option because the multiplying
matrices having small size results in under utilization of the GPU resources. The reason
is most of the threads within the thread blocks are idle or do not perform useful work
for small matrix dimensions. Moreover, there is also some processing overhead for
switching between the CPU and GPU.

The results also show that the increase in the number of matrices to be multiplied
leads to an increase in runtime. This means the matrix multiplication takes approx-
imately constant time for each sequence length. Moreover, the average runtime for
SMemViterbi is almost same for all states (Table 5.1).

Next, the performance by fixing the sequence length and varying the state space is
considered (Fig. 5.2). SMemViterbi performs much better than the serial version for
the states greater than or equal to 32. The runtime using SMemViterbi for sequence
lengths 2048, 4096, 8192, 16384, and 32768 are almost constant for all states. The run-
time for SMemViterbi increases by increasing the number of matrices to be multiplied.
TMemViterbi has almost the same time for states up to 32 and it grows linearly as
the number of states increases. The runtime is lower for 64 states because the imple-
mentation takes two sub-matrices of size 64×16 and 16×64 from the texture memory
to the shared memory for multiplication. Table 5.2 provides more detail. Note that
increasing the sequence length is directly proportional to the average runtime. This
observation is valid for all approaches.

The speed-ups attained with SMemViterbi when compared with the serial Intel
CPU implementation have been calculated (Figs. 5.3 and 5.4). In these figures, the X-
axis is plotted using the logarithm. First, the speed-up by fixing the number of states
and varying sequence length is illustrated (Fig. 5.3). The small number of states i.e.,
less than or equal to 32, exhibit little speed-up. The maximum average speed-up is
approximately 173 (Table 5.3).

Finally, the speed-up by fixing the sequence length and varying state space is
presented (Fig. 5.4). For the large states space i.e., greater than or equal to 64,
SMemViterbi performs much better because large matrices utilize the GPU resources
more efficiently. The maximum average speed-up obtained is approximately 40. The
small values are because states less than 64 also contribute to the average speed-up
(Table 5.4).

Moreover, the performance of the Viterbi algorithm can be further enhanced by
using the associative property of matrix multiplication. In this way, matrices can be
multiplied independently of others in a parallel reduction manner. Fermi based GPUs
do not support the kernel invocation within a kernel. However, new Kepler based
GPUs support this behavior but they were not available at the time of this study.

The Viterbi algorithm is an important algorithm used in many applications and the
high computational complexity of the algorithm affects the overall performance of the
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Table 5.1: Maximum and average runtime (in milliseconds) of the Viterbi algorithm
by fixing number of states.

Number of states
Viterbi SMemViterbi 256 TMemViterbi 256

max mean max mean max mean
8 55.5000 9.9200 178.5012 35.9452 7984.043 1588.5672
16 181.9000 34.9100 182.3307 36.2711 8001.2554 1595.6052
32 656.3000 129.4900 186.5624 37.2636 8139.3359 1616.0280
64 2481.2000 492.3700 193.9977 38.4717 3967.0183 786.0438
128 9708.5000 1929.4900 205.6519 40.7710 15146.2549 3019.8150
256 40078.6016 7995.2602 231.1033 46.0453 63194.5234 12616.0909

Table 5.2: Maximum and average runtime (in milliseconds) of the Viterbi algorithm
by fixing sequence length.

Sequence length
Viterbi SMemViterbi 256 TMemViterbi 256

max mean max mean max mean
2048 2494.6001 549.3834 14.3987 11.9195 3937.4878 1097.0655
4096 5003.7002 1095.8834 28.6527 24.0002 7880.8345 2203.3498
8192 10017.5000 2207.4500 57.7612 47.7676 15777.2441 4412.3845
16384 19975.0996 4404.6333 114.6411 97.6949 31580.3711 8843.8451
32768 40078.6016 8860.3336 231.1033 196.3579 63194.5234 17738.7385

applications. In this chapter, a parallel formulation of the Viterbi algorithm employing
matrix-matrix product has been designed. The results depicts matrix-matrix product
is not a viable option for small number of states. However, matrix-matrix product
solution using shared memory for large number of states gains good performance when
compared with the serial version. This is because the hardware resources are better
utilized. Note that the speed-up attained is improved by increasing the number of
states. The speed-up for states greater than 256 should be investigated on a GPU
with large memory space. This approach should be studied to solve evaluation and
learning problems of hidden Markov model.

Table 5.3: Maximum and average speed-up of the Viterbi algorithm by fixing number
of states.

Number of states
SMemViterbi 256
max mean

8 0.3109 0.1411
16 0.9976 0.6158
32 3.5343 2.9842
64 13.0111 11.8907
128 48.0068 46.0042
256 176.2889 172.4315
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Table 5.4: Maximum and average speed-up of the Viterbi algorithm by fixing se-
quence length.

Sequence length
SMemViterbi 256
max mean

2048 173.2518 39.6647
4096 174.6328 39.7842
8192 173.4296 40.6272
16384 174.2403 39.7932
32768 173.4229 39.7079
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Fig. 5.1: Runtime (in milliseconds) of the Viterbi algorithm using fixed number of
states and variable sequence length.
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Fig. 5.2: Runtime (in milliseconds) of the Viterbi algorithm using fixed sequence
length and variable number of states.
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Fig. 5.3: Speed-up for shared memory matrix product version of the Viterbi algorithm
using fixed number of states and variable sequence length.
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Fig. 5.4: Speed-up for shared memory matrix product version of the Viterbi algorithm
using fixed sequence length and variable number of states.



Chapter 6

Dynamic Programming

The dynamic programming approach is widely used to solve many optimization prob-
lems. The large computational requirements and strong data dependencies limit their
usage in applications such as sequence alignment. Many efforts have been made to im-
prove the performance either using distributed systems or devising parallel algorithms
for modern multicore processors. In this chapter, we will formulate the parallel solu-
tion for the different dynamic programming problems and discuss the techniques to
map on the GPU. We will conclude this chapter by presenting some general guidelines
for GPU programming.

6.1 Mapping Dynamic Programming Problems on

GPU

Grama et al. [34] classified the dynamic programming problems into four categories
based on the data dependencies and cost function criteria: SMDP, SPDP, NMDP, and
NPDP. In recent years, the GPU has evolved from the traditional graphics processor
to a general purpose computing device. The mapping of dynamic programming algo-
rithms to the vector-processing architecture of the GPU can give huge performance
boost. We will investigate the parallel dynamic programming algorithm formulation
for each category using the matrix-matrix product or the wavefront method.

It is a difficult task to develop a generic parallel solution for each dynamic pro-
gramming category. However, the problems in each class have certain similarities [34].
Note that all dynamic programming problems cannot be parallelized employing the
matrix-matrix product or wavefront methods.

6.1.1 Serial Monadic Dynamic Programming

Many problems can be solved using SMDP. In this section, the Viterbi algorithm is
discussed as representative of this class. The Viterbi algorithm is used to solve the
decoding problem of hidden Markov model. The recursive step of the Viterbi algorithm
having l states (Eqn. 2.20) is shown in Figure 6.1. Each state at level k is connected
to every state at level k+1. This problem finds the maximum likelihood of the states
that generated the observation sequence. The probability of moving to the next state
depends on the current state, the transition probability, and the emission probability.

73
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Fig. 6.1: The recursive step of the Viterbi algorithm.

The optimal state sequence that generated the observation sequence is obtained
since the sub-problems calculate the optimal solution. This problem is monadic since
Eqn. (2.20) has only one recursive term in its right-hand side. Moreover, it is serial
because the solution to a sub-problem requires solutions to the sub-problems at the
immediate previous level.

Due to the recursive term, it is hard to derive a parallel matrix-matrix product
based formulation. However, separating the data dependent and independent parts
can be helpful. The transition and emission probabilities are known and can be pre-
calculated and stored in matrix for each sequence character as shown in Eqn. (6.1).
The matrix S requires O(nl2) memory space. We have discussed the technique to
reduce the memory requirements in Section 5.3.

Sk[σ
′

, σ] = t
′

σ
′
,σ
⊙ e

′

σ
′
,τk

, σ
′

, σǫΣ, 1 ≤ k ≤ n− 1. (6.1)

Next, these n− 1 matrices are multiplied from left-to-right on GPU. Furthermore,
the performance of this process can be improved using the associativity property of
matrix multiplication and parallel reduction.

S1 = S1 ⊙ S2 ⊙ S3 ⊙ S4 ⊙ · · · ⊙ Sn−1. (6.2)

The detailed matrix-matrix product based algorithm is presented in Section 5.2.
We cannot use CUBLAS matrix operations as our algorithm uses tropical algebra.
For this, we have written a kernel function which uses shared memory. The code from
the MAGMA library BLAS routines [72] has been modified to accommodate tropical
matrix multiplication. The maximum average speed-up attained is approximately 173
(Table 5.3).

6.1.2 Non-serial Monadic Dynamic Programming

The dynamic programming algorithms for profile-sequence and profile-profile align-
ments fall into this category.
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Fig. 6.2: The data dependencies in profile-sequence alignment.

Profile-Sequence Alignment

Profile-sequence alignment combines a sequence with a profile which is statistical rep-
resentation of an alignment. Given a profile O and a sequence x, the objective is to
determine the optimal value Sm,n [128]. Eqn. (6.3) shows the dynamic programming
formulation for this problem, where σ(a, b) is the similarity score. There are different
scoring matrices such as BLOSUM and PAM which can be used to calculate scores for
matches, mismatches, and gaps. The sequential implementation of profile-sequence
alignment computes the forward table in row-major order. The calculation of the en-
try Si,j , for 1 ≤ i ≤ m and 1 ≤ j ≤ n, requires the Si−1,j−1, Si−1,j , and Si,j−1 values.
For example, S1,1 depends on cells S0,0, S0,1, and S1,0. These dependencies should be
avoided to devise a parallel solution (Fig. 6.2).

Si,j =







0, if i = 0 and j = 0,
∑i

k=1 σ(ok,−), if 1 ≤ i ≤ m and j = 0,
∑j

k=1 σ(−, xk), if 1 ≤ j ≤ n and i = 0,

max{Si−1,j−1 + σ(oi, xj), Si−1,j+

σ(oi,−), Si,j−1 + σ(−o, xj)},
if 1 ≤ i ≤ m and 1 ≤ j ≤ n.

(6.3)

The anti-diagonal entries of the forward table can be processed independently
(Fig. 6.3). To compute the elements at the k-th anti-diagonal, we require k − 1 and
k− 2 anti-diagonals. The formulation is monadic since a solution to any sub-problem
at k-th level is a function of only one of the solutions at the previous levels and non-
serial because each table entry depends on two sub-problems (Si,j−1 and Si−1,j) at the
k − 1 level and one sub-problem Si−1,j−1 at the k − 2 level.

In order to parallelize the profile-sequence alignment, the non-serial dynamic pro-
gramming formulation should be transformed into the serial one. Profile-sequence
alignment can be parallelized using two techniques: matrix-matrix product and wave-
front. In the matrix-matrix product method, the data dependent and data independent
parts are separated [5]. Using the wavefront method, anti-diagonal elements are paral-
lelized [39, 90]. Section 4.3 discusses both methods in detail. The results exhibit that
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Fig. 6.3: The anti-diagonal data independence for profile-sequence alignment.

the matrix-matrix product method has better speed-up than the wavefront method by
using the optimized BLAS routines.

Profile-Profile Alignment

Profile-profile alignment is a technique to align two alignments. Consider two profiles
P and Q, the objective is to find the optimal value Sm,n. The score between the
profiles is calculated using the Euclidean distance [128]. Many other scoring schemes
exist [84]. Eqn. 6.4 provides the dynamic programming formulation of the problem.
Profile-profile alignment exhibit a similar structure to profile-sequence alignment and
belongs to the NMDP class.

Si,j =







0, if i = 0 and j = 0,
∑i

k=1 d(pk,−p), if 1 ≤ i ≤ m and j = 0,
∑j

k=1 d(−p, qk), if 1 ≤ j ≤ n and i = 0,

min{Si−1,j−1 + d(pi, qj), Si−1,j+

d(pi,−p), Si,j−1 + d(−p, qj)},
if 1 ≤ i ≤ m and 1 ≤ j ≤ n.

(6.4)

Section 4.2 provides more details to parallelize this problem using the matrix-
matrix product and wavefront techniques. The matrix-matrix product based solution
for profile-profile alignment is expensive in terms of computation and memory, since
only the diagonal entries are of interest. The results show that the wavefront method
using shared memory with block size 256 is a very good candidate for the implementa-
tion of profile-profile alignment on a GPU and attains a performance increase of more
than one order of magnitude.

6.1.3 Serial Polyadic Dynamic Programming

This section discusses algorithms for finding the shortest paths between all pairs of
vertices in general and bipartite graphs.
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Floyd-Warshall Algorithm

An algorithm to find all-pairs shortest paths for a weighted graph was introduced by
Floyd [30] and extended by Warshall [121]. Let G = (V ,E) be a graph with vertex
set V and edge set E. The graph G can be stored in an adjacency matrix or an
adjacency list. Normally, the adjacency matrix is used to store dense graphs while
the adjacency list is used for sparse graphs. The edges between the vertices can have
weights and these weights can be stored in a weight matrix M = (mij). The weight
matrix entry mij is

mi,j =







0, if i = j,

∞, if there is no edge between vi and vj and i 6= j,

wij, otherwise.

(6.5)

The recurrence for the APSP problem is

d
(k)
i,j =

{

w(vi, vj), if k = 0

min(d
(k−1)
i,j , d

(k−1)
i,k + d

(k−1)
k,j ), 1 ≤ k ≤ n.

(6.6)

The cost of overall shortest path from node i to j using all n nodes is given by d
(n)
i,j .

This problem belongs to the serial polyadic class of dynamic programming (Eqn. 6.6).
The formulation is serial since the nodes at level k + 1 depend only on the nodes at
level k and polyadic since the solution to d

(k)
i,j requires a composition of solution of

two sub-problems d
(k−1)
i,k and d

(k−1)
k,j . Each level requires O(n2) time. However, only

three results are required from the previous level for the computation of each element
d
(k)
i,j [34].
The algorithm FloydWarshall solves the APSP problem. The dynamic pro-

gramming matrix D is initialized with the weight matrix M . At every step k, the
element di,j has the shortest path from the node vi to vj using the intermediate nodes
from v1 to vk. The time complexity of the algorithm is O(n3).

Algorithm 6.1 FloydWarshall(M)

Require: weight matrix: M
Ensure: APSP matrix D

1: D ←M // initialization
2: for k ← 1 to n do
3: for i← 1 to n do
4: for j ← 1 to n do
5: d

(k)
i,j ← min(d

(k−1)
i,j , d

(k−1)
i,k + d

(k−1)
k,j )

6: end for
7: end for
8: end for
9: return D

Many efforts have been made to improve the complexity of the APSP problem [11,
21, 45, 94, 101, 109, 110]. Several researchers have used GPU to accelerate the per-
formance of the Floyd-Warshall algorithm [40, 49, 66, 85]. Romani [95] presented the
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Fig. 6.4: Runtime (in milliseconds) of FloydWarshall algorithm on NVIDIA and
Intel CPU.

matrix multiplication solution for the APSP problem. In this work, we have used ma-
trix multiplication based solution for the APSP problem on GPU. The tropical matrix
multiplication of weight matrix with itself n − 1 times gives the solution of APSP
problem. However, repeated squaring technique reduces the time complexity of the
APSP problem to O(n3 log2(n)).

D = M ⊙M ⊙M ⊙ · · · ⊙M
︸ ︷︷ ︸

n− 1 times

= M⊙n−1 (6.7)

Three versions of FloydWarshall algorithm have been considered.

• Floyd: serial implementation of FloydWarshall on Intel CPU.

• SMemFloyd: APSP using shared memory on GPU.

• TMemFloyd: APSP using texture memory on GPU.

The performance is measured using runtime and speed-up. The weighted di-
rected graphs are generated at random. Execution times have been averaged over
ten runs for each graph. X- and Y-axis are plotted using the logarithm. The shared
memory solution SMemFloyd performs an order of magnitude better than the se-
rial FloydWarshall (Fig. 6.4). This is just a simple mapping of the matrix-matrix
product on GPU. Efficient matrix multiplication algorithms can be used to further
enhance the performance [11, 17, 108].

APSP for Bipartite Graphs

A bipartite graph is a graph whose vertex set can be partitioned into two non-empty
subsets such that every edge in one subset connects to a vertex in the other (or vice
versa for directed graphs). There is no edge between vertices of a subset. The bipartite
graphs are commonly used in computational biology and computer science for modeling
of complex networks.
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Consider the bipartite graph G = (V ,E) with the vertex set V = V 1 ∪ V 2. Let
n1 = |V 1| and n2 = |V 2|. The structure of the weight matrix for the bipartite graph
is

M =

(
U 1 M 1

M 2 U 2

)

.

M 1 and M 2 are n1×n2 and n2×n1 matrices, respectively. U 1 and U 2 are tropical
identity matrices of size n1 × n1 and n2 × n2, respectively.

U 1 =








0 ∞ · · · ∞

∞ 0
. . .

...
...

. . . . . . ∞
∞ · · · ∞ 0








.

Torgasin and Zimmermann [116] have designed an APSP algorithm for the bipartite
graphs using tropical matrix multiplication. This problem also belongs to the serial
polyadic class of dynamic programming since the recurrence equation is similar to
the Floyd-Warshall algorithm. The algorithm BipartiteAPSP takes two blocks of
the weight matrix as input. The dynamic programming matrix D is initialized with
M 1 ⊙M 2 ⊕ U 1. This matrix is multiplied with itself n1 − 1 times and is used to
calculate the four blocks of the weight matrix.

Algorithm 6.2 BipartiteAPSP(M 1,M 2)

Require: two blocks of weight matrix: M 1,M 2

Ensure: four blocks of M⊙2n1 : M
(2n1)
1 ,M

(2n1)
2 ,L

(2n1)
1 ,L

(2n1)
2

1: D ← U 1

2: D1 ← (M 1 ⊙M 2 ⊕U 1)
3: for k ← 1 to n1 − 1 do
4: D ←D ⊙D1

5: end for
6: L

(2n1)
1 ←D ⊙D1

7: L
(2n1)
2 ←M 2 ⊙D ⊙M 1 ⊕U 2

8: M
(2n1)
1 ←D ⊙M 1

9: M
(2n1)
2 ←M 2 ⊙L

(2n1)
1

10: return L
(2n1)
1 ,L

(2n1)
2 ,M

(2n1)
1 ,M

(2n1)
2

The time complexity of the algorithm BipartiteAPSP is O(n3
1 log2(n1)). In the

worst case, this method is at least eight times faster and requires four times less space
than the APSP method.

We have considered three versions of the BipartiteAPSP algorithm for imple-
mentation.

• Bipartite: serial implementation of BipartiteAPSP on Intel CPU.

• SMemBipartie: BipartiteAPSP using shared memory on GPU.

• TMemBipartie: BipartiteAPSP using texture memory on GPU.



80 6. Dynamic Programming

Nodes

T
im

e
[m

s]

Bipartite

SMemBipartite

TMemBipartite

64 128 256 512 1024 2048 4096

100

101

102

103

104

105

106

Fig. 6.5: Runtime (in milliseconds) of BipartiteAPSP algorithm on NVIDIA and
Intel CPU.
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Fig. 6.6: Runtime comparison of FloydWarshall and BipartiteAPSP algo-
rithms for bipartite graphs on NVIDIA and Intel CPU.

The graphs are generated randomly and the runtime is averaged over ten execu-
tions. We have considered the worst case for the experiment i.e., n1 = n2 and the
weight matrix is generated accordingly.

First, the runtime of the BipartiteAPSP algorithm on NVIDIA and Intel CPU
have been computed (Fig. 6.5). Both X- and Y-axis are plotted using the logarithm for
better display. SMemBipartite performs much better than the serial Bipartite. Next,
the performance of FloydWarshall and BipartiteAPSP for bipartite graphs is
compared (Fig. 6.6). On average, the performance of SMemBipartite is almost six
times faster than SMemFloyd. Theoretically, it should be at least eight times faster
but the additional matrix multiplication to compute blocks of the distance matrix
contribute to the overall running time. The results hold for texture memory based
matrix multiplication. The performance of Bipartite is worst than Floyd. Although,
the size of dynamic programming matrix for Bipartite is four times smaller i.e., n2/4, in
worst case, but the additional factor of log2(n1) impacts the performance (Table 6.1).
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Table 6.1: Maximum and average runtime (in milliseconds) of BipartiteAPSP

and FloydWarshall algorithms.

Runtime max mean
Floyd 1363207.6250 222588.6027
Bipartite 7436817.0000 1143393.3300
SMemFloyd 20360.4434 3284.7355
SMemBipartite 3544.9109 576.6045
TMemFloyd 79665.6016 12863.0573
TMemBipartite 13234.9004 2145.8429
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Fig. 6.7: Speed-up of BipartiteAPSP over FloydWarshall algorithm for bipar-
tite graphs.

Finally, the speed-up attained with the GPU based APSP implementations for bi-
partite graphs when compared with the serial Floyd have been calculated (Fig. 6.7).
SMemBipartite and TMemBipartite performs better than SMemFloyd and TMem-
Floyd. The time complexity for the matrix-matrix product based APSP method is
O(n3 log2(n)) which is at least eight times slower than BipartiteAPSP. Table 6.2
provides more details. Maximum average speed-up attained for SMemBipartite is
approximately 274.

6.1.4 Non-serial Polyadic Dynamic Programming

This is the most complex dynamic programming class. In this class, the data de-
pendencies are non-uniform. The data dependencies between states are dynamic and
not restricted to immediate previous level but may exist between non-consecutive lev-
els [119]. For most of the NPDP applications, the dynamic programming matrix is
triangular which results in difficult memory optimization and load balancing [112].
The structure and dependencies of the dynamic programming matrix for the Zuker
algorithm are shown in Figure 6.8.
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Table 6.2: Maximum and average speed-up parallel APSP algorithms over se-
rial FloydWarshall algorithm for bipartite graphs.

Speed-up max mean
SMemFloyd 106.3428 78.2893
TMemFloyd 20.1548 11.9984
SMemBipartite 399.8470 273.9073
TMemBipartite 111.1152 74.2239
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Fig. 6.8: An example of the NPDP class [60].

This class of dynamic programming is hard to parallelize. Many efforts have been
made recently for different NPDP problems [93, 107, 112, 125, 126]. Some applications
of NPDP are Zuker algorithm for RNA secondary structure prediction, optimal matrix
chain problem, and Smith-Waterman alignment algorithm with affine gap penalty. Due
to its non-uniformity, it is difficult to design a matrix-matrix product based algorithm
for the Smith-Waterman algorithm with affine gap penalty. However, Xiao et al. [126]
already implemented the Smith-Waterman algorithm onto GPU using the wavefront
method. For efficient memory access, they have employed matrix re-alignment, coa-
lesced memory access, and tiling to increase computational granularity.

6.2 General guidelines for GPU programming

In this section, we present some general guidelines for GPU programming which were
observed during this work. Detailed optimization strategies for GPU programming
can be found in [83].
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Matrix Storage Layout

If a problem can be transformed into the matrix-matrix product, then it is highly
recommended to use the existing optimized CUBLAS library for the matrix operations
instead of writing unoptimized code whenever possible. However, for tropical matrix
operations, no BLAS library exists. The CUBLAS library uses column-major storage
and 1-based indexing. C and C++ use row-major storage [79]. Therefore, it is advisable
to change the matrix storage layout to fully utilize the functionality.

For some applications, changing the data storage layout can improve the perfor-
mance and some unnecessary operations can be avoided. Xiao et al. [126] used matrix
re-alignment for the Smith-Waterman algorithm for efficient memory access. They
have stored the forward matrix in diagonal-major order instead of row-major order so
that the threads within a block access adjacent memory locations.

Number of Blocks and Threads

The choice of the number of blocks and threads plays an important role to keep the
GPU busy and to utilize the hardware resources in efficient manner. The Fermi archi-
tecture based GPU used for this study has compute compatibility 2.1. The compute
compatibility determine the device architecture. The devices with the same com-
pute compatibility have similar architecture [80]. The GPU has 8 multiprocessors and
each multiprocessor has 48 CUDA cores. The Fermi architecture supports at most
1536 threads per SM, eight blocks can be scheduled simultaneously per SM, and 1024
threads per block. The aim of the block size choice is to maximize occupancy. Each
thread block is entirely scheduled to a single SM.

• If a block has 64 threads, then we require 24 blocks (1536/64 = 24) to fully utilize
the resources of an SM. However, the limit of eight blocks per SM restricts the
maximum occupancy to 33%. This is because only eight blocks with each block
having 64 threads can be scheduled to an SM. So 512 threads can be executed
in parallel per SM.

• If a block has 192 threads then 8 blocks (1536/192 = 8) can be scheduled per
SM. So maximum occupancy can be achieved.

• If a block has 256 threads then 6 blocks (1536/256 = 6) can be scheduled per
SM to obtain maximum occupancy.

The advantage of multiple blocks per SM is to keep the SM busy while some
blocks are in waiting state. However, multiple blocks per SM require more registers
and shared memory resources. The number of threads per block should be a multiple
of 32 since processors execute simultaneously 32 threads in a warp. The maximum
warps per SM are 48 since 48 ·32 = 1576. There should be at least one block scheduled
to execute for each SM [83].

Dynamic Parallelism

Dynamic parallelism is an extension to the CUDA programming model that enables to
call a child kernel from a parent kernel function. There is no requirement to involve the
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CPU which is a costly procedure as it incurs delay. Previously, CUDA library routines
cannot be called within a kernel or a kernel cannot call another kernel function. This
restricts the usage of already developed optimized procedures. With the introduction
of the new Kepler architecture which supports dynamic parallelism, this restriction is
eliminated [82].

For example, to multiply N matrices using the CUBLAS library function gemm,
N − 1 times the library function is executed. By using the associative property of
matrix multiplication, we can parallelize the process in a parallel reduction manner.
However, the Fermi architecture does not allow to execute BLAS library routines
within parallel reduction kernel.

Memory Optimization

The data transfer between host and device should be minimized due to low bandwidth.
Sometimes, it is beneficial to re-calculate the data instead of transferring from the host.
The techniques to achieve higher bandwidth for the data transfer between host and
device is discussed in [83].

Due to higher bandwidth and lower latency, the use of shared memory is highly
recommended. However, memory bank conflicts can impact the performance. In this
case, memory access is serialized and hardware splits memory requests into separate
conflict-free requests which results in decrease of effective bandwidth [83].

Constant memory is read-only memory and it is cached. When all the threads in
a warp read the same memory location, the speed of constant memory is like that
of registers. However, warp costs more if threads read from different locations of the
constant memory [83].

Texture memory is read-only and bound to global memory before kernel launch.
The threads of the same warp accessing memory that are close together will achieve
good performance. The global memory locations written by current kernel executions
will return undefined data for a texture fetch. However, this is not valid if the memory
location is updated by previous kernel execution [83].

Warp Divergence

Threads are executed in warps of 32. All threads within a warp execute the same
instruction at the same time. However, if the threads within warps follow different
execution paths, the SM serializes the warp execution by keeping the unused threads
within the warp idle. The warp divergence is usually due to if or case statements.
It can have impact on the overall performance because resources are wasted. In the
worst case, the performance can be degraded to a factor of 32 if one thread is diverged
and others are idle [83].

Tiling

The applications that use shared memory achieve significant performance improve-
ment. The problem with the GPU shared memory is its limited size. In order to
maximize performance, data can be partitioned into tiles so that each tile can be
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placed into fast shared memory. The tiles can be processed by kernel functions inde-
pendent of other tiles. However, some data structures cannot be partitioned into tiles
for a given kernel function. In this thesis, we have used tile-based matrix multiplication
solution for the applications.

Coalesced Memory Access

Coalesced memory access is very important to reduce memory transactions. Signifi-
cant performance reductions can result if memory access is not coalesced, causing extra
memory transactions. Memory reads or writes of multiple data items into few trans-
actions help to improve performance of applications. Memory coalescing techniques
are discussed in [83].

Built-in Functions

Use the math functions provided by CUDA. For example, taking minimum of two num-
bers can be defined by a macro in C. However, it can result in thread divergence when
used in a kernel function. CUDA supports two types of math operations. The functions
whose names are prefixed with underscore are faster but less accurate. The functions
whose names does not start with underscore are slower but more accurate [83].





Chapter 7

Conclusion

Tremendous amount of speed-up can be achieved by mapping applications on a low-
cost GPU. In this work, huge processing power of GPUs has been used to accelerate
the dynamic programming algorithms which exhibit massive data parallelism. The
performance of the dynamic programming algorithms can be enhanced by redesigning
the algorithms that are suitable for the vector-processing architecture of the GPU. For
this, matrix-matrix product and wavefront methods have been studied. Matrix-matrix
product method works by separating the data independent and dependent parts while
wavefront method calculates all entries in each anti-diagonal at once. The optimized
CUBLAS library routines for the matrix operations are used to achieve better efficiency
whenever possible.

The conversion of dynamic programming algorithms into matrix-matrix product is
not always straightforward due to data dependencies. Other factors such as memory
requirement also limit the opportunities for matrix-matrix product based solution. For
this, we have discussed the wavefont method. However, the physical GPU memory is
a limiting factor to handle long sequences.

Dynamic programming applications have been categorized into four classes corre-
sponding to data dependence and recurrence to find optimal solutions for the sub-
problems [34]. We have presented parallel formulations for each class of the dynamic
programming using matrix multiplication. The applications which exhibit non-serial
data dependencies need to be transformed into serial data dependencies. However, it
is hard to devise a matrix-matrix product solution for the NPDP problems due to non-
serial data dependencies. The development of a general framework for all the problems
belonging to a class is not possible. For example, we have designed the matrix-matrix
product solution for profile-profile alignment but the memory requirement limits its
efficiency.

At first, we have used the GPU to improve the performance of progressive sequence
alignment methods. The profile-sequence and profile-profile alignments are members
of the NMDP class. Profile-profile alignment algorithm is redesigned to map onto
GPU architecture. One approach used is to design an algorithm by separating the
data dependent and independent parts. The data independent part is processed using
matrix-matrix product and result of these matrix operations are used in the data de-
pendent part to calculate the forward table. The wavefront approach exploits the data
independence along the anti-diagonals of the forward table for profile-profile alignment

87
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and processes the anti-diagonal elements in parallel. The results exhibit that modern
graphics cards can be utilized as efficient hardware accelerators for profile-profile align-
ment. The wavefront approach has better hardware utilization and speed-up compared
to other methods for the implementation of profile-profile alignment on a GPU.

Bassoy et al. [5] already proposed the matrix-matrix product based solution for
profile-sequence alignment on the GPU. We have improved the memory space require-
ment and reduced the number of matrix operations for this method. As a result, our
modified algorithm can handle long sequences. The design of the wavefront technique
for profile-sequence alignment is similar to profile-profile alignment due to the identical
structure. The matrix-matrix product based solution shows better speed-up over other
methods and attains approximately 28-fold speed-up over the serial implementation.
The progressive alignment stage of the ClustalW algorithm is mapped onto GPU
using a combination of the matrix-matrix product and the wavefront methods. The
results exhibit speed-up of more than one order of magnitude for several data sets
considered.

Next, we have devised the matrix-matrix product solution for the Viterbi algo-
rithm which is a member of the SMDP class. The Viterbi algorithm is used to find
the most probable sequence of hidden states that has generated the observation which
is a compute intensive task. The matrix-matrix product based algorithm is designed
by separating the data independent and dependent parts. The emission and proba-
bilities are pre-calculated and stored in a matrix for each sequence character. Then
the sub-matrices are multiplied to obtain the maximum likelihood probability. We
have achieved approximately 173-fold speed-up for SMemViterbi. The performance is
not effected by changing the number of states for a particular sequence length using
SMemViterbi.

The all-pairs shortest path problem for the general and bipartite graphs is a member
of the SPDP class. We have implemented the matrix-matrix product solution on GPU.
For bipartite graphs, the GPU implementation achieved approximately 274-fold speed-
up over the serial implementation of the Floyd-Warshall algorithm.

In this work, we have discussed the techniques to calculate large scale multiple
alignments which performs significantly faster on a low-cost GPU than on the CPU.
However, many problems are not suitable to GPU programming because they cannot
be vectorized. Due to the latency issues, transferring data from CPU to GPU and
back can be a bottleneck for problems that require much GPU-CPU interaction.

Future Directions

We have shown the performance of different dynamic programming algorithms on a
single GPU. The performance enhancement in a multiple GPU environment should be
investigated. We can also take benefit of the dynamic parallelism present in Kepler
architecture to enhance the efficiency of matrix-matrix product technique.

The OpenACC is a parallel programming model which is designed to enhance the
performance and portability of applications across many types of platforms. It is a
directive-based programming model and requires fewer changes in code compared with
CUDA and OpenCL [9, 123]. The speed-up for each of dynamic programming class
should be studied using OpenACC.
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The profile-hidden Markov model is used for modelling DNA and protein sequence
families based on multiple sequence alignment. The matrix-matrix product based
profile-hidden Markov model should be designed to utilize the huge computation power
of the GPU.

The parallel formulation of all-pairs shortest paths problem for bipartite graphs
results in better performance. This problem should be explored for sparse bipartite
graphs using tropical matrix-matrix product.
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