Semidefinite Relaxation Approaches
for the Quadratic Assignment
Problem

Vom Promotionsausschuss der

Technischen Universitat Hamburg-Harburg

zur Erlangung des akademischen Grades
Doktor-Ingenieur

genehmigte Dissertation

von

Marko Lange
aus Rostock

2016

Gutachter: Prof. Dr. Siegfried M. Rump

Institut fiir Zuverlassiges Rechnen, Technische Universitdt Hamburg

Prof. Dr. Dr.h.c. Frerich Keil

Institut fiir chemische Reaktionstechnik, Technische Universitat Hamburg

Prof. Dr. Franz Rendl
Institut fiir Mathematik, Universitiat Klagenfurt

Datum der miindliche Prifung: 13. Juni 2016

iii

Abstract

Nowadays, the quadratic assignment problem (QAP) is widely considered
as one of the hardest of the NP-hard problems. The main reason why it is
considered as such can be found in the enormous difficulty of computing
good quality bounds when applying a branch-and-bound algorithm. The
practice shows that - even with the use of today’s computers - QAPs
of size n > 30 are typically recognized as huge and hardly tractable

computational problems.

In this work, we are concerned with the design of new semidefi-
nite programming relaxations for the computation of lower bounds of
the QAP. Various ways to improve the bounding programs upon their
semidefinite relaxation bases are discussed and different reformulation
procedures for the construction of efficiently solvable programming prob-
lems are presented. For a further tightening of the discussed relaxation
programs, we exploit different cutting strategies and compile stronger
versions of the corresponding cuts. Another key area of this thesis is
the design of numerically stable implementations which are suitable for

the computation of rigorous bounds.

The thesis is concluded with a large number of numerical examples

to demonstrate the applicability of our methods.

Acknowledgements

This thesis evolved over a period of about four years. During this time a lot of people
influenced this thesis directly and indirectly. Among the many people who deserve thanks,

some are particularly prominent.

First and foremost, my appreciation goes to my advisors Professor Siegfried M. Rump
and Priv.-Doz. Christian Jansson. Without their guidance and advice, this thesis would
not have been possible. I wish to thank Professor Rump for the hours of fruitful and less
fruitful discussions on various topics, for providing me with a wonderful work environment,
for overlooking the creative chaos on and around my desktop, and for always having a
good idea whenever a new issue occurred. He is undeniable the person who is liable for
awakening my interest in computations that are reliable. No less I wish to thank Christian
Jansson. He is the one who started my interest in disciplined convex programming and
combinatorial optimization. His in-depth knowledge about optimization and his cheerful
attitude helped me when I felt like hitting an impasse. There is just no way to thank
him sufficiently for spending so many hours together with me bringing this thesis into a

legible form.

[also would like to thank my colleagues, all staff of the Institute for Reliable Computing
of the Hamburg University of Technology. Our technical staff Siegfried Kubon for always
coming up with the right solution to some technical problem and for keeping the systems
running. Horst Meyer for having a comment on every issue, for organizing all the
finances, and for providing me with the right working tools. I could not have enjoyed my
time at TUHH so much if it was not for Dirk, Florian, Kai, Malte, Ole, Prashant, and
Robert. They provided me with the necessary distractions and were always available for
discussions, especially these which were not related to research. In particular, I want to
thank Kai and Prashant for helping me enhancing the legibility and comprehensibility
of this thesis. Additionally, I would like to thank Kai for always having time and an

open ear when I needed to tell somebody about my last "discoveries'. Finally, I want to

vi

acknowledge our secretary Ulrike Schneider for an always open office, for her upbeat and

compassionate attitude, and for the wonderful stories during coffee breaks.

[am thankful to my friends from Hamburg, Elmshorn, Karlsruhe, and Rostock. Fan,
Jan-Henning, Julijan, Katrin, Mara, Sebastian, Stephanie, Richard, Thorsten, and Yanti
not only supported me with my decisions, they helped me to grow into the person I am,

and always remind me of other important things in life.

Lastly, I would like to express how much I am indebted to my family. I am forever
grateful to my father for his unwavering love, his strict education, and the incredible
many hours he spent to help me with the basics in elementary school until it finally sunk
in. No less gratitude goes to my mother for showing me the power of enthusiasms, for her
deep faith and support, and for her strong love, even if it often shows up in embarrassing
questions about my life. A special thank goes also to my younger brother. Thank you
for being you, for letting me be me, and for being an upbeat roommate for the last two

and a half years.

Contents

List of tables

1. Introduction
1.1. The quadratic assignment problem
1.2. Notation and preliminary assumptions

1.3. Outline and contributions

2. Preparations

2.1. Auxiliary results and further preparations

3. Semidefinite Programming Relaxations
3.1. Relaxation concepts.
3.1.1. The vector lifting approach
3.1.2. Matrix liftingo o
3.1.3. The matrix splitting approach
3.1.4. Relaxation of the eigenspace

3.2. Comparison and other relaxation properties

4. Reformulation Approaches
4.1. Reduction via QAP reformulationo
4.1.1. QAP reformulations
4.1.2. Non-redundant positive semidefinite matrix splitting
4.1.3. Commutation of data matrices
4.2. Reduced relaxation frameworks

4.3. Level-1 relaxations

5. New Relaxation Frameworks
5.1. New relaxation approaches
5.1.1. Reduction via approximation
5.1.2. Matrix lifting revisited

vii

ix

D W =

11
11

23
23
23
26
27
29
30

35
35
35
48
o1
52
95

viii Contents
5.1.3. Interrelated matrix splitting 68

5.2. Intermediate comparison of level-1 relaxations 7

6. Cutting Strategies 83
6.1. Cuts 83
6.1.1. Gilmore-Lawler bound constraints 83

6.1.2. Eigenvalue related cuts 87

6.1.3. Linear bound constraints 97

6.1.4. Cuts based on p-norm conditions 101

6.2. Level-2 relaxations L 105

7. Implementation and Numerical Results 109
7.1. Motivation 109
7.2. Numerical difficulties o 111
7.2.1. Ill-posed programming problems 113

7.2.2. Regularizationo oo 115

7.2.3. Minimal face representation 117

7.2.4. Remarks on applicability of regularizing procedures 121

7.2.5. Rigorous bounds via verification methods 128

7.3. Implementation details oL 133
7.3.1. Formulation in dual or primal standard form 134

7.3.2. Further implementation details and low-rank coefficient structures 139

7.4. Numerical results 143

8. Conclusion 155
8.1. Future prospects 156

A. sdprQAP Quick Reference 159
Constants & Sets 163
Notation 165

Bibliography 167

List of tables

3.1. Comparison of basic relaxation concepts (level-0) 31
4.1. Comparison of reformulated relaxations (level-1) 58
5.1. Improvements related to new relaxation techniques 7
5.2. Bound computations for nonzero approximation threshold 78
7.1. Speed and accuracy improvements via reformulation 111
7.2. Rigorous bounds for ill-posed MS; instances 132
7.3. Rigorous bounds for well-posed MS; instances 133
7.4. Comparison of high-dimensional relaxations 144
7.5. Comparison of low-dimensional relaxations 147
7.6. New best known bounds 153
A.1. User functions in sdprQAP 160
A.2. Options for sdprQAP 161

ix

LIST OF TABLES

Chapter 1.

Introduction

1.1. The quadratic assignment problem

The history of the Quadratic Assignment Problem (QAP) dates back to 1957, when
Koopmans and Beckmann [59] introduced it as a mathematical model for problems in the
allocation of indivisible resources. Its problem class entails a great number of applications
from different scenarios in the topic of combinatorial optimization. This includes problems
arising in location theory, facility layout, VLSI design, process communications, schedul-
ing, and various other fields; see, for instance, the works by Steinberg [100], Elshafei [32],
Eschermann and Wunderlich [33], and Bierwirth et al. [6]. For more extensive lists of
applications of QAPs, we refer to the survey works by Pardalos et al. [80], Burkard et
al. [18], Cela [21], Loiola et al. [66], and most recently Burkard et al. [17].

The quadratic assignment problem is typically described as a facility layout problem.
In this model, it is assumed that there are a set of facilities F' and a set of locations L of
equal size. For each pair of facilities, a flow is specified via a: F' x ' — R. Similarly,
for each pair of locations, we specify a distance via b: L x L — R. An assignment of
the facilities to the locations is a bijection between the elements of the corresponding
sets m: F' — L. The problem is to find an assignment 7 that minimizes the sum of the

accompanied costs:

minZ Z a(i, 7)b(mw(2), 7(4)).

el jeF

In this context, the flow and distance functions are usually viewed as real-valued matrices

(a;;) and (b;j). The elements of these matrices are then indexed via the corresponding

2 Introduction

element positions in F' and L, respectively, leading to an equivalent formulation for the
QAP:

|F| |F]

min > aiba(iyn():

i=1j=1

where |F'| denotes the cardinality of F', and 7 is a permutation over which we want to
minimize the sum of the costs. Very often the objective is extended by another term that
contains the initial costs for placing facility i at location (7). The introduction of this

term gives

|F| |F] |F|
min Z 2 @ibx(iyr(j) + Z Cin(i) | - (1.1)
=1

i=1j=1
This is the model we will be working with in this thesis.

In order to show that the QAP is NP-hard, Sahni and Gonzalez [96] exploited the
presentability of the traveling salesman problem (TSP) as a QAP. More precisely, they
utilized their own argumentation for the NP-hardness of the e-approximation problem
for TSP to prove that the e-approximation problem for QAP is NP-hard. Nowadays,
the QAP is widely considered as one of the hardest NP-hard problems. The main reason
for this can be found in the enormous difficulty of computing good quality bounds in
branch-&-bound algorithms. High practical experience suggests that - despite the usage
of modern computers - QAPs of size n > 30 are typically recognized as great challenging

computational problems. The authors of [17, Chapter 8.1] write:

All main algorithmic techniques for the exact solution of NP-hard problems
have been used for attacking the QAP: decomposition, branch-&-bound, and
branch-&-cut. The QAP, however, bravely resisted. After decades of attacks,

the results obtained on its optimal solution are far from being satisfactory |...]

The situation is pretty much the same for related problems such as the Bottleneck
QAP [100] or the Quadratic Semi-Assignment Problem [42]. Tt is even worse for
the BiQuadratic Assignment Problem [16], which is a generalization of the QAP. The
bounding techniques for these problems are very similar to the ones developed for the

QAP. Indeed, most of these techniques originate from corresponding procedures designed

Loften also referred to as Quadratic Bottleneck Assignment Problem

Introduction 3

for the quadratic assignment problem. This circumstance was a strong motivation for
this thesis.

1.2. Notation and preliminary assumptions

In this work, we are concerned with Koopmans-Beckmann trace formulation of the

quadratic assignment problem [31]:

min tr(AXBXT + CX7T), (KBQAP)

Xelln

where A, B,C' € R™™" are the parameter matrices of the QAP, II" denotes the set of
n X n permutation matrices, and tr() terms the trace function. Unless otherwise stated,
we assume that both matrices A and B are symmetric. Furthermore, without loss of
generality, it is assumed that the diagonal elements of A and B are equal to zero. If
this is not the case, then the corresponding costs can be shifted into the linear term by
setting Chew := C + diag(A) diag(B)T, where diag(A) denotes a column vector formed
of the diagonal elements of A. The reformulated QAP satisfies the above condition and
is equivalent to the original problem. Since any QAP of size n < 3 can be reduced to
a linear assignment problem (LAP), we further assume n > 4. Throughout this paper,
A=37" pwppl and B =" N\qqi shall denote the eigenvalue decompositions of the

symmetric matrices A and B, respectively.

For the designation of eigenvalues of arbitrary matrices, A(-) shall denote the vector
consisting of the respective eigenvalues. In the same manner, we use o(H) to denote the
vector of singular values of some matrix H. By the respective arrow superscripts, we
symbolize a presupposed ordering of these values, i.e. A\, o¥ for non-ascending and AT,

o' for non-descending order.

In the following sections, we are frequently concerned with the minimization over
some unitarily invariant matrix norm. Such norms are invariant under multiplications
with unitary matrices from left and/or right. Arbitrary unitarily invariant matrix norms
are identified by triple vertical lines, that is || - |. Norms of particular interest are the
spectral norm denoted by || - ||2, the trace norm || - ||+ and the Frobenius norm || - ||5.

The Euclidean norm to a vector v € R" is denoted by |v|.

Single vertical lines on both sides of a matrix are referring to the corresponding matrix
of absolute values, hence |H| = (|h;;|). On the other hand, if 2 is a discrete set, then ||

4 Introduction

shall denote its cardinality. The dimension of a vector space V describes the cardinality
of a basis of V. It is denoted by dim(V).

Additionally to the trace inner product of two real matrices G, H € R™*" denoted by
(G,H) = tr(GTH), we use G ® H = (g;;H) € R™*" and G o H = (g;;hi;) € R™*" to
term the Kronecker and Hadamard product of these matrices, respectively. Furthermore,
we write H' for the Moore-Penrose pseudoinverse of H [74,85]. If H is an operator,
R(H) denotes its range in the sense of its image. If H is a matrix, we use the same

notation referring to its column space.

The cone of symmetric positive semidefinite matrices is of major importance for every
discussion about semidefinite programming (SDP) relaxations. We denote the space of
n x n symmetric matrices by 8" and its positive semidefinite subset by S¥. In the same
way, 8%, denotes the cone of positive definite matrices in S". In this context, we also

use the relation signs {>, >, <, <} to denote Lowner’s partial ordering [48,69]:
VH,GeS": H>G «— H-GeS}, H>G < H-GeS},.

The above notation is distinguished from a different utilization of the same symbols. If
the compared objects are real vectors, {>, <} are used to denote a preorder on these
vectors. For two real vectors v, u of the same dimension, u < v means that u is majorized
by v. The majorization relation between these vectors is defined as
n n !
Vu,oeR": u<v < Zui=Zvi and Zuf<Zvll for 1< <n,

i=1 i=1 i=1 i=1

where uf and vil denote the elements of u and v, respectively, rearranged in non-ascending
order. Majorization is a preorder since it is a binary relation that is reflexive and

transitive, but not antisymmetric.

Let e,y denote the vector of all ones, 0, the vector of all zeros, and I,y = [e1, ..., e,]

the n x n identity matrix. In addition to the already mentioned sets, we consider
e the space of m x n matrices: M™" = R™*"

e the space of n x n matrices whose row and column sums are equal to one:

E = {M e Mmm | Me(n) = MTe(n) = 6(n)},
e the cone of nonnegative matrices: N™" = {M € M™" | ¥i,j: m;; = 0},

e the set of n x n double stochastic matrices: D"* = " n N™",

Introduction 5

e the set of real matrices with orthonormal columns: Q™" = {M € M™" | MTM =

Iy}

Generally, we spare redundant informations on matrix dimensions. For instance, we
write M™ and N™ instead of M™™ and N™". Moreover, in cases where the dimension
is evident from the context, the accompanying indicators may be discarded completely.
For constants such as the all-ones vector e, the all-ones matrix £ = ee’, and the identity
matrix I, whenever the dimension is not totally apparent from the context, the absence

of these flags indicates dimension n and n x n, respectively.

As already mentioned, diag(-) denotes a linear operator that acts on a square matrix
and gives the vector which consists of the diagonal elements of this matrix. The adjoint
operator to diag(-) is denoted by diag(-). It transforms a vector into a diagonal matrix
whose diagonal entries are identical to the respective vector elements. The successive
application of both operators diag(-) and diag*(~) resets all off-diagonal elements to zero
and is abbreviated by (-)gig = diag(diag(-)). In this respect, Hgiae denotes the diagonal
matrix to H. Complementary to the diag-operator, off (H) denotes a column vector that
contains all off-diagonal elements of the matrix H. This vector is obtained by vertical
concatenation of the columns of H, but without its diagonal elements. Again, H.g
abbreviates the successive application of off(-) and its adjoint, such that Hog = H — Hgiag.
Other considered linear transformations are the full and the strictly lower triangular
vectorization of a matrix. The former is denoted by vec(H) and describes the vector
obtained by vertical concatenation of the columns of H. The latter is denoted by tri(H).
The arranging rule is the same as for off (H) or vec(H), but the operator considers solely
the strictly lower triangular elements of H (without matrix diagonal). We follow the
typical notion for the vector to matrix transformation, and use mat(:) to denote the
adjoint operator to vec(:). Naturally, the successive application of both operators gives

the identity, such that H = mat(vec(H)) for any square matrix H.

In this thesis, the relation signs {<, <, >, >} are used for the notation of element-wise
inequalities. This convention induces a partial order in respect of the cone of nonnegative

(positive) matrices, hence
VG,He M™": G>H < G—-—HeN™" (1.2)

These inequality relations as well as the equality sign =" may also be used in combination

with the operators from above, for example {=giag, =diag, >diag - - -}- In case of the

6 Introduction

subscript 4, for instance, the respective relations apply only to the strictly lower triangular

elements of the corresponding matrices, hence G >¢,; H is a short form for tri(G) > tri(H).

Beyond the use as an adjoint to diag(-), we generalize the usage of diag(-) for the
construction of block-diagonal matrices. The notation deviates from the previous one
simply by the number of arguments. In this respect, diag*(H 1, Hs, ..., Hy) denotes the
block-diagonal matrix which consists of the corresponding block matrices Hy, ..., H,,.
For these matrices, it is not required that they are square or that they have the same

dimension.

1.3. Outline and contributions

One of the main motivations for this thesis lies in the enormous difficulty of computing
good quality bounds for the QAP. Driven by this motivation, we investigated various
bounding techniques. In particular, we researched different and derived new relaxation
strategies which are individually designed for the quadratic assignment problem. We
found some concepts to improve these relaxations and developed new relaxation strategies
on the basis of well-known bounding procedures, recent developments in this field, and

our own ideas.

In this work, our concern is the computation of lower bounds via SDP relaxations for
QAP instances which are representable in the form (KBQAP) and satisfy the assumption
that A and B are symmetric. In order to come up with tight, numerically stable
and efficient relaxation frameworks, we have investigated many different relaxation
approaches, tested various formulations, and performed tests with a large number of
additional constraints. Many of our approaches were misdirected or came to nothing, and
it would be far beyond the scope of this thesis to explain all of them. Nevertheless, in the
attempt to spare the inclined reader and researcher going through the same considerations
again, we often include the process of decisions-shaping into our explanations. Sometimes
we even include intermediate development steps from the underlying conceptional idea
to the final realization. By doing so, we are aiming for a better comprehensibility. The
strong focus on the derivation of the corresponding bounding concepts and the emphasis
on connections between different approaches lead to smooth transitions from results
known in literature to our own developments. Unfortunately, this sometimes tends to
obscure the distinctions of our contributions. Not every result that we introduce in this

thesis is explicitly marked as our own. However, all known results in the literature are

Introduction 7

clearly exposed as such. If no dependence is mentioned when the respective result is
introduced, then it refers to our own research. For a better distinction of the contributions

in this thesis, subsequently, we give a small sum up of its contents.

Chapter 2 recaps some well-known, fundamental theorems which are essential for the
understanding of the subsequent explanations. This comprises, for instance, the Schur
complement condition for semidefiniteness, or Birkhoff’s theorem for doubly stochas-
tic matrices. The former result is elementary for every discussion about semidefinite
relaxations for non-convex quadratic programming problems. The latter is crucial for
linearizations of assignment problems. This chapter also contains some auxiliary lemmas.
First and foremost, these lemmas serve to simplify the proofs of subsequent results. Some
of these auxiliary results, such as Lemma 2.15 and Lemma 2.16, also help to understand
fundamental connections between related programming problems which are discussed in

subsequent chapters.

In Chapter 3, we sum up and compare four basic relaxation concepts for the quadratic
assignment problem. These concepts comprise the Vector Lifting (VL) approach [86,108,
116], the Matrix Lifting (ML) technique [27], the Matrix Splitting (MS) procedure [83,84]
and the “eigenspace” SDP (ES) relaxation [25], here listed in chronological order. The
corresponding relaxations are explained in Section 3.1. In Section 3.2, we show that
there is an ordering of the corresponding lower bounds which is in concurrence with
the complexity of the respective relaxation. With O(n*) variables and O(n?) equality
constraints, the relaxation based on the vector lifting approach is the most expensive one.
In return, however, this relaxation is provably tighter than its competitors. The second
in line, with O(n?) variables and O(n?) equalities, is the “eigenspace” SDP relaxation.
We show the superiority of this relaxation in comparison to the frameworks based on the
matrix lifting technique and the matrix splitting procedure. The latter relaxations have
both O(n?) variables and O(n?) equality constraints. The relaxation based on matrix
lifting is slightly more expensive than the one based on matrix splitting, but there is no

ordering between them.

In the first part of Chapter 4, we explain and discuss different reformulation strategies
for the actual assignment problem. A QAP instance specified by the data vector
(A, B, () is a reformulation of a given QAP instance (A, B, C) if there exists a bijection
X: 1" — II" satisfying

VX eII": tr(AXBXT + CXT) = tr(AX(X)BX(X)T + ¢X(Xx)7).

8 Introduction

A reformulation strategy of particular interest is investigated in Subsection 4.1.1. The
corresponding transformations are referred to as QAP reformulations and can be described
via six n-component vectors d,, dg, v, vg, w,, and wy. Our contribution to this topic
is the transfer and adaptation of this reformulation technique - which is well-known
and often used to obtain tighter QAP linearizations - for the use in combination with
the respective SDP relaxations. For this purpose, we first show that only two of the
parameter vectors, d; and v, can be chosen independently and are actually affecting
the discussed SDP relaxations. The class of equivalent QAP formulations which are of

interest for the considered relaxations can thereby be described via
Vdg, v, € R": (A,B,C) ~ (A, B,C) = (A, B + diag(d,) + v,e” + ev!, C — 24Aev]),

where ~ is used to denote the equivalence of the instances (4, B,C) and (A, B,C) in
regard to their objective terms and the corresponding optimal permutations. Subsequently,
we explain different strategies to attain appropriate representatives of dy and v;. We
discuss different optimization criteria and give strong arguments for our final choice of

parameter vectors. The actually used QAP reformulation is defined in (4.20).

The second part of Chapter 4 is not about reformulations of the actual QAP but
about reformulation strategies for the respective relaxation frameworks discussed in
the previous chapter. In Section 4.2, we describe possible reductions of the number of
equality constraints by substituting a smaller number of equivalent conditions for them.
The chapter is concluded with a small summary of the applied reformulation techniques
and the presentation of the level-1 versions of the discussed relaxations. In this context,
it should be mentioned that the SDP frameworks are not only classified with respect
of the underlying relaxation concept (see above) but also in consideration of the level
of modifications. Level-0 refers to SDP programs which are plain realizations of the
corresponding relaxation concept. Neither reformulations nor cutting techniques from any
other relaxation concept are applied. Level-1 relaxations are the reformulated versions of
the SDP frameworks. The applied modifications are explained in Section 4.3. Level-2
refers to the relaxation instances which apply both the reformulation strategies discussed
in Chapter 4 and the cuts presented in Chapter 6. Another property of the level-1
frameworks is the use of the same matrix variables X € D" and Y € &™ independently of
the underlying relaxation concept. Here the symmetric matrix variable Y is always used
to relax the quadratic term XBXT. The general utilization of these variables unifies and

thereby simplifies the incorporation of additional constraints. Furthermore, this leads to

Introduction 9

the same objective function in all presented level-1 relaxations:
tr(AY + CXT) = (A, Y) +(C, X).

Considering the relation between Y and XBX7?, the above objective function is evidently
the counterpart to the objective term of (KBQAP).

The main contributions in this thesis are explained in Chapter 5. There we introduce
three new relaxation programs. The first program, which we refer to as ESC, is derived
from the “eigenspace” SDP relaxation by approximating the corresponding eigenspace
via some clustering algorithm. In return for a moderate widening of the feasible set, the
eigenspace clustering usually leads to a significantly more economical framework. The
second relaxation presented in this chapter is referred to as MLX. This relaxation is
based on the concept of matrix lifting and describes an extension of ML. In Subsection
5.1.2, we explain how MLX is constructed and validate its superiority compared to
ML. The third newly introduced framework is based on a concept that we call inverse
interrelated matrix splitting. As the name suggests, this concept is closely related to the
matrix splitting approach. To be more specific, it describes an extension of the idea
of positive semidefinite matrix splitting by an inverse relation between the respective
splitting parts. The corresponding framework is explained in Subsection 5.1.3. It is
referred to as IIMS. The chapter is concluded with a short comparison between bounds
obtained by solving the new relaxation programs ESC, MLX, IIMS, and the results
computed via their origins ES, ML, and MS, respectively. In Corollary 5.4, we show

orderings between these bounds.

In Chapter 6, we explain the incorporation of additional linear programming (LP)
and second order cone programming (SOCP) constraints by which we derive the level-2
versions of the respective relaxation frameworks. These constraints are called cuts because
they originate in other relaxation concepts and are used to cut away parts of the feasible set
connected with the matrix variable Y. In Section 6.1, we are concerned with four classes
of cuts: Gilmore-Lawler bound (GLB) based inequalities, constraints which originate
from eigenvalue bound (EVB) majorizations, linear inequalities based on symmetric
functions, and convex p-norm inequalities. Incorporations of the latter three types of
constraints are known in literature; however, the Gilmore-Lawler bounding procedure
has not been combined with an SDP relaxation before. Besides the incorporation of GLB
based constraints, our contribution to this topic includes various improvements of the

different cutting strategies. We introduce improved upper bounds for an eigenvalue related

10 Introduction

bounding technique by Xia [110] and demonstrate how this concept can be integrated
into the respective SDP relaxations. Subsection 6.1.3 is used to link the minimum and
maximum bounds introduced by Mittelmann and Peng [73] with the corresponding
sum-matrix inequalities. This connection is then exploited for the construction of tighter
versions of these bounds. In Subsection 6.1.4, we then introduce a provably stronger
version of the norm constraints used in [83], [84], and [25]. The discussion about cutting
strategies is completed by giving an appropriate selection of constraints for the different

types of presented SDP relaxations.

In order to fill the gap between the theoretical relaxation concepts and the practical
computation of lower bounds, we discuss various questions regarding the actual realization
of the presented frameworks. This is done in Chapter 7. Since the investigation of
problem representations and implementation details typically offers few interesting
and/or new insights on the actual topic, we begin this chapter by motivating the research
of implementation issues. For this purpose, we give numerical results to demonstrate
the advantage of individually adapted realizations over straightforward implementations.
The second part of this chapter is about the disclosure and the resolution of numerical
difficulties accompanied by the respective implementations. By Theorem 7.1, we reveal
the alarming situation that all the previously discussed SDP relaxations for the QAP are
ill-posed. Subsequently, we recap two different approaches to attack this problem. One
of these approaches, the facial reduction, is known since the early 80’s when Borwein and
Wolkowicz introduced the corresponding procedures [10,11]. It was already applied to the
vector lifting based SDP relaxation in 1998 by Zhao, Karisch, Rendl, and Wolkowicz [116].
Our contribution to this topic is the adaptation for the other SDP frameworks and, more
importantly, the modifications described in Subsection 7.2.4 which lead to the practical
applicability of the facial reduction procedure. After presenting a way to compute verified
bounds for the optimal objective value to the respective relaxation instances, we discuss
a few more beneficial remarks on implementation details. We conclude this chapter by

evaluating numerical results for level-2 relaxations of a wide range of instances from the

QAP library [18].

Chapter 8 concludes this thesis with a short summary of the presented developments.
There we also evaluate strengths and weaknesses of the presented level-2 relaxation

frameworks. Additionally, the chapter serves the discussion of future directions.

In Appendix A, we give a quick reference for the Matlab/Octave software package

which originated in the context of this thesis.

Chapter 2.

Preparations

2.1. Auxiliary results and further preparations

This section is used to present some auxiliary lemmas. We begin by stating some widely
known, fundamental theorems. In consideration of the scope of this work, we believe that
a quick recap of these fundamental results pays off when working through the topics of
the following sections. The respective theorems can be found, for instance, in Bhatia’s [5]

or Horn and Johnson’s [48].

The most essential utility for the semidefinite relaxation of quadratic constraints
is the Schur complement condition for (semi)definiteness. In all discussed relaxation
frameworks, we make use of its generalization in terms of pseudoinverses.

Theorem 2.1 (Albert [1]). Let Hy; € 8™, Hoy € 8™ and His € M™" be matrixz blocks

of a symmetric (m + n) x (m + n) matriz H, arranged as

Hll H12

H1T2 H22

Then H > 0 if and only if Hy, > 0, Hyy — HiyH] Hyy > 0, and Hy Hi\Hyy = Hy,.
Similarly, the condition H > 0 is equivalent to Hyy > 0, Hyy — HisHyi Hyy > 0.

For a detailed review of the history and many applications of the Schur complement,

we refer to [114].

11

12 Preparations

Another famous and fundamental result was given by von Neumann [105]. Ahead of
stating his result, let us recall what kind of functions are denoted as symmetric gauge
functions.

Definition 2.2. A norm g: R" — R, s said to be permutation invariant or symmetric

if
VoeR" X ell": g(v) =g(Xv). (2.1)
The norm is called gauge invariant or absolute if it satisfies
VweR": g(v) = g(lv)). (2.2)

A permutation and gauge invariant norm is called a symmetric gauge function.
Theorem 2.3 (von Neumann [105]). Any unitarily invariant matriz norm is a symmetric

gauge function of the singular values of the respective matriz.

In consideration of this connection, we say that a unitarily invariant matrix norm
is strictly monotone whenever this statement applies to the corresponding symmetric

gauge function, i.e.

VG, He M™": o(G)<o(H),o(G)#cH) = |G| <||H]- (2.3)

The following well-known result is referred to as Eckart-Young-Mirsky theorem.
Theorem 2.4 (Mirsky [72]). Denote by H = Z;n:hf{m’n} ouvl the singular value decom-
position of some matric H € M™", and assume that the singular values o; are ordered
in non-ascending order. For some natural number r not greater than the rank of H,
consider the approxzimation problem

Celj\r}qumn {I|H — G||: rank(G) < r}. (2.4)

Regardless of the choice of the unitarily invariant matriz norm || - ||,
R T
G= ZaiuiviT (2.5)
i=1

is a solution to problem (2.4).

Preparations 13

The low-rank matrix approximation approach from above was introduced by Eckart
and Young [30]. They proved the optimality of (2.5) for the Frobenius norm. Mirsky [72,
Theorem 2] generalized their result for arbitrary unitarily invariant matrix norms.
Theorem 2.5 (Lidskii [63]). For any two symmetric matrices G and H of the same

dimension, the relation
MG+ H) = N(G) < M(H). (2.6)

holds valid.
Theorem 2.6 (Schur [97]). The vector consisting of the diagonal elements of a symmetric

matrixz is majorized by the vector that contains its eigenvalues, i.e.

VHeS: diag(H) < A(H). (2.7)

The inspection of different related relaxation programs reveals that permutation
matrices are typically relaxed by doubly stochastic matrices. This also applies to the
semidefinite programming relaxations that will be discussed in the following sections.
For this reason, we gather some essential properties of doubly stochastic matrices.
Theorem 2.7 (Birkhoff [7]). The set of doubly stochastic matrices is identical with the
convex hull of the set of permutation matrices.

Theorem 2.8 (Hardy, Littlewood and Pélya [45]). A vector u is majorized by another

vector v if and only if there is a doubly stochastic matriz S that transforms v into u, i.e.
u<v < 3I15€D:u= Sv. (2.8)

Corollary 2.9. Given a pair of symmetric matrices G and H of the same dimension,

there exists a doubly stochastic matriz S such that
MG+ H) = N(G) = SA(H). (2.9)

Proof. The result follows immediately by the eigenvalue inequality given in Theorem 2.5

and the equivalence stated in Theorem 2.8. O

In the second part of this section, we give some auxiliary lemmas which will be utilized

in the proofs of the subsequent results.

14 Preparations

Lemma 2.10. For given vectors v, w € R™ with nonnegative Hadamard product vow = 0

and a symmetric gauge function g: R** — R, it is

v—w v
8)<sg(l |- (2.10)

0 w
Proof. For any i € {1,...,n}, the nonnegativity condition on the Hadamard product

gives v;w; = 0 and thereby |v; — w;| < max{|v;|, |w;|}. Hence, there exists a permutation

matrix X e [I1?" satisfying

v—w v
<X
0 w
The remainder of the argument follows by Definition 2.2. O

Lemma 2.11. Given a symmetric matriz H, the relation
I = 1CH) aiag (2.11)

holds valid for arbitrary unitarily invariant matriz norms || - ||.

Proof. By Theorem 2.6 and 2.8, we conclude the existence of some doubly stochastic

matrix S such that
diag(H) = SA(H).
Due to Birkhoff’s theorem, it is moreover apparent that S is a convex combination of
permutation matrices, therefore
11| 11|

E|O[Z‘€R+,XiEHZ SZZO(Z'XZ', ZO[Z‘Z]_,
i=1 i=1

where II denotes the set of all permutation matrices of proper dimension, and |II] is used

to state its cardinality. For the diagonal vector of H, this gives the identity

|
diag(H) = Z a; Xi\(H).

Preparations 15

Since ||-|| is unitarily invariant, we further have || H|| = || diag(A\(H))|| = || diag(X;A(H))||

for all X; € II of proper dimension. Taken together, this gives

1| 1|

I1CH) atiag Il =l Za diag (X, A(H))[| < ZO@\H diag (X A(H)) || = |1 H])-

]

Lemma 2.12. Let G, H be symmetric positive semidefinite matrices of the same dimen-

ston. The implication
G=H>=0 = |G| =]H] (2.12)

is valid for any unitarily invariant matriz norm || - ||. If, in addition, the considered

norm is strictly monotone, then it satisfies the stronger implication

G=H=0,G+H — |c|>]|H|. (2.13)

Proof. The result follows straightforwardly from von Neumann’s theorem and Lidskii’s
inequality. Since G — H is symmetric positive semidefinite, it is SA(G — H) = 0 for any
doubly stochastic matrix S of proper size. By Corollary 2.9, we have M (G) = M(H) = 0.
Together with the symmetric positive semidefiniteness of the matrices G and H this gives
o4(G) = o' (H). Equation (2.12) is then an immediate consequence of Theorem 2.3. For
G # H, we necessarily have tr(G) > tr(H) and thereby o'(G) # o*(H). By definition,
any strictly monotone symmetric unitarily invariant matrix norm therefore satisfies the

strict inequality in (2.13). O

Lemma 2.13. Let G and H be symmetric positive semidefinite matrices of the same
dimension. The validity of Léowner’s partial ordering relation G > H implies that the

column space of H is included in the column space of G.

Proof. For the following reductio ad absurdum, assume the existence of a nontrivial
vector v that lies in R(G)* but not in the orthogonal complement of R(H). Naturally,

such a vector has a nonzero part in the column space of H, i.e.
v = vy + Vg, 0#v eR(H), vye R(H)™ .

By vy € R(H), it is evident that v; can be represented as a linear combination of

eigenvectors of H which correspond to strictly positive eigenvalues. Hence, v; # 0 implies

16 Preparations

vl Hv, > 0 and gives
v Hy = vl Hv, > 0 = v" G,

resulting in a contradiction to the requirement G' > H. It follows R(G)* < R(H)*
which is equivalent to the statement R(G) 2 R(H). O

Lemma 2.14. Let H be a symmetric positive semidefinite matriz. For any normalized

vector u that lies in the column space of H, i.e. |u| =1 and uw e R(H), it is
w' H'u > (u" Hu) ™. (2.14)

Proof. The Moore-Penrose pseudoinverse of H satisfies the identity HTHH' = H. This

and the existence of Hz shows

u"H'w WTH'Hu uTHYH? | |uTHTH?
wTHH'w u"Hu ul'H> uTH?z
The positive semidefinitenes of this matrix implies a non-negative determinant and
therefore (u” H'u)(u? Hu) — (u" HTHu)? > 0. The matrix HTH states an orthogonal
projection matrix for the column space of H. Any vector that lies in this space is unaffected
by the multiplication with this projection matrix, such that «” H' Hu = u"u = 1. By
the above determinant inequality, we then derive (u” H'u)(u? Hu) > 1, which completes
the proof. O

Lemma 2.15. For all symmetric positive semidefinite matrices G and any doubly stochas-
tic matriz S of proper dimension, there exists another symmetric positive semidefinite

matriz H that satisfies the three conditions
H > SGST, diag(H) = Sdiag(G), and He = SGe. (2.15)

Proof. Most of the arguments for Lemma 2.15 are borrowed from the proof of [84, Theroem
1] by Peng, Zhu, Luo, and Toh. We follow their line of argument. Since S is doubly
stochastic, it may be expressed as a convex combination of permutation matrices, i.e.

S = Zl'll a; X; for some a; € Ry and X; € II such that a; + g + ... + ayp = 1. The

7

Preparations 17

authors of [84] defined the specific matrix

||

H:=> o, X,GX],
=1

and showed that it satisfies all conditions in (2.15). For every permutation matrix Xj, it
is diag(X,GX}) = X, diag(G) and X,GX}e = X;Ge. This holds necessarily valid for any
linear combination of these identities. Thus, H satisfies the equality conditions in (2.15).
For the validation of the semidefiniteness condition, one can exploit the facts that H is a
convex combination of the matrices {X,GX7}, and that - by positive semidefiniteness of

G - the function f;(v) = vT G is convex. For any real vector v of proper dimension, it is

|| ||

v Ho = Z a; fo(Xv) = fG(Z a; Xv) = f,(Sv) = v SGSTw
i=1 i=1

and therefore H > SGST. O]

The result of Lemma 2.15 is not only interesting in the context of some proofs, it
also pinpoints the fact that the described SDP relaxations have feasible points for every
choice of X € D.

Lemma 2.16. For given B € 8™ with eigenvalue decomposition B = " N\q;q!, a
fixed parameter vector (€ R"™, and nonnegative coefficients wy,ws € R, consider the
minimization problem

St wlHI| =+ wsllH - B

s. t. H G
>0
G H-B

CIZTqu=Ci for ie{l....,n}.

(2.16)

Y

The norms in the objective function of problem (2.16) are supposed to be unitarily invariant

and may be chosen individually for each term. The following statements hold true:

(a) The matriz pair (G, H),

N n N 1 1 A
G = quiqzr, H = §B + A/ iBQ + G2, (2.17)
i=1

defines a solution to this problem.

Preparations

18

(b) If the matriz norms are strictly monotone, the coefficients satisfy wy + we > 0, and

problem (2.16) is extended by the additional equality conditions

then the optimal point in (2.17) is unique.

Proof. Define the symmetric orthogonal matrix

U:=1-G" <é + @) = Zn: (1 — CJ max{QCi,O})qiq;r.
i=1

If G has full rank, GG is the identity matrix. Otherwise, GG states an orthogonal

projection matrix for the column space of G. For both cases, we derive

UV = NG~ GOV 4 G2 = G = G
Since the matrices H , B, and U are all three simultaneously diagonalizable with the
orthonormal eigenvector basis {¢;}, they commute, such that A2U(H — B)z = UHz(H —
B)%. This product, in turn, satisfies

. . 1 N 1 \?
H-B)?2=U—|B+A/B2+4G?| — | =B +1\/ B? + 4G?
(H = B) ﬁ(v) 7 V)

A

:U; (—B2+B2+4G2)% — UG =0,

D=

N

UH

which is used to show the nonnegative definiteness of

T
a G AU AU ,
A ra - A 1 A 1 €S+n'
G H-B (H—-B): | | (H - B)z

This and the identities ¢} C?qi = (; imply that (é JH) states a feasible pair of matrices to

problem (2.16).

Preparations 19

Let (G, H) denote an arbitrary feasible matrix pair to the considered minimization

problem. For any eigenvector ¢; of B, the positive semidefiniteness of

T
g 0 H G g 0 qf Hg; ¢

implies a nonnegative determinant, thereby (¢! Hg;)(¢! Hq, — \,) — ¢ = 0 for all
i € {1,...,n}. By the solutions of the corresponding quadratic equalities and the

nonnegativeness of ¢! Hg;, one derives the equivalent conditions

by A2 5
G Hg = = + <2> + (7 = q] Hg, for 1=1,2,...,n. (2.19)

Together with the orthogonality of @ := [q1,¢1,- .., ¢s], Lemma 2.11 gives

IHIl = 1QTHQII = (QT HQ)awgll = I1(QTHQ)agl = I H]|

and, by the same argument, ||[H — B|| > ||H — B|.

Hence, (G’, H) defines a feasible pair of matrices which accompanies a minimal

objective value. This completes the proof of statement (a).

If the norms are strictly monotone and diag(QTHQ) # diag(QTﬁQ), then (2.19)
implics [1(QHQ)aill > [1(QT AQ)aagll as well as Q7 (H — B)Qawell > I1(Q7(H ~
B)Q)diag|- Since at least one of the coefficients wy or ws is nonzero, this requires that
the vector equality diag(QTHQ) = diag(QTfI () holds valid whenever H corresponds to

an optimal solution point.

In the remainder of the proof, it will be shown that every feasible matrix pair (G, H)
satisfying (2.18) as well as diag(QTHQ) = diag(Q” HQ) is necessarily simultaneously
diagonalizable by @, i.e. the eigenvalue equations Gg¢; = (;¢; and Hg; = X\;(H)gq; are
satisfied for all 7 € {1,...,n}. For each index i, we distinguish three cases subdividing
the corresponding eigenvalue equations in regard to the zero property of the respective

eigenvalue \; and the parameter ¢;.

20 Preparations

Case 1. Suppose that \; = 0 and (; # 0. Then, the corresponding constraint in
2.18) is active, and g7 Hg; = ¢7 (H — B)q;|5.—o= ¢F Hq;|5._o= |¢;| implies
(, and g; Hg; = g Gilx—0= @ H]5,-0 p

T
—Gigi H G —Gii

= 2(; (CiCI;‘fHQi - ‘Ci‘qiTqu) = 0.
|Cz’|€h’ G H-B ’Ci’%’

This gives us a vector in the kernel of this matrix:

H G —Giqi i
G =0 <= Hg= C%Gq,-.
G H-B|\[cla 4

By (2.18), the left-hand side is identical to |(;|g;.

Case 2. If (; equals zero, the identity

T T Ai A\
q; Hg; = q; Hqi|gi=0= 5 + 5 = max{\;, 0}

implies that either ¢/ Hg, = 0 or ¢/ (H — B)g; = 0. Together with the positive semidefi-

niteness of the matrices H and H — B, we derive either

Hg; =0 or Hg; = Bg; = \igi.
Moreover, from the respective nullspace identity of the positive semidefinite block matrix,
it follows Ggq; = 0.

Case 3. Finally, suppose that \; # 0 and (; # 0. For the validation of the

corresponding eigenvalue equations, we define the factor

2¢;
A2+ 4¢2

51‘5:)\

The identity 7] Hg; = §,¢; = ¢} Hg; — \i gives

T
§igi H G §igi _ 0
~4) |G H-B| \-q

Preparations 21

Due to positive semidefiniteness of this block matrix, the vector necessarily lies in the

corresponding kernel, resulting in the identities
§iHgi = Ggi and §Gq = (H — B)gi = Hgi — Nigi.

Via substitution, we derive the desired eigenvalue equations Ggq; = %qz = (;q; and

Hg; = 123 qi-

Taken together, this proves a unique eigenvalue decomposition of both solution
matrices G and H, which finishes the argument for uniqueness of the optimal matrix

pair.]

22

Chapter 3.

Semidefinite Programming

Relaxations

3.1. Relaxation concepts

The concept of relaxations is a fundamental approach for the computation of lower
or upper bounds of intractable programming problems. It can be used directly as an
approximation of the original problem, for bound computations in branch-&-bound
and branch-&-cut approaches, or as a tool to measure the quality of other bounding
algorithms. In regard to the form of the given optimization problem, the first step of a
relaxation process requires the reformulation of the original problem. The second step

comprises the removal or replacement of constraints that are the cause for intractability.

In the following subsections, we review different strategies to derive semidefinite relax-
ations for the quadratic assignment problem. For reasons of simplicity and comparability,
the reviewed relaxations are reduced to their essence. We skip some equalities and any
applicable LP and SOCP constraints that are present in more sophisticated versions
of these relaxation frameworks. A detailed description of these constraints is given in
Section 6.1.

3.1.1. The vector lifting approach

One of the most popular relaxation approaches for quadratic programming problems

is based on vector lifting. In the field of optimization, the term “vector lifting” refers

23

24 Semidefinite Programming Relaxations

to a specific reformulation approach. Quadratic expressions on a variable x € R* are

linearized by lifting the vector variable into the space of (k + 1) x (k + 1) matrices.

Consider, for instance, the vectorized formulation of a quadratically constrained
quadratic program (QCQP):

inf xT Hox + hi x
xERF

s. t. XTHiX‘FhZTngi, i=1,...,m,

where H; € §*, hj e R¥ (0 < j <m), and b; € R (1 <i < m). For a symmetric matrix
T e S*, it is straightforward to show that
T = xx = T >xx1 A diag(?) = diag(xx").

It is therefore possible to utilize the Schur complement for the reformulation of QCQP

as a non-convex semidefinite programming problem:

_ 0 Iht 1 xT
inf ,
xeRk, TeSk lhO H, x T

s. t. _bz %h'LT 1 XT ‘
; <0, Z=1,...,m, (31)

e SF1 diag(T) = x o x.

This problem is often used as a basis for semidefinite relaxations of non-convex quadratic
programming problems. The only constraint that has to be dealt with - for the simple
reason that it typically causes the intractability of the programming problem - is the

quadratic vector equality.

Semidefinite Programming Relaxations 25

Apparently, the QAP is a special class of QCQP. The usage of the vectorized form of

the permutation matrix, x = vec(X), allows us to formulate (KBQAP) as

inf xT(B® A)x + {vec(C), x)

xeRn?
. t. Ty —
S (e®1) ' x =e, (3.2)
I®e)'x =e,
X = XOX.

The linear equality constraints in (3.2) are the vector versions of Xe = e and XTe = e,
which realize the condition X € £". The vector equality x = x o x is the quadratic
constraint equivalent to X € {0,1}"*™. Together, these constraints implement the

requirement X e II".

By utilizing the described vector lifting reformulation, we derive a basis of the SDP

relaxations discussed in [15,87,116] and many other papers:

inf (BRA,T)+ {vec(C), x) (3.3a)
XER”2,T€$n2
€Sy, (3.3b)
x T
(e®@D'x=(I®e)lx=ce¢, (3.3¢)
diag(7) = x. (3.3d)

The extension of (3.3c) to xxT(e®) = xx (I ® e) = xeT leads to the additional vector

constraints

T =T(I®e)=xe". (3.3e)
Finally, for a further restriction of the feasible set, we utilize

(Eog®I)oY =0 (3.3f)
and

({®Eog) oY = 0. (3.3g)

The latter two equations represent (n® — n?)/2 additional equality constraints which are

called Gangster equations.

Problem (3.3) is equivalent to the relaxation QAPg, that was first introduced in [116].
In order to enhance the comparability with the other presented SDP frameworks, we

use a different term to emphasize the basic relaxation approach as well as the level of

26 Semidefinite Programming Relaxations

additional constraints. Problem (3.3) is based on vector lifting and does not contain
additional LP or SOCP constraints. We therefore denote this framework by QAP,,, or

simply VL, referring to the Vector Lifting relaxation with level-0 modifications.

For an elaborate discussion of different conic relaxation models based on vector lifting,
we refer to [86]. A common strength of the corresponding SDP frameworks is their
advantage over other semidefinite programming relaxation strategies in the computation
of tight bounds. Their major weakness is the large number of O(n?) variables together

with the accompanying computational costs.

There are some efforts to encounter the high computational costs of these SDP
relaxations. In [87], Rendl and Sotirov improved the computational process by applying
a modified version of the bundle method. Other solution approaches designed for this
kind of high dimensional SDP frameworks are the low-rank factorization method by
Burer and Monteiro [14], and the modified majorized semismooth Newton-CG augmented
Lagrangian method by Yang, Sun, and Toh [113]. An entirely different approach to
handle the addressed issue is given by Klerk and Sotirov [24], who have shown that many
QAP instances allow a reduction of the SDP relaxation by exploiting group symmetries
in the underlying problems. Nevertheless, regarding QAP instances of size n > 30 with
little symmetry, the computational costs of SDP relaxation frameworks based on vector

lifting remain to be too high for practical usage.

3.1.2. Matrix lifting

A similar idea to the one presented in Subsection 3.1.1 leads to a very different relaxation
approach. In [27], Ding and Wolkowicz introduced a new low-dimensional SDP relaxation
framework based on matrix lifting. Instead of lifting the vector z = vec(X) into T = xa7,
Ding and Wolkowicz exploited the matrix structure of the Koopmans-Beckmann trace
formulation (KBQAP). Their relaxation is based on the fact that for Y = X BXT and
Z = XB%XT the matrix

I X' BXT 1
X 1 Y =1 X [I XT BXT]
XB Y Z XB

Semidefinite Programming Relaxations 27

is positive semidefinite. Together with the observation that each permutation matrix X

and any square matrix GG of the same dimension are satisfying the vector equalities
diag(XGXT) = X diag(G) and XGX'e= XGe, (3.4)

Ding and Wolkowicz designed the following SDP relaxation:

XeD"%an,ZES" (A Y)Y +{(C, X) (3.5a)
.6 I XT BXT
X I v |es, (3.5b)
XB Y V4
diag(Y) = X diag(B), diag(Z) = X diag(B?), (3.5¢)
Ye = XBe, Ze= XDB. (3.5d)

This program is the essence of a framework that is called MSDR. More precisely, in [27],
problem (4.31) is denoted by MSDR;. The final version MSDRj is given in the projected
reformulation of this relaxation and applies additional cuts which are derived from the
eigenvalue decomposition of the parameter matrices A and B. We follow our notation
from the last subsection and denote problem (3.5) by QAP or simply by MLy, referring
to the Matrix Lifting technique without further modifications.

3.1.3. The matrix splitting approach

For a special class of QAPs - instances which are associated with Hamming or Manhatten
distances - in [73], Mittelmann and Peng pursued the idea of another low-dimensional
SDP relaxation framework. The presented bounds not only involve a less expensive
computational process, but they are also provably tighter than the ones of the MSDR
relaxations. In [83] and [84], the matrix splitting approach has been generalized for other
classes of the quadratic assignment problem. In this subsection, we are concentrating on
the SDP relaxation introduced by Peng, Mittelmann, and Li [83].

28 Semidefinite Programming Relaxations

If the parameter matrix B is positive semidefinite, the relaxation approach for the
MSDR model can be reduced to

B BXT B2 L)
_ 1 [Bi B§XT] e S (3.6)
XB Y X B3

In general, however, B does not satisfy any definiteness property. The authors of [83]
and [84] dealt with this case by splitting B into two positive semidefinite matrices B,
and Bs.

Definition 3.1. For a given matrix B, a matriz pair (B, By) is called a positive

semidefinite matriz splitting of B if it satisfies

B = B1 — BQ, Bl,BQ € S+. (37)

For their relaxation frameworks, Peng, Mittelmann, and Li [83] utilized the splitting

pair that is derived as the solution of the following trace minimization problem:

o ts, BT B (3.8)

s. t. BIBl—BQ.

As pointed out in [84], the unique solution of this problem can be obtained by using the
spectral value decomposition. Let B = Y | \;,q;¢ denote the eigenvalue decomposition
of B, then

B, := Z)‘iqiqz‘T and B_ = Z—)\iqiq;f (3‘9)

I)\Z>0 i >\1<0
define the unique solution pair (By, By) = (B, B_) to problem (3.8).

Finally, by utilizing (3.6) and (3.4) for the relaxation of the quadratic constraints
Y, = XB, X" and Y. = XB_X7, we derive the Matrix Splitting based framework

Semidefinite Programming Relaxations 29

referred to as MSy:

XeDn,HYlf,Y,eSn (A Y. =Y +(C X) (3.10a)
S. t BO BOXT
€Sy, o€ {+,—}, (3.10b)
XB, Y,
diag(Y,) = X diag(B,), o€ {+,—}, (3.10c)
Ye = XB,e, Y.e= XB_e. (3.10d)

The statement ¢ € {+,—} is not meant as a free choice of matrix subscripts, but is used to
indicate two instances of constraints of the same structure. In that regard, (3.10c) refers
to the two vector equalities diag(Y,) = X diag(B,) and diag(Y_) = X diag(B_).

3.1.4. Relaxation of the eigenspace

Based on Ding and Wolkowicz’s characterization of the convex hull of the orthogonal
similarity set of B [27], Xia gave an SDP formulation for the same convex set. In that
context, he proposed the orthogonal bound OB2. Klerk, Sotirov, and Truetsch [25]
extended this approach by incorporating additional constraints from [83]. Furthermore,
they looked into the possibility to reduce the complexity of their framework by exploiting

symmetries in the underlying problems.

The “eigenspace” SDP relaxation is, in a certain way, also based on matrix splitting.
However, instead of splitting the matrix B just in its positive and negative semidefinite

part, this new relaxation makes full use of the eigenvalue decomposition of B:
XBX' =X (Z AiQiQ?) X" =Y AXqal X7 =) N0,
i=1 i=1 i=1

By applying a similar relaxation approach as in Subsection 3.1.3 to relax the quadratic

equality constraints Q; = X¢,q} X7, we obtain the programming basis of Klerk, Sotirov,

30 Semidefinite Programming Relaxations

and Truetsch’s “eigenspace” SDP relaxation [25]:

R D AA Q)+ CX) (3.11a)
S. t. 1 (]Z‘TXT .
€S, i=1,...,n, (3.11b)
Xgq; O,
Q,e = Xq,qle, i=1,...,n, (3.11d)
0= (3.11e)

The last identity is derived from the orthogonality of the eigenvectors {¢;} giving
S Xqqf X7 = XIXT = 1. For the identification in the following sections, we comply
with the introduced notation and denote this relaxation program by ESj, referring to
the “eigenspace” SDP relaxation without modifications and additional LP or SOCP

constraints.

3.2. Comparison and other relaxation properties

Regarding the number of variables and equality constraints, it is evident that the
mentioned relaxation frameworks involve strongly different computational efforts. In
respect of the tightness of the computed bounds, we expect the larger sized frameworks,

VLo and ESj, to dominate the lower sized ones. Our numerical tests meet this expectation.

For an easier interpretation of the relaxation quality, the corresponding results are

presented in form of relative gaps

Lower bound computed via relaxation

Rgap i= 1 (3.12)

" Best known upper bound or optimal value’

The QAPs used for the numerical examples in Table 3.1 are chosen randomly out of
the quadratic assignment problem library [18]. Here, we limited the selection to QAP
instances with dimension n up to 20. The individual problem sizes are incorporated into
the names. For more information on the naming scheme and the individual applications,
see [18].

Semidefinite Programming Relaxations 31

Table 3.1.: Selected bounds for comparison of basic relaxation
concepts [Rgap in (%)]

Problem VLO ML() MS() ES()

Chrl2a 150.68 231.75 375.32 200.36

Escl6b 5.48 10.15 17.34 5.48
Had14 0.56 7.29 5.07 2.00
LiPa20a 0.72 1.76 5.13 1.34
Nugl2 8.42 21.24 20.26 10.50
Scr20 24.26 80.07 60.02 30.26
Tail7a 10.27 15.71 29.06 13.18

The presented bounds demonstrate that there is no ordering between the quality
of the relaxation programs MLy and MSy.! On the other hand, we can show that the
ordering of the other relaxation bounds holds valid independently of the considered
problem instance.

Theorem 3.2. For a QAP instance (A, B,C), denote by dyviy, Oury, Omsys 0Nd Ops, the
optimal objective values to the relazations (3.3), (3.5), (3.10), and (3.11), respectively.

These values satisfy the relation

N N @MLO
Ovy = Opsy = . (3. 13)

QMSQ

Proof. Denote by B = > | N\;q,q7 the eigenvalue decomposition of B. Moreover, for
1 < 7 < n, define the matrices W, := ¢; ® I as well as their horizontal concatenation
W = [W4,...,W,]. Let (x,7") denote a solution vector to problem (3.3), which thereby
gives the identity

Ovi, = (BR® A, f> + (vec(C), X).
For the proof of the inequality 0y, > 0Ors,, We show that

(X, 01,...,0,) = (mat()?), WITW,,.... WanWn)

IThis observation does not support [73, Theorem 4.1].

32 Semidefinite Programming Relaxations

defines a feasible point to problem (3.11) with objective value dy,.

Due to the construction of W from the eigenvectors of B,

WH(B® AW = Zn]WT (Ngal) @ A) W = diag([A, ..., \]) ® A

i=1
is a block-diagonal matrix. Together with the orthogonality of W, we derive
BRAT)=WHBRA)WWITW) = 3 MAWITW,) = > LA Q).
i=1 i=1

which validates identical objective values.

In the introduction of relaxation (3.3), it has already been pointed out that any
feasible vector variable x satisfies mat(x) € D". Apparently, X € D" is feasible in problem
(3.11). It remains to show that the matrices {Q;} satisfy all other constraints of ESy. The
validity of the semidefiniteness conditions in (3.11b) is due to (3.3b) and the implication

T =37 — Q=WI'TW, = WIsx™W, = Xq,¢' X (1 <i<n).

On the other hand, (3.3d) and (3.3f) necessitate the validity of the equality constraints

on the diagonal elements of {Q;}:

Vigl<ij<n: eWITWe, = (q;®¢) T(¢®e¢;)
= (T, (q,4]) ® (e;e]))
= <?a (qz'qz'T)diag ® (ej€?)> (by 3.3f)
= el X diag(q,q;) (by 3.3d).

Similarly, (3.3e) implies

Qe =W/T(q,®e) = W/ (TU@ 6)) q; = Wi (xe") q; = Xgyq7 e,

Semidefinite Programming Relaxations 33

which requires the compliance of (3.11d). Finally,

S WITW, = Y@ 1) (Tolad ©B) @)

— (@D’ (TeUer) (el (3 ad -1
— (e®)T diag(x) (e®) (by 3.3g and 3.3d)
=1 (by 3.3c)

verifies the validity of (3.11e) and finishes the proof for the first inequality.

The argument for the superiority of 0gs, compared to gy, and gy, follows a very

similar approach. For a solution vector (f(Oy, @n) to problem (3.11), we show that
(X7 Y,Z) = (Xa Z Az@za Z)\Z2©z>
i=1 i=1
and
(X, Yo, Yo) = (j(» Z&‘@i, _Z/\iOi>
i)\i>0 i)\2‘<0
define feasible points to the problems (3.5) and (3.10), respectively.

Obviously, both points accompany the same objective value gps,. Moreover, by
construction, (3.11c) implies the compliance of (3.5¢) and (3.10c). This relation is also
valid for the constraints (3.11d), (3.5d), and (3.10d). By the same token,

Yy = YN0 = Y AXqg X" = XB X"
i Ai>0 i: Ai>0
and

Y o= YN0 = > AXge X = XB X"

7)\1‘<0 i >\i<0

verify the compliance with (3.10b). Finally, the nonnegative definiteness of

T
I X" BXT ¢ Omn . 4 O
. N (n.n)
X 1 v | =210 1 ||. . 0 I
=1 Xgq; Q;
XB Y Z 0 n | T Ao g

34 Semidefinite Programming Relaxations

completes the proof. O

It should be noted that the first inequality on the left-hand side of (3.13) has already
been proved in [25, Theorem 2.1]. We believe that the understanding of the connection
between the feasible set to problem (3.3) and subsets of the feasible sets to the other
presented SDP relaxations is essential for the comprehension of results given in Subsection
4.3 and 6.1.3. For this reason, though the corresponding inequality has already been
shown by Klerk, Sotirov, and Truetsch, we still gave the exploited part of their argument

adapted to our notation.

All four SDP relaxations have the following favorable property in common.
Lemma 3.3. For a given QAP instance, let (X, f) denote a solution vector to relazation
(3.3) and define X = mat(X). If X €11, then X describes an optimal assignment for the
actual QAP. The corresponding objective values are identical. Similarly, this statement
applies to the matrices X of solution vectors to the relazations (3.5), (3.10), and (3.11),

respectively.
Proof. As an example, consider relaxation (3.5). Since X el it is
XXT =1 and diag(XB*X") = X diag(B?).

By (3.5¢), we therefore have

T
(vl [x] x
diag(| . |)=diag(| . .).
Y 7 XB| | XB

From the Schur complement condition, it is clear that the semidefinite constraint in

(3.5b) requires the quadratic residual

R . T
X X
XB| | XB

<>~
N =<

to be positive semidefinite. By diag(R) = 0 and thus S = 0, the statement of Lemma

3.3 follows immediately.

The arguments for the other SDP relaxations follow the same procedure.]

Chapter 4.

Reformulation Approaches

In the context of relaxation programs, there are two kinds of reformulation approaches.
The first involves modifications of the original programming problem, here the QAP
given in Koopmans-Beckmann trace formulation (KBQAP). Major modifications, as for
instance the reformulation via vector lifting or the splitting of parameter matrices, specify
the respective relaxation technique. Adjustments on a smaller scale do not affect the
actual relaxation approach but still influence the feasible sets described by the respective
programming instances. The second kind of reformulations concerns the relaxation
program itself and is therefore not related to variations in the bounding quality. On the
other hand, modifications of this kind can exert a significant influence on the applied

solving methods.

In the following sections, we describe ways to improve the quality of the relaxation
frameworks via reformulation techniques and point out different constraint substitutions

to design more efficient versions of these frameworks.

4.1. Reduction via QAP reformulation

4.1.1. QAP reformulations

The first applications of reformulation strategies for the quadratic assignment problem
date back nearly 40 years. The proposed techniques in the works of Burkard and
Stratmann [19], Roucairol [91], and Edwards [31] were taken up by many other scientists
who worked on similar topics, see [3,20,35,55] and the references therein. In earlier

research papers, these techniques are noted as reduction or decomposition schemes. The

35

36 Reformulation Approaches

background is the same for all proposed reformulations strategies. One tries to exploit
the inherent degree of freedom in reformulating the actual problem instance without
affecting the optimal objective value or the accompanying optimal decision variables.
This freedom is used to construct problem instances with the same solution sets but
more beneficial properties for the considered linearization technique. In later works, it
has been shown that the benefit of reformulations is not limited to relaxations which are
based on primal or dual linearizations of the QAP. Finke, Burkard, and Rendl [34] as
well as Hadley, Rendl, and Wolkowicz [44], for example, demonstrated the applicability

of QAP reformulations to eigenvalue based bounding techniques.

In this subsection, we transfer the conceptional basis of these reduction schemes for
the application in the presented SDP relaxations. For this purpose, we first recap the
basic reformulation procedure and then explain which parameter adjustments can be
performed independently and which are actually affecting the discussed SDP relaxations.
This is followed by a thorough analysis of different strategies to obtain appropriate

reformulation parameters.

Except for the vector lifting relaxation approach, all discussed SDP frameworks require
the form (KBQAP). We therefore limit our consideration on reformulation techniques
which preserve this form. In accordance to [84], we describe a reformulation by an update
of a diagonal matrix and a so-called sum-matrix.

Definition 4.1. A matriz M € M"™ is called a sum-matriz if M is representable as
M = ve® + ew” (4.1)

for some v, w € R™.
Definition 4.2. A reformulation of a QAP in Koopmans-Beckmann form is another

QAP with parameter vectors dy, dg, va, Vg, ws, wy € R™, where

A= A+ diag(d,) + v,e’ + ew?, (4.2a)
B := B+ diag(d,) + v,e” + ew?, (4.2b)
C = C — diag(A)d" — d, diag(B)" — ATev! — Aew? —v,e"B —w,e" BT, (4.2¢)

define substitutes for the original coefficient matrices.

Reformulation Approaches 37

It is straightforward to show (c.f. [34]) that for each choice of parameter vectors d,,

dg, Vs, Vg, W,, wy and every permutation matrix X e II™:
tr(AXBXT + CXT) = tr(AXBXT + CXT). (4.3)

In the symmetric case, it is v, = w, and v; = wg, which - in consideration of the initial

assumptions on the data matrices - reduces (4.2¢) to

C:=C—d,dl —24evT — 20 " B. (4.4)

We aim to find parameter vectors for reformulation instances which turn out to
be particularly beneficial for semidefinite programming relaxations. The respective
relaxation program shall thus deliver stronger bounds when applied to the reformulated
QAP instance (A, B, C’) instead of the original formulation (A, B, C'). For this purpose,
we first collect some useful properties which are related to the SDP relaxations discussed
in Section 3.1. Our first result concerns the framework based on the vector lifting
approach.

Lemma 4.3. Relazation (3.3) delivers the same optimal objective value for every QAP
reformulation (A, B, C’) of the same problem instance (A, B,C).

Proof. Denote by (x,7) an arbitrary feasible point to the considered problem instance
of relaxation (3.3). Obviously, the feasible set to this problem solely depends on the
dimension n and not on the specific coefficient matrices. It is therefore sufficient to prove

the equality
(BR®A,T) + (vec(C),x) = (BRA, T + (vec(C), x) (4.5)

for all valid (4, B, C).

By definition,

<(B’—B)®A,T>=< (diag(d,) + vye” + ew?) ® A, T>
—<d1ag)® A, T> <ev)@ AT + (ew]) ® 4, T>
—<d1ag)® 4, T> <e®[W @ AT + wl ® A) T>
— (diag(d) @ A1)+ (vf @ A" 1wl @ A T(c®T)).

38 Reformulation Approaches

Together with the constraint equalities (3.3e), (3.3d), and (3.3g), we derive

<(B B)®A T> <d ® diag(A), diag T)> + <UBT QAT +wl @ A, xeT>
= <Vec diag(A)d?), x> + <V€C(AT6U§ + Aew?), X>.

By the same argument, it can be shown that
<B R (A— A), T> = (vec(d, diag(B)"), xy + (vec(v,e” B + wse" B"), x).
Adding the latter two identities gives
(BRA) = (BRA)L,TY={(B-B)®AT)+(BQ(A—A),T) = (vec(C — C),x).

This validates (4.5) and finishes the proof. O

Lemma 4.4. For a given problem (A, B,C), denote by {(A,B,C’)} the set of walid
reformulations with fixed B. The choice of a particular instance from this set does not
affect the bounds computed via problem (3.5), (3.10), or (3.11), respectively.

Proof. The following proof is similar to that of Lemma 4.3. The feasible sets of the
problems (3.5), (3.10), and (3.11) are independent of the coefficient matrices A and C.
Thus, in case of fixed B, it is sufficient to validate the equivalence of the corresponding

objective values.

As an example, consider problem (3.10) and let (X, Y., Y_.) € D" x 8™ x 8™ denote
an arbitrary feasible point to the given problem instance. By Definition 4.2 and by the
compliance of (X, Y;, Y_) with the constraints (3.10c), (3.10d), we conclude

<A—A,Y Y> <d1ag +ve ~|—ewA,Y Y>
= {d,,diag(Y, = Y_)) + (v, +w,, (Y, — Y)e)
= (d,, X diag(B, — B_)) + (v, + w,, X(B, — B_)e)
= {d, diag(B)", X) + {(v, + w,)e" B, X)
= (0~ C,X),

which finishes the argument for problem (3.10).

In the same way, the equality constraints (3.5¢), (3.5d) and (3.11c), (3.11d) necessitate

the equivalence of the objective values for relaxation (3.5) and (3.11), respectively. [

Reformulation Approaches 39

As an immediate consequence of these lemmas, we see that solely updates on the
coefficient matrix B have an effect on the corresponding relaxation bounds. The interest-
ing reformulation parameters reduce to dg, vz € R"™, where wy = vy is implicit due to the
symmetry assumption. The following result will help us to determine a sensible choice
for the vector vp.

Lemma 4.5. For a given problem instance (A, B,C), consider the QAP reformulation
(A,B,C’), where

A=A B=(I-1E)BU—-1E) and C=C+2AEB(I - LE). (4.6)

The respective optimal objective values Oy, (A, B,C) and @MLO(A, B, C’) to problem (3.5)

satisfy the relation
duio(A, B, C) = duiy (A, B, C). (4.7)
Proof. For all X € II", we have

(AXB+C,X)=(AX(I-1E)B(I-1E)+C,X)
= (AXB(I - L) - LAEB(I - 1F) + C, X)
= (AXB(I - 1E) + LAEB + C, X)
— (AXB + C, X).

It is therefore evident that the problem instance (A, B,C) defined in (4.6) states a
reformulation of the original problem (A, B, C).

Denote by MLy(A, B, C) and MLy(A, B,C) the respective problem instances of re-
laxation (3.5), the former applied to the original QAP and the latter applied to its
reformulation. Define the projection matrix P := I — £ E and let (X, Y,Z) be a feasible

point to MLy(A, B,C). By applying the Schur complement, it can be shown that (3.5b)

and
I—XXT Y- XBXT

2n 4.
v oxpsr 7o sxpxr| .

40 Reformulation Approaches

are equivalent, i.e. they result in the same feasible set of the variables Y and Z. Let R

be a symmetric positive semidefinite matrix satisfying
R > X(PB*P — B)X", Re=0, diag(R)= Xdiag(PB*P — B?).

By Lemma 2.15 and the positive semidefiniteness of PB2P — B2 = PB(I — P)BP, it is

apparent that such a matrix exists for each X € D". Let further
(X,Y,7) = (X Y+ X(B-B)XT,Z+ R+ X(B* - PB2P)>’<T) .
The semidefiniteness condition in (4.8) together with the equations

Y —XBX" = Y + X(B— B)X" = XBX" = Y — XBX"
and

7 - XB2XT = 7+ R— XPB*PXT = 7 — XB2XT
imply

I-XXT Y- XBXT

c S,
Y - XBXT Z-xB2XT|

Hence, the constructed point (X, Y, Z) complies with constraint (3.3b) of MLy(A, B,C).
It is straightforward to check that the matrix triple (X, Y, Z) satisfies the corresponding
equality constraints in (3.5¢) and (3.5d), thus states a feasible point to MLy(A, B, C).
Finally, the identity

(A, VY +(C, X)=(A, Y = X(B—-B)X"Y+(C,X)
=(A,Y = X(EB + PBE)X") + (C, X)
= (A, Y) - XA, EBX" + XPBE) + (C, X)
— (A, Y)Y +(C, X)

proves that, for every feasible point (X Y. Z) to MLO(A, B, C), there exists a feasible
point (X, Y, Z) to MLy(A, B,C) with the same objective value.]

Reformulation Approaches 41

Let the reformulation vector d; for the diagonal elements of B be fixed, and consider

the specific choice for v, defined by

= (B E>27_;<d3’ €>e — :L (Be +d,). (4.9)

This vector satisfies the identity
(I—-1E) (B - diag*(dB)) (I - L1E) =B+ diag(d,) + ve” + ev?.

Lemma 4.5 therefore implies that the choice of the specific reformulation vector v, defined

in (4.9) is optimal for any QAP instance that shall be used as input to relaxation (3.5).

Though the previous statement is not necessarily valid for ESy and MS,, numerical
tests suggest the application of the same reformulation vector v;. With the following
result, we reinforce the chosen matrix splitting approach defined in (3.9) and confirm the
formula for vg.

Lemma 4.6. Let B € 8" be given and consider the minimization problem

By + B
VBeRnfEl,BzeSi w1 || Bi || + w2 | Bz | (4.10)
S. t. B+ vel +evl =B — By,
where || - || denotes some unitarily invariant matriz norm, and wy,wy are arbitrary real

positive values. Furthermore, define the projected matriz B := (I — %E)B(] — %E) with
etgenvalue decomposition B = Dy /\lqlq;f Then,

B, E 1 . . ,)

B, >e — —Be, B, = Z)\iq’iq'? and B_ = Z—)\iq'iq'iT (4.11)

B 2
277/ n % >\i>0 Z':)\i<0

determine a solution vector (Vy, By, By) = (5, B., B_) to problem (4.10). If the considered

matrix norms are strictly monotone, this solution is unique.

Proof. Define the projection matrix P := [— %E In the first part of the proof, we
will show that, for any feasible point (vs, By, By), there exists another feasible point
(05, PB1 P, PBy P) associated with an objective value not greater than the one accom-
panied by (v, By, By). The positive semidefiniteness of PB;P and PB,P is evidently

satisfied. Moreover

B+ e + el = PBP = P(B + vel +evl)P = P(B, — B,)P

42 Reformulation Approaches

validates the compliance with the equality constraint of problem (4.10). Since P is an
orthogonal projection matrix and thereby [|P||z < 1, it follows ot (PB;P) < o*(B;) for
i = 1,2. By Theorem 2.3, this necessarily implies ||PB;P|| < || B;|| independent of the
choice of the unitarily invariant matrix norm. Taken together, these observations prove
the existence of an optimal point (¢, By, By) with ¢, being obtained from (4.11). Strictly

monotone unitarily invariant matrix norms satisfy

which, in this context, proves the uniqueness of v;.

For each solution vector (6, By, By) to problem (4.10) for which ¢, satisfies the
definition in (4.11), there exists a feasible point (G, H) = (Onn), B,) to the semidefinite

programming problem

inf wi[|H|| +ws||H — PBP||
G,Hesn

S. t. H G
G H-PBP

e S
¢'Gg; =0 for ie{l,...,n}.

Moreover, the equality constraints in problem (4.10) imply B, = B, — PBP and thereby
identical objective values. Conversely, any optimal point (C , I:I) to the above problem
that corresponds to a feasible point (vy, By, By) = (0s, H, H — PBP) to problem (4.10)
necessarily describes a solution to both. The remaining assertions follow by Lemma
2.16. O

In order to obtain good quality lower bounds via problem (3.10), it is of major
importance that the semidefiniteness conditions in (3.10b) approximate the quadratic
part of the QAP very well. In this context, it is beneficial to utilize positive semidefinite
splitting schemes that involve small traces of the corresponding splitting parts BZ, B_.
The rough correlation between the tightness of the respective relaxation instance and
the traces of B+, B_ is also apparent from the discussion about non-redundant matrix
splitting schemes in [84]. Furthermore, to a certain extent, this statement also applies to
the “eigenspace” SDP relaxation as well as the frameworks based on the matrix lifting
approach. The triple (03, B., B_) complies with v, given in (4.9) and the matrix splitting

definition in (3.9). It states a minimizer not only for the traces of the positive semidefinite

Reformulation Approaches 43

matrix splitting parts but for all unitarily invariant norms. This statement holds true for
different weightings and even for arbitrary combinations of different unitarily invariant
matrix norms applied individually to the respective positive semidefinite splitting part.
For fixed reformulation parameters (dy, v,) = (0, 0,), the matrix pair (B, B_) states a
solution to the corresponding rank minimization problem discussed in [84, Corollary 1].
It is, furthermore, the only feasible positive semidefinite splitting with orthogonal column
spaces. This accompanies other favorable properties, for instance, the fact that B+ and

B_ are simultaneously diagonalizable.

If the reformulation vector vy is computed via (4.9), then e lies in the kernel of the
parameter matrix B, i.e. Be = 0. A closer inspection of the related QAP instances
(A, B , C’) reveals that a further reformulation by adding some offset & € R - which refers
to the reformulated instance (A, B,C) = (A, B + aE,C — aAE) - has no effect on the
accompanying optimal objective values. This is true for the four reviewed SDP relaxations
(3.3), (3.5), (3.10), (3.11), and remains true for all frameworks that will be presented
in the upcoming sections. In this regard, every vector v, € {ae — 2(Be + d;) | a € R}
is as good as the choice (4.9). Nevertheless, as already pointed out, the utilization of
the particular vector determined by the formula in (4.9) entails certain advantages. A
particularly useful property is the minimal rank of the splitting parts which can be

exploited for a reduction of the corresponding semidefinite constraints.

With the knowledge that the parameters d, and v, have no influence on the relaxation
quality and the attainment of a well reasoned formula for vy, this leaves solely the problem
of finding appropriate choices for the reformulation parameter d;. The task of finding
the optimal vector dj is significantly more difficult than for the parameter v;. Actually,
there are several choices for d; which are differently suitable for different QAP instances.
Keeping this in mind, we want to complete our investigation of QAP reformulations by

discussing two possible choices for d; with different beneficial properties.
The first one is given explicitly by the formula

2 (B,E)
= pPe- n—1n—-2°"

(4.12)

Together with (4.9), the derived reformulation follows the reduction scheme already used
in [34] for the bounding technique EVBI1. The given parameters minimize the Frobenius
norm of the reformulated data matrix B. By tr(B2?) = || B||2, it is apparent that this

involves a minimization of the trace of the matrix variable Z utilized in problem (3.5).

44 Reformulation Approaches

The latter observation explains why (4.12) gives a sensible choice for the corresponding
instances of QAP,;.

The second choice for d; can be derived from the solution to the following semidefinite
programming problem
inf

(4.13)
s.t. (I-1E) (B + diag*(d3)> (I-1E) =B, - B,

where the coefficients w; and ws in the objective function are used to induce a suitable
weighting of the respective positive semidefinite splitting parts. Let (EIB, Bl, 32) denote an
optimal point to this minimization problem and define the corresponding reformulation
substitute for B as B := B + diag(d,) + vye” + ev. If v, is computed as in (4.9), then
B =B, - B,. By Lemma 4.6, it is also apparent that the solution to problem (4.13) is
unique and that By and B, can be obtained by using the spectral decomposition of B , as
defined in (3.9). Obviously, the derived reformulation is designed to tighten the feasible

set of the respective QAP,; instance.

Let us consider some more arguments in favor of the presented reformulations. Numer-
ical tests have shown that in most cases the two discussed approaches lead to improved
bounds when compared to the results for the original formulation. Their major difference
lies in the design for the respective relaxation techniques. The matrix splitting based
relaxation benefits more from the reformulation instances derived via (4.9) and (4.13).
The matrix lifting based relaxation, on the other hand, performs better when applied to
the QAP reformulations computed via (4.9) and (4.12). Another major difference can
be found in the accompanying computational aspects. Due to their explicit formulas,
the parameters for the first described QAP reformulation can be computed significantly
faster and more accurate. On the other hand, when it comes to the computation of
the actual relaxation instance the second reformulation approach may have a significant

advantage over the first one.

Denote by ;\1, ;\2, e)\n the eigenvalues of the respective substitute B. The first
reformulation is designed to minimize the corresponding sum of squares . Af The
utilization of problem (4.13), on the other hand, leads to the minimization of a weighted

sum of their absolute values 35 wy|A;| + 37, wi|As], where k is the index which

n

i=k+
separates negative from nonnegative eigenvalues, i.e. Ay < ... < A\ <0< A\ < ... <
An. The latter minimization objective tends to produce sparser solutions, which turns

out to be a very beneficial property.

Reformulation Approaches 45

We can make use of the decreased rank of B by reducing the respective SDP relaxations.
The corresponding reduction scheme for the matrix-splitting based relaxation framework
has already been emphasized in [84]. Let the matrices B, and B_ have ranks n, and n_,
respectively. There exist matrices Ly, € M™"™ and Ly € M™" such that B, = L, L;
and B_ = L, LI . Then, without affecting the actual feasible set, (3.10b) can be replaced
by

Iy LEXT
XL Y

<&

eSSV for o€ {+,—} (4.14)

Bo

In that context, we prefer reformulations that produce substitutes B, with lower ranks.
For the usage in combination with AMS, we therefore strongly recommend the application

of reformulation instances obtained via (4.9) and (4.13).

At this point, it is worth mentioning that there is an efficient way to approximate the
second QAP reformulation. One can avoid the computational overhead of problem (4.13)

by requiring that all components of d; are identical, i.e. there exists some 3 € R such

that dy = Se:

BeR, f13111,f52e51 wi tr(By) + w, tr(By) (4.15)
st (I-L1E)(B+BI) (I~ LE)=B B,

Apparently, the matrices (I — 1E) (B + 1) (I — 1E) are simultaneously diagonalizable
for each 8 € R. To obtain a solution to problem (4.15), it is therefore sufficient to compute
the eigenvalue decomposition of (I — 1E)B(I — LE) and find the § that minimizes the
weighted sum over the absolute values of the corresponding eigenvalues. Since [acts
as a shift to all eigenvalues except the one that corresponds to the eigenvector ﬁe, the
computational effort reduces to a weighted 1-norm minimization over these eigenvalues.
An efficient procedure to solve this problem can be realized with an effort not greater

than the identification of the weighted median of n — 1 real values.

Requiring d; to be a multiple of e has the big advantage of a significantly reduced
computational overhead and a higher accuracy of the calculated parameters. On top of
this, numerical examples from the QAP library [18] suggest that the solutions to problem
(4.15) provide good approximations for the parameters computed via problem (4.13).

In many cases the results are indeed identical. If not utilized for the actual relaxation

46 Reformulation Approaches

instance, the so derived approximation serves at least as a good initial point to the

original minimization problem.

For the application of problem (4.13), it is necessary to determine appropriate
weighting coefficients wy and wy. Why do we not just minimize the sum of traces of the
splitting parts B; and By? To answer this question, consider the problem

inf A Y=Y +(C, X
XeD™, Y1,Y2e8% “n 2+ / (4.16)
s. t. Yie = XBie, tr(Y) =tr(B;), i=1,2

If we assume that e lies in the kernel of the matrices A, Bl, By of the reformulated QAP
instance (A, By — B, C’), then the optimal objective to this problem is

Amin (A) t1(B1) = Amax (A) tr(Bs) + min (C, X0,

To obtain strong lower bounds, it is therefore beneficial to utilize positive semidefinite
splittings with traces tr(B;) and tr(B,) which are counterbalanced to the extreme

eigenvalues of A.

Due to tighter constraints in the relaxation QQAP,g, the actual situation is a good
deal better. It is nevertheless advantageous to consider the distribution of the eigenvalues
of A. Let the reformulated parameter matrix A satisfy Ae = diag(/l) = () and denote its
eigenvectors by fi1, ..., fin. For the computation of the weighting coefficients, we utilize

the following formulas

’ ’

Hi Hi

1 1
wy = (Z -p> and Wy = (Z -p) , (4.17)
i: f1;<0 i: [1;>0

where p is used as a threshold between the equally weighted norm minimization (p = 1)

and the - in respect of the extreme eigenvalues of A - completely counterbalanced norm
minimization (p =). In the actual implementation, we use an intermediate weighting

and set p = 4.

The last arguments have all been in favor of the second reformulation approach.
Nevertheless, also the first approach has its raison d’étre. Besides the better results in
combination with the relaxation ML, it also shows a beneficial interaction with some
of the constraints presented in Section 6.1. In the attempt to ensure a fair comparison

between the discussed relaxation frameworks, we want to avoid the utilization of multiple

Reformulation Approaches 47

reformulation approaches. For this purpose, we design a compromise between the two
presented QAP reformulations. In the actual implementation, we obtain the parameter
vector d as a part of the solution vector to the following problem:
inf B B B Bs|x
d,eRn, By ByesT exB = waBiall + [l + Bl (4.18)
s.t. (I-1E) (B + diag*(dB)) (I-1E) =B, - B,
The respective parameter vector vy is still compliant with (4.9). The obtained QAP
reformulation is the result of a trade-off between a minimal trace-norm of B , a counter-
balanced eigenvalue distribution in consideration of A, and a minimization of the trace
of B2. This is also reflected in the addressed properties, for instance, the tendency to

keep a low-rank parameter matrix B.

In consideration of the numerous references to the reformulated problem instances,
from now on, we simply assume that (A, B, C') states the QAP instance that is obtained
from the original problem by applying the considered QAP reformulation. The rarely
used original formulation is instead referred to as (A, B, C) This adaption leads to
a simplified notation. Unless otherwise stated, the parameters for the applied QAP

reformulation scheme are

2 . (A, E)

d, = Ae — - 4.19

AT 2 T D) —2)° (4.19a)

1
v, =w, = —§dA, (4.19Db)
d, = d, optained via problem (4.18) with weighting from (4.17), (4.19¢)
(B,E)+{d, ey 1/
v, = W, = >2n2 B e — - (Be + dB> . (4.19d)

Although the changes on the data matrix A do not affect the considered relaxation
frameworks, due to certain advantages over the original formulation, we still apply the
EVBI based reformulation to this matrix. One advantage is that additional reformulations
of B do not change the coordinates in C, hence for arbitrary vectors d,v,w € R" the
instances (A, B + diag(d) + ve” + ew”, C) describe QAP reformulations for the same
problem. Another benefit is its suitability for the computation of weighting parameters

via (4.17).

Summing up and reiterating this important point: from now on, the QAP instance

(A, B, C) states a certain reformulation to the respective original problem (A7 B , C) In

48 Reformulation Approaches

respect of Definition 4.2, these problems are related via

A= A+ diag(d,) + v,e” + ev?, (4.20a)
B = B + diag(d,) + v,e’ + ev? (4.20b)
C=C—ddl —24ev” —20,e"B, (4.20c)

with d,, v,, ds, vs being taken from (4.19).

The problem instances (A, B, C') and (A, B, C) have the same solution set, which is
easily verified by

VX ell™: tr(AXBXT + CXT) = tr(AXBXT + CXT).

In addition to their symmetry, the matrices A and B always satisfy diag(A) = 0, Ae = 0,
and Be = 0. Using the reformulated problem instance (A, B,C) as input for the

low-dimensional relaxation frameworks usually leads to better results.

4.1.2. Non-redundant positive semidefinite matrix splitting

In Subsection 4.1.1, we presented well argued reformulation approaches which are designed
for tightening the considered SDP relaxations. Though the focus was particularly on the
matrix splitting based relaxation framework MS, the SDP constraint of ML was considered
as well. We derived the QAP reformulation in (4.20) which gives a good compromise for
the different relaxation techniques. In that context, we also discussed strong criteria for
the choice of the positive semidefinite matrix splitting scheme defined in (3.9). Peng et
al. [84] followed a different approach to address the issue of finding appropriate splitting
schemes. They introduced the notion of redundant and non-redundant matrix splitting.
Based on their observations, they designed two new splitting schemes. The stronger of
the corresponding frameworks outperforms the relaxations introduced in [83] for most
instances from the QAP library [18].

The author believes that this is a good moment for a more detailed explanation of
the chosen positive semidefinite matrix splitting scheme. This subsection shall serve this
purpose by giving a brief review of the matrix splitting schemes introduced in [83,84] and
presenting an alternative interpretation of these. For the latter, we reveal connections

between the applied matrix splitting schemes and QAP reformulations.

Reformulation Approaches 49

Let us start with a short interlude in ‘non-redundant positive semidefinite matrix
splitting’.
Definition 4.7. A positive semidefinite splitting (B1, By) to a matriz B is said to be

redundant if there exists a nonzero positive semidefinite matrix R, such that
BZBl—BQ, Bl—RES+, BQ—RES+. (421)

If R =0 is the only feasible matriz that is positive semidefinite and satisfies (4.21), the

splitting is said to be non-redundant.

In respect of a matrix splitting based SDP relaxation such as MS,, Peng et al.
demonstrated the general advantage of non-redundant matrix splittings over redundant
ones, see [84, Theorem 1]. Roughly speaking, the theorem states that for any redundant
positive semidefinite matrix splitting there exists a non-redundant splitting which leads
to a tighter relaxation. Even though additional constraints on the respective variables
may change this circumstance, the absence of redundancies in a positive semidefinite

matrix splitting is a good indicator for a beneficial splitting scheme.

In [84, Theorem 2|, it was proved that the matrix pair defined in (3.9) states a
non-redundant positive semidefinite matrix splitting. It is the same scheme as the
one used in [83] by Peng, Mittelmann, and Li. Lemma 4.6 gives an even stronger
argument for the application of the matrix splitting approach based on the spectral
decomposition. The positive semidefinite pair given in (3.9) states a minimizer for the
objective wy || By || + wel|Bz|| regardless of the choice of the unitarily invariant matrix
| - || and the weighting coefficients wy, wy. In this context, it is striking to see how the
framework SDRMS-SUM from [84] outperforms the relaxation SDRMS-SVD discussed
in the same paper but originally introduced in [83]. Even the framework SDRMS-ONE
(also given in [84]) is not completely dominated by SDRMS-SVD, though it is based on a
positive semidefinite matrix splitting which is usually redundant. How are these results

reconcilable with our arguments for the splitting scheme used in MS?

The answer to this question has surprisingly little to do with a redundant or non-
redundant positive semidefinite matrix splitting scheme. Consider, for instance, the

minimal trace sum-matrix splitting approach that is used as the basis for SDRMS-SUM.

50 Reformulation Approaches

The corresponding splitting is obtained as the solution to

inf tr(Bsy)
d,vER",BgESi (422)
s. t. B + diag(d) + vel + ev? = —B,.

Interestingly, a closer look on the obtained solution (d, v, Bs) reveals that the correspond-
ing matrix pair (— diag*(d)—veT—evT, Bs) does not necessarily state a positive semidefinite
matrix splitting to B. There are many QAP instances for which diag(d) + ve” + ev”
is indefinite. The concept of non-redundant matrix splitting is therefore not applicable,
at least not in a straightforward manner. This is where QAP reformulations come into
consideration. With the parameters d and v, it is possible to construct three different

symmetric QAP reformulations that involve individual interpretations of the splitting

scheme:
B = B + diag(d) — B = (—ve' —ev”) — Bs, (4.23a)
B =B+vel + e’ — B = (- diag*(d)) — By, (4.23b)
B = B + diag(d) + ve” + ev” — B= Otnny — Ba. (4.23¢)

In general, neither (— diag(d)) nor (—ve” —ev”) have to be positive semidefinite. For many
instances of the QAP library [18], these matrices are indefinite. The only interpretation

for which the respective splitting always complies with Definition 3.1 is the last one.

In regard to the interpretation given in (4.23c), the minimal trace one-matrix splitting
[84, Section 3.1] is non-redundant as well. The respective splitting scheme simply
corresponds to a different QAP reformulation. For B = Otn,n) — Ba, it is moreover
apparent that (0,), B2) states the unique non-redundant positive semidefinite splitting

to B. The compliance with the matrix pair in (3.9) is evident.

These observations lead to a new interpretation of the frameworks SDRMS-ONE and
SDRMS-SUM . The programs are specific versions of ()AP,;s and can be derived from
SDRMS-SVD by applying the respective QAP reformulations. SDRMS-SUM is superior
to SDRMS-ONE because it utilizes a more beneficial reformulation.

The results given in Subsection 4.1.1 suggest an even greater benefit from the re-
formulation defined in (4.20). Though this does not account to every QAP instance,
numerical results reinforce this suggestion. Nevertheless, it should also be mentioned
that the optimal combination of a QAP reformulation and a positive semidefinite matrix

splitting scheme depends on many more factors. The consideration of the eigenvalue

Reformulation Approaches 51

distribution of the reformulated parameter matrix A is a good start. However, the update
of A is more an initial guess than an optimized reformulation that considers the mutual
correlation between the updates for both matrices A and B. How the reformulated
coefficient matrix C' affects relaxation results has not been taken into account at all.

Hence, the presented reformulation approach still leaves room for improvement.

4.1.3. Commutation of data matrices

The concept of reformulating quadratic assignment problems is not limited to what we
called QAP reformulations in the last subsections. Another possibility to reformulate a
problem instance (A, B, C') would be a counterbalanced scaling of the parameter matrices
A and B, i.e. (A7 B, C) = (aA,a 1B, C) for some a € R.y. This kind of reformulation
is not considered in this section because the objective values of the corresponding SDP
relaxations are not affected by scaling. In a different context, we will come back to this
reformulation, demonstrating its value for resolving numerical difficulties that occur in

the solution procedure.

This subsection is about a very basic reformulation approach, which - as elementary
as it is - often has a significant influence on the obtained bounds. We mean the
commutation of the coefficient matrices A and B. It is very easy to see that the instance
(A, B, C’) = (B, A,C7T) describes an equivalent problem to the actual QAP. The only

necessary adaptation is that any optimal assignment X is transposed to an optimal

permutation matrix of the reformulated problem instance, and vice versa.

Once again, the vector lifting approach demonstrates its strength. Neither the QAP
reformulations defined in (4.2) nor the commutation of A and B affect the lower bounds
computed via VLy. On the other hand, the permutation of the data matrices often has a

significant influence on the results of the other SDP relaxations.

The most obvious and safest method to decide whether A and B shall be exchanged
or not is the numerical test of both formulations. In most cases, however, solving the SDP
relaxation two times for each problem instance is not necessary. Different measurements
for the natural advantage of a certain data matrix commutation can be evaluated with
significantly smaller computational costs. A useful indicator for the tightness of our SDP

relaxations is the relative distance to the norm-wise closest sum-matrix:

(4.24)

T T
5SUM<B) = mln{| OH(B tue tev)H ‘U € Rn} .

| off(B)]

52 Reformulation Approaches

An explicit formula for the vector © that minimizes this norm fraction can be derived by
applying (4.9) and (4.12):

- (B_;(f_Ef))

If dsum(A) < dsum(B), it is typically beneficial to interchange the matrices A and B,
otherwise it seems to be favorable to keep the original problem formulation. This
statement is reasoned by the observation that the diagonal elements as well as the
sum-matrix part of the respective parameter matrix can be linearized. The difficult part

is the quadratic remainder.

A significant drawback of the relative distance defined by (4.24) is the dependency
on the formulation. It is possible to reformulate the QAP beforehand using the formula
for © and its adaptation for the reformulation of A, such that dsuy(A) = dsun(B) = 1. A
suitable assumption for the applicability of this indicator is that the minimal off-diagonal

elements of the corresponding matrices are equal to zero.

Another possibility to overcome this issue is to use a second indicator that exploits

different norms on a fixed QAP reformulation:

off(B + tel + ed?
(521 (B) . H ()H2

= . 4.25
| off(B + oeT + e07)|, (4.25)

Whenever d9;(A) is considerably smaller than dq1(B), we swap the data matrices. Only
for the instances where these values are close to each other, i.e. d31(A) ~ do1(B), we
still test both formulations and choose the one that delivers stronger bounds. This

commutation rule has already been used for the numerical results in Table 3.1.

4.2. Reduced relaxation frameworks

A closer examination of the level-0 relaxations considered in Section 3.1 reveals some
redundancies. We use this subsection to point out how the number of equality constraints

can be reduced by replacing them with a smaller number of equivalent conditions.

In [24], Klerk and Sotirov showed that the equality

tr(1) — 2{e,) = —n, (4.26)

Reformulation Approaches 53

together with the positive semidefiniteness condition in (3.3b) and the Gangster equations
(3.3g), (3.3f), imply the validity of (3.3c), (3.3d), and (3.3e). The single condition (4.26)

replaces n® + n? + 2n equality constraints of the corresponding formulation QAP vy, .

For the reduction of the other SDP frameworks, we consider the following result.
Lemma 4.8. The replacement of (3.5d) and (3.10d) with

<E7 Z> = <E7 BQ>7 (427)
and

(E,Y,+Y)=(E,B, +B), (4.28)

respectively, does not affect the feasible set of the corresponding relaxation frameworks.
Furthermore, in accordance to the feasible set described by ESy, the equality constraints
in (3.11d) are redundant.

Proof. For the discussion of the first replacement, let (X, Y,Z) denote an arbitrary
feasible point to the respective instance of QAP,,,. The conditions X € D and (3.5d)

imply
(B,7) =e"Ze = e XB% = "' B*c = (E, B?).

Any feasible point to problem (3.5) therefore also satisfies (4.27).

In order to prove the other direction, let (X, Y, Z) denote an arbitrary feasible point
to the respective instance of ML with the replaced equality constraint (4.27) instead of
(3.5d). Define by

r,:= Ye— XDBe and r, = Ze — XB%e

the residuals to the replaced equations in (3.5d). The SDP constraint in (3.5b) requires

T
ae I X' BXT ae

(@) == | —ae X 1 Y —ae
r XB Y 4 r

Y

54 Reformulation Approaches

to be nonnegative for any choice of a € R. By positive semidefiniteness of Z and the

diagonal equalities in (3.5¢), we additionally have
(rys Zry) < || 2]l [ryl® < 62(Z) [ry]* = 02(B?) [
Since

0 < 9,(a) =2a°n —2a°e" Xe + (2aXBe — 2aYe + Zr,) TrY
= (— 2ar, + Zry)Try
< (- 2a + tx(B?)) I |°

holds true for arbitrarily large values of «, the norm of r, needs to be equal to zero. This,
in turn, implies the compliance with the original constraint Ye = X Be.
In the same way, we derive

T
aBe I X' BXT aBe

0 0 X I Y 0
r, — Qe XB Y [/ r, — ae

N

< —a?e" B + a*e" Ze + (- 2a + tr(B?)) |,
— (—2a +te(B) |,

where the validity of the latter equality is due to (4.27). The immediate consequence of

this observation is the compliance with the vector constraint Ze = X BZ2e.

A very similar approach can be used to account the substitution (4.28) for (3.10d).

The general idea is to exploit the non-negativity of

T
ae B, B.XT oe

2

oeft—} \Ty, — Qe XB, Y, Ty, — Qe

<

The remaining assertions follow the arguments used for the first replacement.

By the same operandi, it is possible to prove the redundancy of (3.11d). To this end,
define

To, = Qe — Xq,ql e for i=1,... n,

Reformulation Approaches 55

as well as

Te) 1 g X? a(qle)

o [alg

Tq, — Q€ Xq; 0O, Tq, — Q€

Together with the equality constraints (3.11¢), (3.11e) and the requirement X € D, the

semidefiniteness condition in (3.11b) implies

0 <J,(a)

<_ gl e + 0" Qe+ (204 1(0)) o)

2

[]=

<
1

—2a + 1) Z 7. 1%,

<.
I

which validates the compliance with (3.11d). O

4.3. Level-1 relaxations

We conclude this chapter about reformulation techniques with a small summary of
the discussed modifications. For this purpose, we present the level-1 versions of the
corresponding frameworks and evaluate their applicability on the basis of a few numerical
examples. The notation follows the one used in Subsection 4.1.1; in particular, (A, B, C')
refers to the reformulated problem instances given in (4.20). This notation is also

transfered to the spectral value decomposition of the respective parameter matrices, i.e.
A=30 wpp! and B = 31 Ngyq]

We have already shown that the considered adaptations do not effect the feasible set
of relaxation programs which are based on vector lifting. The level-1 version of QAPy,, is
therefore equivalent to the level-0 version given in (3.3). Nevertheless, there are some

significant changes to this relaxation, making it worth to present the framework VLIi:

56 Reformulation Approaches

inf , (A Y)+LCX) (4.29a)
XeM™ YeSn TeSn

8. . 1 vec(X)T

eS,, (4.29b)
vec(X) T

tr(7) = (E, X)) =n, (4.29¢)
IE-1)+(E-1)®I)oT =0, (4.29d)
(e®@D)"(To(BRE))(e®I)=Y. (4.29¢)

For improved convergence in the solving procedure, here we are applying the two equalities
in (4.29¢) instead of the single equality condition (4.26). Constraint (4.29e) is deduced
from the identity

XBX" = (e®I)" [(vec(X) vec(X)") o (BRQE)]| (e®1). (4.30)

Except for QAP,,, the optimization variable Y is not required for the actual implemen-
tation of the individual programming problem. For reasons of clarity, we nevertheless
make use of the same variables X and Y in all four relaxation programs. A positive side
effect of this procedure is that the objective functions as well as several constraints which
will be discussed in Section 6.1 have the same form in all considered relaxations. It is

therefore sufficient to describe the related adaptations only once.

The level-1 versions of the other SDP relaxations are listed below. Firstly, the

framework ML;:

XeD"i,an,ZeS" (A Y)Y +{C, X) (4.31a)
5.t I XT BXT
X I v |es, (4.31b)
XB Y 7
diag(Y) = X diag(B), diag(Z) = X diag(B?), (4.31c)

(E,Z) = 0. (4.31d)

Reformulation Approaches 57

Secondly, the relaxation based on matrix splitting:

XeDn, y,IYE,Y,eS” <A’ Y> + <C’ X> (4.32&)
s. t. [(no) LZXT
€ S+’ ©E {+7_}a (432b)
XL, Y,
diag(Ys) = X diag(B.), o€ {+,~}, (4.320)
(E,Y,)=0, (E,Y.)=0, (4.324)
p-Y.=Y, (4.32¢)

where the matrices L, € M™" are obtained via some compact decomposition B, = L L.

And finally, the “eigenspace” SDP relaxation:

XeDn, Qll,r.l..f,on,veSn (A, Y)+<CX) (4.33a)
S. t. 1 qiTXT
€Sy, iefl,...,n} (4.33D)
Xg QO
diag(Q;) = X diag(g;q/), ie{l,...,n}, (4.33c)
2,0 =1 2 N0i=Y. (4.33d)
i=1 i=1

The constraints in (4.31d) and (4.32d) emerge from the reformulation property
(E,B) = (E,By) = (E,B_) = 0 and replace the corresponding vector equalities. If
other QAP reformulations with different properties shall be used, the right-hand sides of
these equality constraints have to be adapted accordingly. Apart from the introduction of
the variable Y in all considered relaxation frameworks and the realization of the reduction
approach from (4.14), the only noteworthy difference to their level-0 counterparts is
the utilization of the discussed reformulation approach. The fact that this is the sole
modification with an actual influence on the bounding quality is reflected in the selected

numerical examples given in Table 4.1.

The bounds computed via VL; are, as expected, the same as the ones obtained via
the corresponding level-0 version. On the other hand, the QAP reformulation from
(4.20) helps to improve the bounds obtained by the other relaxations. The largest

improvement is attained on the bounds that are computed via QAP,. In particular, the

58 Reformulation Approaches

Table 4.1.: Selected bounds for comparison of level-1 relax-
ations [Rgap in (%)]

Problem VLl ML1 MSl ESl

Chrl2a 150.68 230.74 312.34 195.71

Escl6b 5.48 10.15 5.65 5.48
Had14 0.56 7.35 3.53 1.56
LiPa20a 0.72 1.70 3.62 1.35
Nugl2 8.42 18.21 17.80 10.11
Scr20 24.26 70.59 39.93 28.46
Tail7a 10.27 15.16 24.11 12.92

instances Esc16b and Scr20 demonstrate the high benefit for this relaxation framework.
In anticipation of the expected further improvements, these results are already quite
promising. Nevertheless, for many QAP instances, the obtained bounds are still far away
from being of practical use. Moreover, there are a few instances for which the bounds
obtained via the respective level-1 relaxations are not improved in comparison to their

level-0 counterparts.

Chapter 5.

New Relaxation Frameworks

5.1. New relaxation approaches

In the previous sections, we revisited four different SDP relaxations for the quadratic
assignment problem. Though Theorem 3.2 exhibits correlations between these frameworks,
the respective programs originate from considerable different relaxations strategies. This
is reflected in the strongly differing computational expenses as well as the obtained lower

bounds.

Due to their great number of variables, relaxations based on vector lifting techniques
are usually too expensive for practical usage. Though the complexity of ES is a good
deal smaller than the one of VL - about a factor n in the number of variables as well as in
the number of equality constraints - the same statement also applies to the “eigenspace”
SDP relaxation. The latter optimizes over a still large number of O(n?) variables.
On the other hand, regarding their tightness, the gap between the high-dimensional
and the low-dimensional frameworks is all but not negligible. For a better efficiency,
we either reduce the computational expense of the high-dimensional frameworks or
increase the bounding quality of the low-dimensional ones. In Subsection 5.1.1, we
provide approximation approaches to increase the efficiency of the relaxations discussed
in Section 3.1. Subsequently, we introduce new SDP frameworks which extend the already

presented relaxation techniques.

59

60 New Relaxation Frameworks

5.1.1. Reduction via approximation

In numerical tests, we observed that the applied QAP reformulation scheme often induces
strongly differing traces of the positive and negative semidefinite parts of the reformulated
B. In cases where the norm of one of these matrices B, € {B,, B_} falls below some
relative threshold, i.e. || B, |2 < ¢||B||2, we suggest a reduction of the matrix splitting
based framework by removing the associated variable Y,. Due to its insignificant spectral
norm, Y, plays only a minor role for the quality of the relaxation framework, whereas its

elimination strongly reduces the accompanied computational costs.

The removal of the corresponding matrix variable can be realized by exploiting a
different QAP reformulation which is based on the minimal trace sum-matrix splitting
introduced in [84]. The connection between QAP reformulations and this specific splitting

approach has already been discussed in Subsection 4.1.2.

For a threshold ¢ « 1, suppose that || B, ||2 < e[| B||2. In this case, instead of deriving
the reformulation parameters by solving problem (4.13), one may utilize the solution

(dy, V) to the following maximization problem

sup (e, ds + 2vy)
dp,vsER™ . i} (51)
s.t. — B —diag(d,) —ve’ —evl €S,.

Any non-redundant positive semidefinite matrix splitting of the reformulated data matrix
B = B +diag(d,) + i,e” +ei! leads to By = () and B_ = B. The variable Y, as well
as the related constraints thus become irrelevant. The elimination of these accompanies
a drastic improvement of the efficiency and is, in the same manner, also applicable for
the case || B_||2 < €| Bl|.

Since the reduction approach from above is beneficial only in the presence of the
described circumstances and only in combination with the frameworks based on positive
semidefinite matrix splitting, we need to find other reduction strategies with more general
applicability. An alternative approximation approach is given by Peng, Mittelmann,
and Li [83]. In the reduced version of their matrix splitting based SDP relaxation, they
replaced the semidefiniteness condition in (3.10b) by the plain conditions Y., Y € S,.
They observed that this substitution decreases the computing times significantly, whereas
the the computed bounds are decreasing marginally. We follow this realization and

construct similar constraint approximations for the discussed relaxation frameworks.

New Relaxation Frameworks 61

If we think of the matrices B, and B_ as linear operators, we may interpret the
constraint reduction from (3.10b) to (4.14) in respect of a projection onto the images of
these operators. For all matrices V, e M™" whose column vectors span a superset of
the image of the respective operator, i.e. R(V,) 2 R(B.), the semidefiniteness conditions

T
Ve 0 B, BX'||V, 0

0 I XB, Y, 0 I

e S, (5.2)

are equivalent. Naturally, the inclusion R(V,) = R(B,) requires the dimension n, to be at
least as large as the rank of the corresponding matrix B,. And of course, it is possible to
find matrices V, that have exactly n, = rank(B,) columns and still satisfy the condition
on their column spaces. The constraints in (4.14), for instance, are realized using the
transformation matrices V, = (LI)T for o € {+,—}. The identity of the column spaces
R(L,) and R(B,) validates the compliance with the demanded inclusion R(V,) 2 R(B,).

In the attempt to reduce the dimensions even further, we are looking for low-rank
approximations V, € M™% where fi, < rank(B,) and R(V;) ¢ R(B,). Appropriate

choices for V, can be found by inspecting the corresponding Schur complement conditions:
Y, = XBV,(VIB,V,) VI BX" for oe{+,—}

For a good trade-off between speed and quality, the matrices V, shall have low dimensions

N, and - in respect of some unitarily invariant matrix norm - involve small residuals
I|B, = BV, (VI BV)'VIB, || <el|B|l for oe{+,—}, (5.3)

where ¢ denotes a bound for the relative approximation error.

In consideration of this demand, we make use of the spectral decomposition of the
respective parameter matrices. More specifically, we utilize Theorem 2.4. Although it
is possible to adjust the following procedure for arbitrary choices of unitarily invariant
matrix norms, for reasons of simplicity, let us assume that the inequalities in (5.3) are
interpreted with respect of the spectral norm. For the set of eigenvalues of B, define the

index sets

QL ={i| >elBlle}, Q2= {i[A < =l Bl|2} (5.4a)

62 New Relaxation Frameworks

as well as their union and its complement

O = i | N > ellBl), U= i Nl < llBlla). (5.4D)
Furthermore, for some index set = {wy,ws, ..., wx}, additionally define
Qa = [qus- -+ Qu] and Aq = diag*([)\wl, ce Aw])- (5.5)

In the actual implementation, a minimal rank reduction that complies with (5.3) is

realized by applying ‘70 = Qg Aﬁ%, from which we derive the SDP constraints

~1 T yT

XQQg Y<>

e ST for o€ {+,—}. (5.6)

For € = 0, the conditions in (5.6) are equivalent to (4.14) as well as (3.10b), whereas
these constraints reduce to Y,, Y. € S, for any £ > 1. In this respect, (5.6) replaces
the original SDP conditions of MS, and provides an additional threshold parameter for

weighting quality versus speed.

By a similar procedure, it is also possible to decrease the dimension of the SDP
constraint of relaxation MLy. We follow the example of (5.2) and reduce the constraint

in (3.5b) by using some matrix V € M"™™:

I X7 BXT
diag(V,I,D)T | X 1 vy |diag(V,I,I)e8*™ (5.7)
XB Y 7

A suitable choice for V can be constructed by concatenation of V; and V_ from above,
e, V= [T 7],

Here it is worth mentioning that for 7 < n the reduction via (5.7) usually results in
an approximation of the original constraint. In contrast to the semidefinite substitutes
in (5.2), this observation is independent from the relation between R(V) and R(B). For
the construction of an equivalent to (3.5b) one needs to apply the stricter requirement
R(V) 2 R(B) U R(XB), which - except for the trivial case that all elements B are equal
to zero - necessitates dimensions 7 > n — 1. Even the slight reduction from 83" to S~

is attainable only if e lies in the kernel of B. In different numerical tests, we further

New Relaxation Frameworks 63

observed that the approximation of condition (3.5b) does not work as efficient as the
substitution (5.2) in framework MS. Nevertheless, depending on the circumstances, one
may benefit from the use of (5.7) as a substitute for (4.31b).

After having seen two different examples for approximation strategies that may be
used to construct more efficient relaxation frameworks, we pay our attention to the key
aspect of this subsection: the reduction of the “eigenspace” SDP relaxation. A beneficial
way to exploit a possibly reduced rank of the reformulated parameter matrix B is the
unification of the nullspace. Assume that the index sets ¢ and U¢ satisfy the definitions
in (5.4b). For € = 0, the constraints

1 rXT
B st for i, (5.82)
_Xqi QZ
Ly QfXT .
e STl (5.8b)
| i€

describe a moderate relaxation of the original conditions in (3.11b).

For many instances from the QAP library [18], the unification of the nullspace reduces
the number of variables significantly. On the other hand, the effect on the respective
optimal values is negligible for all tested problems. This observation suggests a further
reduction of the SDP constraints via increasing the approximation tolerance. The direct
utilization of (5.8) for € > 0, however, introduces an approximation error that requires
special consideration. It is possible to estimate the introduced error by applying another
bounding procedure to the remainder QAP. Alternatively, one may incorporate the
respective error term by introducing additional programming variables. Either way, in
the authors opinion, the effort is scarcely beneficial. Usually, the approximation error

increases too fast against the descent of the number of semidefinite conditions.

The unification of SDP constraints for every cluster of eigenvalues seems to be
a significantly better approach for the reduction of ES;. For many instances of the
parameter matrix B, it is possible to construct tight approximates B that have very
few different eigenvalues. This, in turn, allows a significant reduction of the considered
relaxation framework. Let the reformulated data matrix B be split into an approximate
B and a residual R. For the relaxation of the remainder term tr(AXRXT), we follow the
matrix splitting approach and denote by R, and R_ the positive and negative semidefinite

64 New Relaxation Frameworks

part of R, respectively, such that
B=B+R,—R, R,,R_€S,. (5.9)

In the following, we assume that B has k distinct eigenvalues. We denote the set of
these values by {1, ..., A} and - in respect of the corresponding multiset {1, ..., A,}

- define the index sets
O, :={j| \j=Xu} forclusters i=1,... k. (5.10)

Finally, we combine the relaxation approaches of QAP.s and (QAP,s to construct the

“eigenspace cluster” SDP relaxation, referred to as QA Py or simply ESC":

(AY) + (C,X) (5.11a)

s. t. ~
. I Xt
U S P S P (5.11b)
XQq, U;
Inyy LEXT
° €Sy, o€ {+,—}, (5.11c)
XLy, F.
diag(U;) = X diag(Qq,Q%,), 1<i<k, (5.11d)
diag(F,) = Xdiag(R.), o€ {+,—},
(E,F.+F_)={(E,R, +R_), (5.11e)
k k
i=1 i=1
where Q := [¢1,--.,qn] denotes an orthogonal matrix consisting of a possible set of

eigenvectors of B, and L, € M™" are derived via some compact decomposition of the

residual matrices: R, = L, LI .
<O <o

In order to obtain a suitable approximate B, we apply a k-median clustering algo-
rithm [51] to the eigenvalues {\;} of the parameter matrix B. The approximate B is
then constructed by replacing all eigenvalues of B with the computed centers of the

corresponding clusters. The number of clusters is chosen just large enough to satisfy

I B~ Bll2 < <[Bll2. (5.12)

New Relaxation Frameworks 65

Once more, € is not only the bound for the relative approximation error but also serves
as a threshold parameter for weighting quality versus speed. As a side effect of the
applied approximation procedure, all four matrices B, B, R., R_ are simultaneously
diagonalizable. Other splitting schemes, that do not comply with this characteristic
or require different reformulation approaches, may lead to better relaxation results.
Nevertheless, for reasons of simplicity, here we stick with the described approximation

scheme.

5.1.2. Matrix lifting revisited

In the last subsection, we described reduction schemes that serve the reduction of the
dimension of SDP constraints. For this purpose, we exploited our knowledge about the
eigenspace of B and tried to obtain more beneficial sets of eigenvalues {5\1, e ,;\n} via
approximations of the original parameter matrices. In consideration of the matrix lifting
strategy, it is possible to exploit a low rank of B in quite the opposite way. In the
following, we will describe a possibility to utilize the presence of a non-trivial nullspace

of B, not for a reduction but for a tightening of the respective semidefiniteness condition.

We follow the index set definitions from the last subsection and utilize the compact

eigenvalue decomposition B = QqoAg0Q%o to establish the following identity:

T
Ijoop Q&X' QLBXT Ljoo) Ljao))
XQpo XQuQiX" XBX'T | = | XQq XQqo
XBQg XBXT XB!XT XBQg | | XBQqy

The semidefiniteness property of the left-hand side serves as a basis for a new relaxation

framework. In this context, we first investigate the usability of the conditions

Igoop QopX" QooBXT
XQp G y | esr (5.13a)
XBQg Y z

66 New Relaxation Frameworks

and

Loy QX"
XQu -G

e STV (5.13b)

as a replacement for the SDP constraint of ML;.

If the rank of B is a good deal smaller than n, this substitution has only a slight
effect on the overall computational effort. In rare cases, the reduced dimension of the
matrix in (5.13a) can actually speed up the solving procedure. The more important
matter is how this modification affects the quality of the matrix lifting based relaxation
framework. The matrix variable G in (5.13a) and (5.13b) is used to relax the quadratic
term X Qo Qb X ™. With the following result, we show that the presented substitution
tightens the relaxation.

Lemma 5.1. Any quadruple of matrices (G, X,Y,Z) that satisfies the semidefiniteness
conditions in (5.13a) and (5.13b) also complies with constraint (3.5b).

Proof. Define the two block-diagonal matrices Dy, := diag*(QQO,](Qn)) and D, :=
diag*(QUo, Tionny). It is easy to check that the expression

Tjoopy QhX" QheBXT
Dy, | XQuo G 14 D], + D,
XBQg Y 7

Loy Qi XT
XQu I—-G

Dy

is identical to the matrix in (3.5b). The positive definiteness of this matrix is a direct
consequence of (5.13a) and (5.13b). O

Apparently, a smaller rank of matrix B decreases the trace of variable G. An
decreased trace leads to a stronger SDP constraint which thereby improves the quality of
the relaxation. For QAP instances with low-rank parameter matrices B, the improvement
can be immense and is absolutely worth the slightly increased computational effort

accompanied by the replacement of (4.31b) with (5.13).

One way to exploit this correlation beyond the already mentioned modifications is the
utilization of a low-rank approximation B = Qg Aq-Qq-. Similarly to the approach used
for QA Py, however, the corresponding residual R = B — B requires a special treatment.

This includes the possible drawbacks accompanied by the selected approach. Although

New Relaxation Frameworks 67

the tighter bound for the significant term tr(AXBX") usually outweighs the possibly
weaker relaxation of the remainder term, the improvements turn out to be relatively
small, whereas the computational effort increases significantly. For now, we therefore

dismiss the idea of constraint splittings based on low-rank approximation.

It is important to realize that the conclusion from above does by no means apply to
the general idea of matrix splitting based rank reductions. By utilization of the Schur
complement inequality to the respective matrix blocks, we see that (5.13a) involves the
relation Z > YG'Y. This inequality indicates a strong (nearly proportional) correlation
between the expression ||G1Z72 Gt — XBXT|| and the tightness of the semidefiniteness
condition in (5.13a). By a loose interpretation of this connection, one may conclude that
smaller values of tr(G)tr(Z) = ||BB'||?|| B||? indicate stronger relaxation bounds. In
this regard, we are looking for a new splitting scheme B = B; + By with the aim of
minimizing the sum of the corresponding product terms Y7 || B; Bl ||2[|B;]|2. In order to
achieve this, we apply a reverse optimization of the respective factors. This means that
we concentrate on the minimization of the factors || B, Bl||2 and || B,||2. In the actual
implementation, we use a splitting scheme based on the spectral value decomposition
of B. The splitting is realized in such a way that B; contains the most significant
eigenvalues of B, but relatively few compared to the overall number of eigenvalues. The
remainder part By, on the other hand, contains more eigenvalues with smaller absolute
values. The individual application of the semidefiniteness condition in (5.13a) to each of

these matrices results in a significant strengthening of the relaxation.

Other ideas for efficiency and quality improvements over the original relaxation
framework QAP,; are based on the reformulation and reduction strategies discussed
in Section 4.1 as well as the approximation approach used in (5.6). We combine the

addressed modifications and construct an extended SDP framework based on the matrix

68 New Relaxation Frameworks

lifting approach denoted QAP,;x or simply MLX:

XeDn,Gi,g,lgesz\i:m (A Y1+ Yo +(C X (5.14a)
s.%. [1 X7 BXT
DI'| X G Vv, |D,eSy, i=1,2, (5.14b)
_XB Y; Z;
T 1 XT
D, D,eS,, (5.14c¢)
X I—G— Gy
diag(G,) = X diag(B,;B}), i=1,2, '
<E, Gl + GQ> = <E,Zl + ZQ> = O, (5146)

where the block-diagonal matrices {D;} are defined as Dy := diag(Quo, I) and D; :=
diag*(Qgg, I,1) for i € {1,2}. The corresponding index sets {25} are derived from the
intersection of 2° and the respective index sets which describe the eigenvalue assignment
to the parts B; and Bs.

If the considered QAP instance requires a reduction of the computational expense,
one may decrease the approximation threshold € and replace the semidefinite constraints
in (5.14c) by I — Gy — Gy € S;. The complete removal of this constraint is generally not
advisable. For many problem instances, the splitting scheme from above provides the
opportunity for a further framework reduction. The described minimization procedure
leads to a small rank of B;. Often this matrix contains only a single nonzero eigenvalue

or a single cluster of nonzero eigenvalues. If this is the case, we may replace D; with

Dy = diag*(Qgg, I(20)) and set Y; = r;ﬁfgl) G;. Even if there are two clusters of nonzero
eigenvalues in By, it can be beneficial to replace the first constraint in (5.14b) with the

respective semidefiniteness conditions based on the ESC approach.

5.1.3. Interrelated matrix splitting

A particularly beautiful property of the positive semidefinite matrix splitting scheme
given in (3.9) is that the column spaces of the matrices By, B_ are orthogonal, such
that R(By) n R(B-) = {0} and B, B_ = B_B; = U,). As an immediate consequence,

B, and B_ are moreover simultaneously diagonalizable. It would be a great advantage

New Relaxation Frameworks 69

if we could make use of these interrelations in the actual relaxation. Unfortunately, it
seems quite difficult to exploit the corresponding properties in form of beneficial SDP
constraints. For the design of new relaxation strategies, we need a different kind of

interrelation.

In this subsection, we say goodbye to the idea of redundancy-free positive semidefinite

matrix splitting pairs (B, B_) and present a new splitting scheme:
B = B, — By with additional conditions on (B,, By). (5.15)

By the introduction of specific redundancies, we induce artificial correlations between
the respective splitting parts. These interrelations shall be used to construct new types
of constraints which are applicable in the corresponding SDP relaxation. To distinguish
this new splitting from the non-redundant positive semidefinite (PSD) matrix splitting
pair (B, B_), we use the different notation in (5.15).

The possibilities of contrivable interrelations between B, and By are virtually endless.
This, however, does by no means amount to a large number of properties that are suitable
for our particular purpose. One of the few beneficial interrelation properties the author

discovered in his research is the inverse semidefiniteness relation
B, > B! > 0. (5.16)

The existence of the inverse B! implies the regularity of B, and thereby also the

regularity of B,. By the matrix equality

B, —B.' =B (B, - B")B,'+ (I - B;'B.")" By (I-B;'B"),
>0 >0

it is furthermore evident that (5.16) implies the validity of
B, > B ' >0 (5.17)

Indeed, the conditions (5.16) and (5.17) are obviously equivalent.

The discussed interrelation property can be exploited by transferring the same to
the relaxation variables for the quadratic terms Y, = X B, X7 and Yy = XB,XT. The

70 New Relaxation Frameworks

orthogonality of permutation matrices X € II gives
XB'XT = (XB,Xx")™.

Relation (5.16) therefore requires X By X7 > (X B, XT)™! > 0, which provides the basis
for the constraint Y, > Y;' > 0. The latter condition can be realized by using the Schur

complement inequality given in Theorem 2.1:

Y, 1
: e S (5.18)
I Y

Before we can apply this constraint, we need to spend some thoughts on how to
obtain a suitable matrix splitting pair (B,, By) satisfying the requirements from above.
In the attempt of designing tight SDP relaxations, we are looking for matrix splitting
pairs that accompany minimal norms.

Lemma 5.2. For a symmetric n x n matrizc B € 8™ and nonnegative coefficients
wi, we € Ry satisfying wy + we > 0, consider the minimization problem
it w8+ w8y

s.t. B, > B;'>0, (5.19)
BA - Bv = B

A solution to this program is given by the matriz pair (EA, Ev) defined as
N 1 N N
Byi=3 (B VBt 4]) . B,=B,-B. (5.20)

This pair satisfies the identity éA = B;l, and it is unique whenever the considered

unitarily invariant matrix norms are strictly monotone.

Proof. The multiplication of both matrices gives

PN 1 1 1
BBy =5 (B+\/BQ+4I> 5 <\/82+4I—B> - (B +4I—BY) =1

and proves B, = B;!. Tt is also straightforward to check that (B,,By) satisfies the
constraints of problem (5.19). By regularity of B,, By and the corresponding Schur

complement inequality, we see that the semidefiniteness condition B, > B! > 0 is

New Relaxation Frameworks 71

equivalent to

B, I
. S
I By

Each solution vector (B, By) to (5.19) therefore corresponds to a matrix pair (G, H) =
(1, By) that states a feasible point to the following programming problem

St willHI|+ wsllH - B

s. t. H G
G H-B

2n
e S,

qiTquzl for ie{k| M\ # 0},
Gqi = q; for ie{k| M\ =0}.

Any optimal point to this problem, which, conversely, relates to a matrix pair that
is feasible in respect of problem (5.19), necessarily describes a solution to both. The

remainder of the proof follows by Lemma 2.16. O]

For the solution given in Corollary 5.2, one can explicitly state the introduced

redundancy:

1
RzBA—B+=BV—B_=§(\/B2+4I—\/BQ)eSﬁ,

with (B, B-) taken from (3.9). The notion of redundancy defined in (3.1) is still a good
indicator for the tightness of the considered relaxation. For that reasons, we will make
use of this concept a little longer. Nevertheless, it should be taken into account that
this term is used solely to demonstrate the difference to a splitting that is suitable for
the relaxation program QAP,s. It is also possible to adapt the notion of redundant and
non-redundant positive semidefinite matrix splitting in respect of (5.18). In this context,

the matrix pair (B,, By) given in (5.20) would state a non-redundant splitting.

In Subsection 4.1.3, we claimed that none of the presented SDP relaxations is affected
by a counterbalanced scaling of the parameter matrices A and B. However, the efficiency

of (5.18) depends to a significant amount on the scaling of the data matrix B. For QAP

72 New Relaxation Frameworks

instances where || B2 is much greater than 1, the formulas in (3.8) and (5.20) give

. ;
By=S(B+VB*+4l)~ S(B+VBY) =B,, By~D.

DO | —

Hence, in that case the splitting differs only slightly from the PSD splitting based
on the spectral value decomposition, and the effect of the inverse interrelation on the
corresponding feasible set is hardly noticeable. On the other hand, if ||B|[; « 1, the
validity of (5.16) is purchased by introducing a relatively large redundancy:

. 1 A
Bo=5(B+VBE i)~ 1, Boxl = [Rlp~1

To counteract this behavior, we apply a linear homogeneous function 7: M"™ — R
and replace (5.16) with

B, > 7(B)*B;* > 0. (5.21)
For any positive real scaling factor a, the condition
aB, > 7(aB)*(aBy) ™' =0

is equivalent to (5.21). The equivalence is easily apparent from the linearity of 7 and
demonstrates scaling invariance of this relation. In consideration of the semidefiniteness
condition and the applicable equality constraints, we suggest the trace norm of a projection
of B as a suitable base for 7. In the actual implementation, we use the renormalization

function 7 defined as

3
7(B) := 5—n\HPBPH\T, (5.22)

where the orthogonal projection matrix P is defined as P := I — %E . Among the tested
matrix norms and various scalings of these, the particular choice given in (5.22) worked

best for a large range of problems.

Regarding the nullspace of B - particularly its exploitation by the respective SDP
constraints -, another striking circumstance becomes apparent. In the last two sub-
sections, we demonstrated strategies for the utilization of a possible low rank of B.
The existence of some non-trivial nullspace was used to either improve the quality or
reduce the computational costs of the corresponding relaxation frameworks. However,

in consideration of constraint (5.18), a low rank of B is rather ballast than a beneficial

New Relaxation Frameworks 73

property. This issue can be resolved by replacing the inverse property in (5.16) with the

pseudoinverse relations

B,>Bl >0 and B, > B >0. (5.23)

By Lemma 2.13, it is apparent that any matrix pair (B,, By) that complies with these

two conditions necessarily satisfies
R(B,) = R(B) = R(B;) =2 R(B]) = R(B,),

such that R(B,) = R(By). This, in turn, demonstrates the equivalence of (5.23) and

the condition

B, G
G By

2n
e S,

where G is the orthogonal projection matrix for the space R(Bs) U R(By).

For the actual implementation, we take the approach one step further by incorporating
the renormalization function 7 and weighting the utilization of the inverse interrelation
property against the introduced redundancy. In order to achieve these objectives, we

apply the following program:

inf tr(wy By + waBy — £G)

By ,By,GeS™
s. t. B, G g
G B, o (5.24)
B, - B, = B,
1Gll> < 7(B).

The solution to this program can be determined analytically.

74 New Relaxation Frameworks

Theorem 5.3. For given B € 8™ with eigenvalue decomposition B = > | N\q;q

coefficients wq,wq € Ry satisfying wy + we = 2, and a real value £ € [0,2), define

o M
G = yminir(B). 5 haal

1 1 5.25
BA::§B+4/ZB2+G2, (5.25)

Bv = BA_B

The matriz triple (B,, By, G) states the unique solution to problem (5.24).

Proof. Denote by (B.,B,, C) an optimal point to the considered minimization problem,
define ¢ := [¢F Gqy, . ..,qYGq,], and consider

wi | By lle + wal| By -+ = &Le, ¢

inf
BA,BV,ESi, GeM™

s. t.
B, G
o € S_%",
G B, (5.26)
q?quzg for i=1,...,n,
— By = B.

Apparently, any solution to this problem is also a solution to the minimization problem
(5.24). By Lemma 2.16, it follows the existence of an optimal point (BA, B, C) with all
three matrices being diagonalizable by the same eigenvectors {¢;}. In addition, Lemma
2.16 validates the explicit formula for B.. Inserting this formula into the objective

function gives

tr(w; By + wyBy) — £tr(G) = tr(2B, — weB) — £ tr(G)

= tr (\/32 + 462) + (1 — wy) tr(B) — £ tr(G)
4q; <’\/ B2 +4G? + (1 —wy)) q; — fqz-Tqu'

N2+ g7 G2, + (1 — wo)\i — &q) Gy,

M:

i=1

I

S
Il
—

A2+ 4 + (1 —wo)N; — £¢ = h(().

I

~
I
—

New Relaxation Frameworks 75

Since h(() is a sum of univariate functions, its minimization can be done element-wise

for each summand separately. We define the anticipated minimizer as

- 19

C= 5 =ah Bl (5.27)

From the gradient of h

_ G

it is clear that this function is element-wise strictly monotonically decreasing in the

interval (—oo, () and element-wise strictly monotonically increasing in the interval (¢, o).

Additionally, the spectral norm inequality || G||, < 7(B) implies the same bounds on
the variables ¢; = ¢ Gq, < 7(B). This leads to the following adjustment of (5.27):

— (&) with & = min{r(B),

N>

Yy 5.28
= (5.29)
Though problem (5.26) does not necessarily accompany a unique solution, the uniqueness
of 5 is evident due to the continuity of h and its monotonicity properties. Since the
formula in (5.28) implies that the set {i | \; = 0,¢; # 0} is empty, all requirements in

Lemma 2.16 for a unique solution are met. [

The parameter £ serves as a threshold for the introduced redundancy and, in a certain
way, also as a threshold for the effectiveness of the generalized inverse interrelation. For
the extremes £ = 0 and & > 2, the respective semidefiniteness conditions fall back to the
SDP constraints used in the pure non-redundant matrix splitting approach from [83] and
the full normalized inverse property given in (5.21), respectively. By no means, however,
¢ is used as a trade-off between speed and quality of the respective relaxations. The best
bounding results are obtained for values in between these extremes. For the numerical
examples in the following sections, we use £ = 5 since this value works well for a large

range of problems.

Depending on the particular instance, it can be advantageous to utilize an individual
QAP reformulation that is more optimized for the discussed interrelated matrix splitting
approach. For this purpose, one simply needs to modify problem (5.24) by replacing
its equality condition with B, — B, = B + diag(d,) + v,e” + ev!. From the solution of

this problem, one derives new reformulation parameters dy and ¥, which are specifically

76 New Relaxation Frameworks

designed in consideration of this new type of SDP constraints. It can be shown that
the sum-matrix vector ¥, again satisfies the formula in (4.9). On the other hand, the
diagonal vector ds usually differs from its counterpart in (4.19). Nevertheless, since the
differences are typically relatively small and for reasons of comparability, we are using

the QAP reformulation (4.20) for all upcoming numerical examples.

The last piece in the puzzle of designing a new matrix splitting based SDP relaxation
for the QAP is the construction of the corresponding quadratic semidefiniteness conditions.
For the optimal matrix triple defined in (5.25), we have G = BA% Bv% = Bv% BA% . Together
with the conic inequality for the e-approximate decomposition - by which we refer to
B > Qq:-A-QA- -, one obtains
1 1 T
B, G . BEQq- | | BfQq-

G By B2Qq: | | BEQg:

In the following relaxation framework, this condition is implemented by using the Schur
complement inequality. To that end, we further define the diagonal matrix D, := 7(B)I
as well as the block diagonal matrices Dy := diag(Qq:, I, (2n)) and Dg 1= diag*(QUéfe, Iy,
where U, := {i | |\(G)| < €||G||2} denotes an adaptation of the index set definitions in

(5.4) for the eigenvalues of G.

Finally, we are in the position to present the level-1 version of the inverse interrelated

matrix splitting relaxation (/IMS):

XeDr, GI,I)},fYA,Yvesn A, ¥)+<C, X (5.29a)
S.t [1 1
o I B2XT BixXT
1 n .
DY |XB: v, G |D esi™l (5.29b)

XB: G Y,

_<D _ 1}3%}35)T XT
DT T A v

G

D, e SMOT (5.20¢)

X D.—-G

diag(Y,) = X diag(B,), diag(Y;) = X diag(B,),
diag(G) = X diag(BZ B2),

<YA7E>:<BA7E>a <YV7E>:<BV7E>7 (5298)
Y=Y, — V5. (5.29f)

(5.29d)

New Relaxation Frameworks 77

Table 5.1.: Selected bounds for comparison of framework modifications [Rgap = 1 —

Relaxation result :
Upper bound mn (%)]

Problem ML, MLX, MS, ITMS, ES, ESC,

Esc32g 1028.26 566.67 566.67 566.67 566.67 566.67

Kra32 35.05 18.22 26.25 21.76 14.24 14.27
LiPa40a 2.27 2.20 4.20 2.37 210 2.10
Nug30 29.25 8.65 12.14 8.65 7.99 8.02
Ste36a 135.37 32.56 49.12 30.55 26.85 26.87
Tai3ba 19.16 18.79 30.50 19.80 17.90 17.90
Tho40 53.85 13.26 14.54 12.58 11.42 11.43

Using the Schur complement inequality to obtain constraint (5.29¢) has usually only a
small effect on the quality of the computed bounds. For reasons of efficiency, it may
therefore be beneficial to refrain from the incorporation of the full constraint and replace

it with the simplified semidefiniteness condition D, — G > 0.

5.2. Intermediate comparison of level-1 relaxations

In consonance with the general structure of this thesis, we conclude this chapter with a
small reflection on the discussed modifications. For this purpose, we compare bounds
obtained by solving the new relaxation programs MLX,, IIMS,, and ESC; with the
results attained by applying their origins ML, MS,, and ES, respectively. Reasoned
in the circumstance that we introduced no alternative relaxation framework based on
the vector lifting technique, we omit the program VL, from the following consideration.
The absence of this relaxation framework enables us to compute lower bounds for QAP
instances of greater sizes. For the following numerical results, the author chose different
problems with dimensions n between 30 and 40. Nevertheless, it should be kept in mind,

that VL; remains to be the strongest relaxation presented yet.

The bounds in Table 5.1 are computed using € = 0. The setup of all other parameters
follows the suggestions for the corresponding programming problem definitions, (4.31),
(4.32), (4.33), (5.14), (5.29), and (5.11). The numerical results demonstrate the enhance-

78 New Relaxation Frameworks

Table 5.2.: Bound computations for ¢ = 0.2

Prob. MLX, IIMS, ESC,

Esc32g 566.67 566.67 566.67

Kra32 18.22 21.76 14.27
LiPad0a 2.24 2.39 3.24
Nug30 8.80 8.81 9.97
Ste36a 35.08 31.96 38.70
Tai35a 18.91 19.83 24.03
Tho40 14.48 13.75 14.64

ment of the frameworks MLX and IIMS over their origins ML and MS, respectively.
Overall, the matrix lifting based relaxation performs superior in comparison to the pro-
grams based on matrix splitting, but there is still no ordering between these approaches.
Table 5.1 also demonstrates the very small effect of the “eigenspace clustering” on the
relaxation quality of ES. The parameter matrices of the QAP instances Esc32g, Kra32,
and Ste36a involve 2, 5, and 12 clusters of eigenvalues, respectively. This leads to a
significant reduction of the associated instances of ESC with a hardly noticeable effect

on the computed bounds.

Another selection of bounds, given in Table 5.2, shall be used to illustrate the influence
of constraint approximations. The bounds are computed for a relative approximation
tolerance of 20%, i.e. ¢ = 0.2. Additionally, we limited the maximal number of semidefinite
matrices in the respective ESC' instances to 10. In the presence of the residual variables
F. and F_ this usually implies that B is approximated by B with no more than 8 clusters
of eigenvalues. The problem instance Nug30 is the only one for which this limitation

leads to a slight violation of the relative approximation tolerance.

The application of the described approximation procedure has little impact on the
relaxation quality of the frameworks MLX,; and IIMS;. The bounds are marginally
weaker than their counterparts in Table 5.1. On the other hand, the approximation
has a significant influence on the quality of ESC;. Even in relation to the considerable

reduction of the computational effort, the weakening of ESC| is drastic. For the majority

New Relaxation Frameworks 79

of the tested QAP instances, the “eigenspace clustering” SDP relaxation is actually

outperformed by the less expensive frameworks MLX; and IIMS;.

The most important observation from the presented numerical results is that the
quality of the bounds obtained via the new frameworks MLX; and IIMS; is very close
to the bounding quality of the relaxation ES;. In regard to the lower computational
complexity accompanied by the former, this circumstance is very promising. Nevertheless,
the framework ES; remains to have a superior bounding quality in comparison to the low-
)

dimensional relaxations. Other tests have also shown that the quality of the “eigenspace’

SDP relaxation is less sensitive to inappropriate choices of QAP relaxations.

As in Theorem 3.2, it is possible to prove similar ordering properties for the newly
introduced relaxation frameworks. The following corollary shows that the rough con-
nection between the complexity and the quality of the respective relaxation still holds
true.

Corollary 5.4. For a QAP instance (A, B,C), denote by Oy, Ousy, Opsys Omixys Ommsy s
and dgge, the optimal objective values to the problems (4.31), (4.32), (4.33), (5.14), (5.29),
and (5.11), respectively. They satisfy the relation

Ors, = MaxX{ Dy, , Ouixy» Ovisy s Ouws, - (5.30a)
Moreover, if the approximation tolerance € is set to zero, then
Ovix; = Oy (5.30b)
and

@Esl = @Escl = max{@MLp @Msla @umsl}- (5-30C)

Proof. We start with the argument for (5.30b) and (5.30c), thus assume ¢ = 0. Inequality
(5.30b) is an immediate consequence of Lemma 5.1 and the fact that the additional
constraints on G as well as the applied splitting procedure only tighten the relaxation.
Similarly evident is the relation ggg, = 0gsc,. For a solution vector (f(L0y,...,0,,)A/) to

problem (4.33), it is possible to construct another vector

<X7 F+7F—7 Ul?"'JUkJ Y) = (5(7 0(n,n)70(n,n)7 ZO’iJ"'? Z@w S\/>7

iedq 1€dy

that states a feasible point to problem (5.11) and accompanies the same objective value.

80 New Relaxation Frameworks

For the remainder of the first argument, let (5(, I:_+, I:__, Ul, ce Uk,)A/) denote an
optimal point to the respective instance of framework ESC;. By ¢ = 0, we have
R, = R_ = 0 which also necessitates l:_+ = F_ =0. The subsequent argument follows the
same approach used a number of times before. By construction, we show the existence
of feasible points of the weaker relaxations whose objective values are identical to Oggc, -

In consideration of the relaxations (4.32) and (4.31), these points are

X, Y, Y, Y.) = (X Y,)l) —)\i*Ui)
i Aix>0 i Aix<O

and

k
(X7 sz) = <)A<7 V?ZA?*01)7
=1

respectively. The feasibility of the former is easily shown and, due to (X, Y) = (X, Y),
the equivalence of the corresponding objective values is evident. It remains to show that
(X, Y, Z) satisfies the other constraints of the relaxation ML;.

Apparently, the diagonal equalities in (5.11d) necessitate the validity of the respective
equality conditions in (4.32c). By using Lemma 4.8, it is similarly straightforward to
show the validity of the constraints in (4.31d). Furthermore, the identities Zle U; =
=" Qq,Q% imply the following relation:

T
T T T T

I XT BX e o . or &7 Qb 0
(1) o,

X 1 v |=>lo0o 1]]. ’ 0 I
i=0 XQg, U;

XB Y V4 0 Al | S — | 0 AT

>0

The nonnegative definiteness conditions in (5.11b) therefore require the compliance of
(X,Y,Z) with constraint (4.31b). Taken together, this validates gpsc, = Ou, -

In order to show 0psc, = Onus,, We define the functions

ge(\) = min{r(B), 2\/45—752%’}’
)\A

|
gV(Ai) : gA<>\i) -\,
gr(Ai) == 7(B) — ge(),

New Relaxation Frameworks 81

where the coefficient £ and the function 7 are the same as in problem (5.29). These

functions are used for the construction of the point

k k
(G X Y YA; YV = (ch 2* U’L) Y7 ZgA(Az*)Uu ng()\“)uz)
i=1 =1

Once more, the equivalence of the accompanied objective values as well as the compliance
with the equality constraints of IIMS, are evident. The validity of the corresponding

semidefiniteness conditions is proved by observing that the sums of positive semidefinite

madtrices
@ 0 QE.Q 0 '
S Ijey QLXT||7H7™
0 go(Ai) 1 | A g 0 gv (i) I
Z
and
. T
fgxw olo, 0 Lja)) Q3 X" | |Q6Qe, 0
e B | L | B
~0

are identical to the respective matrices in (5.29b) and (5.29¢).

[t remains to prove the validity of the relations in (5.30a). Actually, it is sufficient to
prove the inequality Ors, = Oux, since the validity of the other relations is an immediate
consequence of (5.30c) and the observation that positive approximation tolerances ¢ > 0
can only weaken the relaxations whose optimal objective values are listed on the right-
hand side of (5.30c). On the other hand, the relaxation ES; is not affected by the
parameter €. For the proof of ggs, = Ouix,, We assume that (5(, @1, .. Qn,) denotes
an optimal point to problem (4.33). It is then possible to construct a feasible point
(G, Go,)A(, Y1, Y2, Z1,2Z5) to problem (5.14) that accompanies the same objective value

Ors,- The construction rule for this point is

(G, Y5 2)) : (ZQZ,ZAQZ,ZAQ) for j=12

ZEQO zeQO ZEQO

The compliance with the equality constraints of MLX; follows immediately from their

counterparts in relaxation ES; and the definition from above.

82 New Relaxation Frameworks

By the identities BjQQ? = QQ?AQS = ZieQJO. N qr QQ? and the respective equality

constraints in (4.33), it can be shown that

T

Qbti 0 LT Qboai 0 [(|Qg|) ggXT ggBXT
J qZ J
loo 1| . 0 I| =|XQp G i
i€ X q; O; !
0 NI Y XBQu Y, z,

for each index j € {1,2}. By elimination of the row and column vectors specified in
QN\QS, we derive block matrices which match the semidefiniteness conditions in (5.14b).

The validation of the compliance with (5.14¢) follows a very similar procedure. O]

From the proof of Corollary 5.4, it is obvious that the validity of the inequalities in
(5.30) is not limited to a particular QAP reformulation, not even a fixed reformulation
for all considered relaxations. The necessary conditions are that the parameter matrices
B, By, B,, G are all simultaneously diagonalizable and that the eigenvalue clusters of B
with the accompanied invariant subspaces have their analogs within the matrices B, , B,,
and G.

If we assume that the matrix splitting scheme for relaxation MLX does not separate any
two eigenvalues from the same cluster of eigenvalues, then also the relation fgse, = Ouix,
is provably correct. The argument is similar to that one used for Theorem 3.2 and
Corollary 5.4.

Naturally, the result given in Lemma 3.3 can be extended in regard to the newly
introduced relaxation frameworks.

A

Corollary 5.5. For a given QAP instance, let (X,...) denote a solution vector to one
of the relazation problems (4.29), (4.31), (4.32), (4.33), (5.11), (5.14), or (5.29). If
the approximation tolerance € is set to zero and X €11, then X describes an optimal

assignment for the actual QAP. The corresponding optimal objective values are identical.

Proof. The proof for each SDP relaxation is similar to that of Lemma 3.3. m

Chapter 6.

Cutting Strategies

6.1. Cuts

Besides the already mentioned reformulation approaches, a common instrument to tighten
a relaxation is the incorporation of additional non-redundant constraints. In the following

subsections, we elaborate a few strategies to derive such constraints.

6.1.1. Gilmore-Lawler bound constraints

The Gilmore-Lawler bound (GLB) [37,60] is one of the most famous bounding techniques
for the quadratic assignment problem. Its mainstream awareness is not only reasoned in
the simplicity of the GLB but also in its good performance. For an instance (A, B, C') of
(KBQAP) the Gilmore-Lawler bound relaxation is given by the following linear assignment
problem (LAP):

Inin (L+C,X), (6.1a)
where
ell”, X;;=

The computation of the coefficients (/;;) as permuted dot products reduces the overall
complexity of the GLB to O(n?), see [37]. Its low computational cost and the compara-
tively good bounds are stimuli for us to incorporate the GLB into the considered SDP

relaxations.

83

84 Cutting Strategies

By definition of L, we easily see that for each X e II™:
AXBX" Zgig LXT. (6.2)

This equation provides the opportunity to incorporate n additional linear constraints
into the respective relaxation frameworks. The integration can be realized simply by

adding the inequality condition

AY >giag LXT. (6.3)

Relaxations based on the vector lifting technique allow a deeper integration of the
GLB conditions. By (BT ® A) vec(X) = vec(AXB), we derive the identity

diag((BT ® A) vec(X) vec(X)T) = vec((AXB) o X),
which, in turn, gives
diag((BT ® A)Y) = vec(L o X). (6.4)

This vector inequality utilizes every single product of the term Lo X, whereas the identity
diag(LXT) = (L o X)e shows that (6.3) exploits solely the sums of the respective rows.
Apparently, (6.4) implies the validity of (6.3), thus leads to tighter relaxations. Since
the additional computational costs are small compared to the overall efforts of VL, we

suggest to use (6.4).

By incorporating the GLB based constraints into the respective SDP relaxations, we
evidently obtain stronger bounds than with the plain Gilmore-Lawler bound procedure.
More specifically, by using Lemma 3.3 and Corollary 5.5, we show the following result.
Corollary 6.1. In respect of a given QAP instance (A, B,C), consider any of the
previously discussed level-1 relazations, and additionally incorporate condition (6.3). The
optimal objective value to this SDP relaxation is always greater than or equal to the
optimal objective value to problem (6.1). Moreover, if the approximation tolerance ¢ is
zero, the solution vector to the respective instance of problem (6.1) is unique, and the
optimal objective values to both programs are identical, then their respective solution

vectors correspond to the unique solution of the actual QQAP.

Proof. The superiority of the respective SDP relaxation together with the incorporated

GLB constraint over the plain GLB linearization is evident. For the remainder of the

Cutting Strategies 85

proof, we assume identical objective values and uniqueness of the solution X to problem

(6.1). By uniqueness of X, we have

VX e DN (L+C,X)>(L+C,X).
Moreover, (6.3) implies

VX eD": (AY)+(C,X)=(L+C,X).

Taken together, these inequalities necessitate unequal objective values whenever the
feasible point (X, ...) to the given SDP relaxation does not correspond to an assignment.
By assumption, it is therefore X e II". In this case, the validity of the conditional

statement is an immediate consequence of Lemma 3.3 and Corollary 5.5. O

For nonzero approximation thresholds ¢ > 0, the respective level-1 relaxations do
not inhere the characteristic stated in Corollary 5.5. We may restore this property by

incorporating the following relaxation approach:

MeMlnr,leeHn (M, E)+{C, X) (6.5a)
s. t. M= LoX, (6.5b)
M=>UoX —U+ AXB, (6.5¢)

where L is defined as in (6.1b) and

U= (u;) with w;; = XEIIII,IE}();:O (AXB);;. (6.5d)
The above linearization for the QAP was introduced by Xia and Yuan [109,111]." They
extended the Gilmore-Lawler bounding procedure by a modified version of the Kaufman

and Broeckx’s linearization [57], and proved that it inheres the desired property stated
in Corollary 5.5, see [111, Theorem 3.7] and [109, Theorem 3].

The linearization approach by Xia and Yuan can be incorporated into the respective

SDP relaxations by implementing

diag(AY) = Me (6.6)

!The formula for (u;;) given in [111, Eq. (29)] is incorrect. It was corrected by Xia in [109, Eq. (4)].

86 Cutting Strategies

together with the constraints (6.5b) and (6.5¢). The extended integration into relaxations
based on vector lifting techniques is similarly straightforward. Additional to (6.4), one

applies the vector inequality

diag((B* ® A)T) = vec(U o X — U + AXB). (6.7)

Many different linearization techniques can be incorporated by a very similar procedure.
A typical approach to obtain tighter relaxations is the application of QAP reformulations.
The procedures proposed by Assad and Xu [3] as well as Carraresi and Mallucelli
[20], among many other works such as [19, 31, 35,55, 91|, demonstrate the influence
of these reformulations on the quality of the Gilmore-Lawler bound. On the basis of
numerical tests, we observed that QAP reformulations which are suitable for the discussed
SDP relaxations can be less practical for GLB based constraints. We deal with this
circumstance by implementing the corresponding conditions in consideration of a different
QAP reformulation.

Assume that the matrix L is constructed as in (6.1b), but for a specific reformulation

instance (A, B , C) whose parameter matrices satisfy

’

diag(A) =0 and B = B+ 0"

The Gilmore-Lawler bound linearizes the diagonal elements of these matrices in the
same way as the considered relaxation frameworks. Moreover, adding a sum-matrix
with constant columns to B has no effect on the bounding quality, see [34]. Hence, the
presuppositions on the reformulated data matrices A and B serve just the purpose of
simplicity and do not restrict the utility of the GLB conditions. The reformulated version
of condition (6.3) is then

AY + AXtpe” = giag LXT. (6.8)
From the proof of Lemma 4.3, the adaptation of (6.4) is even more apparent:
diag((BT @ A)Y) = vec(L o X). (6.9)

Regarding the VL framework, there is no actual reason to choose different QAP reformu-

lations for the objective function and the GLB inequalities. The consideration of this

Cutting Strategies 87

case is nevertheless serviceable, because other constraints do benefit from different QAP

reformulations.

Very similar inequalities can be derived for the off-diagonal elements of the matrix
product AXBXT. These may, for instance, be constructed by utilizing a slightly modified
version of parameter L:

Li=(y) with ;= min_(AXB),.
By definition, we then have AXBXT >,¢ LXT, which may be used for additional
cuts in the corresponding frameworks. Unfortunately, numerical tests have shown
that the improvement of the resulting bounds is negligible, whereas the impact on the
computational effort is strongly apparent. The picture for the corresponding extension to
the vector lifting based frameworks is even worse. The introduction of n* — n? additional
inequality constraints penalizes the computation times significantly and the bounding
improvement seems to dissolve within the accuracy of the used SDP solver. With regard
to the efficiency of the relaxation program, we therefore limit our concern on the presented

diagonal element inequalities.

Another possibility to acquire more constraints out of the Gilmore-Lawler bound is
to split the corresponding inequalities in the manner of the discussed matrix-splitting
schemes. By [62, Theorem 3.2], however, it is clear that the deduction of additional GLB

inequalities via matrix splitting is generally not recommendable.

6.1.2. Eigenvalue related cuts

The possibility to construct additional constraints based on the Gilmore-Lawler bound
procedure suggests the use of another well-known bounding technique, that is the

eigenvalue based approach by Finke, Burkard, and Rendl [34].

We follow the notation in [34] and denote by (v, w); and (v, w)_ ordered dot products

of real vectors v, w e R™
(v, why = (whw') = max (v, Xw), (v, w)_ := Y w') = min (v, Xw), (6.10)
Xelln Xelln

where w! and w' denote the vectors to w whose elements are rearranged in non-ascending

and non-descending order, respectively. The eigenvalue bound (EVB) is based on the

88 Cutting Strategies

fact that

VX ell': (MA),AB))_ < {A,XBX") <{(A(A4),\B)) (6.11)

+7
see [34, Theorem 3].

For the following discussion about eigenvalue related cuts, assume the eigenvalues
of A =3" pppl to be sorted in non-ascending order, and in non-descending order
denote by A} < Ay < ... <)\, the eigenvalues of B. In [27, Chapter 2.2.2], Ding and
Wolkowicz proposed a smart implementation for incorporating E'VB into their matrix
lifting based relaxation framework. They strengthened their relaxation by applying the

cuts
l
0< > (pi, Ypy—X for lefl,... .n—1}. (6.12)
i=1

From the proof of [27, Lemma 2.1}, it is clear that (6.12) describes a sensible integration
of EVDB based conditions.

The incorporation into the respective SDP relaxations is straightforward. However,
this does not mean that the presented procedure is similarly reasonable for all regarded
relaxations frameworks. To illustrate this circumstance, consider the following result.
Lemma 6.2. Let the QAP instance (A, B, C') be given and assume that the approximation
tolerance ¢ is zero. For any feasible point (X, Fy, F_, Uy, ..., Uy, Y) to problem (5.11),

the majorization relation

A(Y) < A(B) (6.13)
holds valid.
Proof. Let A, := [A1., ..., A\u]? denote the vector consisting of the distinct eigenvalues
{Nix} of B, and let {wy,...,w,} be a set of orthonormal eigenvectors of Y, such that

Yw; = N(Y)w; for 1 < i < n. Furthermore, define the n x k matrix S = (8i;) with

elements §;; = (w;, Ujw;). Then,
k k
Vi e {1, c. ,n}: <’UJ7;, YUJZ> = Z)\j*<w7; ijl> = Z)\i*gij
imj j=1

reveals the identity A(Y) = S\,.

Cutting Strategies 89

The equality constraints in (5.11d) and (5.11f) imply

k k
V’iE{l,...,n}i Zgz]:<U)Z,ZU]UJZ>=<U)“IU)Z>:1
j=1

and

Vie{l,. kb & =tr(fwn. . wa] Uilws, o w,]) = te(Uy) = [@y).

Moreover, due to the positive semidefiniteness of the variables {U;}, it follows S=0
We complete the argument with the simple observation that the j-th column vector of
S can be written as the sum of |®;| vectors whose elements are nonnegative and sum
up to 1. The latter statement is valid for each column of S and implies the existence of
a doubly stochastic matrix S that satisfies S\, = SA(B). This, in turn, validates the
identity A(Y) = SA(B) for some S € D". O

For an arbitrary set of orthonormal basis vectors {wy, ..., w,} spanning R", define
the orthogonal matrix W := [wy,...,w,]. By Theorem 2.6 and Lemma 6.2, we then

derive the majorization relation
diag(WTYW) < A\AWTYW) = \(Y) < A(B).

Thus, the observation that the eigenvalues of any feasible matrix variable Y to problem
(5.11) are majorized by the eigenvalues of B implies the compliance of Y with the

inequalities

I I
Z;@Ui, Yw;) >t Z dlagj (WTYW) Z)\l Z)‘i’

j=l+1 j=l+1 i=1

where diagji-(-) denotes the j-th largest diagonal element of the corresponding matrix.
Since this relation holds valid for arbitrary choices of orthonormal bases spanning R”,
this naturally includes the set of eigenvectors of A. In this respect, the integration of
EVB based constraints such as (6.12) into ESC is redundant. By the arguments for

Theorem 3.2 and Corollary 5.4, we further derive the same conclusion for ES and VL.

Even for the SDP relaxation with the smallest dimension, QA P, it is sufficient to
incorporate only a subset of the inequalities in (6.12). The distribution of the positive

and negative eigenvalues of B provides the opportunity to construct a stronger and

90 Cutting Strategies

more efficient version of (6.12). For relaxation frameworks that utilize the PSD splitting
defined in (3.9), we show the following result.

Lemma 6.3. For the parameter matriz B of a given QAP instance (A, B,C'), let (B, B_)
denote the PSD splitting defined in (3.9). Additionally, let r. and r_ denote the ranks of
the matrices By and B_, respectively. If incorporated into the corresponding instance of
relazation (4.32), then

! I
= i Yopiy = YN, 1<l<r, (6.14a)
i=1 i=1
together with
2@“ Yipi) = Z A n—ry <l<n, (6.14Db)
i=n—ry

imply the validity of all inequalities in (6.12).
Proof. Regarding the first r_ — 1 inequalities, 1 < [< r_, the positive semidefiniteness of
Yy = Y + Y_ and (6.14a) require
!
Z<pz7 sz Z<pza Yo pz Z /\z

=1

Furthermore, the orthogonality of the eigenvectors {p;} implies

Vie{l,... n}: Z@“ Ypi) = —(pi, Yopi) = —tr(Y.) = — tr(B.). (6.15)

By definition, we have \y < ... <A\ <0= A1 =...= My, <M1 < ... < Ay
Therefore (6.15) validates

! l
Z<pz‘; Yp,) = —tr(B Z)\, for r<l<n-—r..
i= =1
Finally, adding (6.15) and (6.14b) yields
l
Z<plv Ypl> Z<p17 Y+pz> Z<pz; Y pz Z)\ — tl‘ Z
i=n—r4 i=1

for n — ry <l < n, which finishes the argument.]

Cutting Strategies 91

By using (6.14a) and (6.14b), we realize a tighter version of the discussed bounding
technique necessitating only rank(B) — 2 inequality constraints instead of the original
n — 1 conditions. At a first glance, the reduction of the framework by not more than
n—rank(B) + 1 linear inequality constraints may be hardly worth the effort of elaborating

the specific implementation details. Nevertheless, the influence on the solving procedure

n+1
2

to the actual SDP data, respectively. In regard to the memory management of the applied

should not be underestimated. Each of these inequalities introduces n? or () coefficients
solver, the number of coefficients can be quite important for the performance of the

solving procedure.

For the actual implementation of the discussed EVB cuts, there are more details
that deserve our attention. As already described for GLB based constraints, also EVB
based ones like (6.12) can be modified for different reformulations of the actual quadratic
assignment problem. Reduction rules to derive appropriate reformulations have been
elaborated, for example, in [34,44,88]. In the final version of their matrix lifting based
SDP relaxation [27, MSDR;], Ding and Wolkowicz applied their EVB based constraints
to a projected reformulation of the QAP. By [27, Lemma 2.2], it was moreover shown
that the corresponding relaxation incorporates the projection bound (PB) introduced
in [44].

Hadley, Rendl, and Wolkowicz demonstrated in [44] that PB outperforms EVBI for all
tested QAP instances. In consideration of the interaction between the actual eigenvalue
bound and the respective SDP relaxation in which this bound shall be incorporated,
numerical tests for a wider range of problems taken from the QAP library [18] showed a
slightly different picture. As a suitable integration in the respective SDP frameworks
the author suggests the straightforward utilization of the reformulated QAP instance
defined in (4.20). Actually, maybe not completely straightforward. The effect of the
inequality conditions in (6.12) can be improved by a slight modification to our initial
presuppositions on the eigenvalues and eigenvectors of A and B. For this purpose, we
exploit our knowledge about the presence of the particular eigenvector ﬁe. Since this
vector is unaffected by permutations and the corresponding eigenvalue is equal to zero, it
is possible to remove it from the EVB based inequalities. Let the index to this specific
eigenvalue-eigenvector pair be fixed to ¢« = 1, and let all other eigenvalue-eigenvector

pairs satisfy the general presuppositions for this Subsection. In this context, A and B

92 Cutting Strategies

may be written as

A= pppy fo = i3 = ... = fin, (e, pi) = Ola<i<n (6.16a)
=2
and
B =Y Nad/, A2 S A3 <L S Ay, (€, ¢) = Ol2<izn, (6.16b)
=2

where ; = Ay =0and py = ¢ = ﬁe. If we apply these adjusted index assignments,
then

I
OSZpiTYpi—)\i for 1e{2,...,n—1}, (6.17)
i=2

states a tighter and more economic version of (6.12).

For constraints of the form

!
0<

w! Yw; — A for le{l,...,n—1},

i=1
it is evident that the choice of the basis vectors {ws, ..., w,} has a significant influence
on the bounding quality. Considering the objective function (A, Y) + (C, X), the choice
of the eigenvectors of A is reasonable since it incorporates the corresponding eigenvalue
bound. Nevertheless, this choice may not necessarily be the best possible one. A very
similar argument as the one we used to explain the choice of the reformulation vector dg

given in (4.20) is also applicable to a reformulation of the matrix A.

The reformulation vectors d, and v, defined in (4.20) are designed to minimize the
Frobenius norm of the reformulated data matrix A. For a strong eigenvalue bound this
approach is reasonable but can be improved. The last statement is evident from superior
performance of the bounding techniques PB [44] and EVB2 [88] compared to EVBI1 [88].
Instead of simply taking over one of these approaches, we exploit the idea of weighted
positive and negative semidefinite parts of A. More specifically, we utilize a splitting
approach for A which is weighted in regard to the eigenvalue distribution of B. The
corresponding adaptation of problem (4.18) is given by

dAyVAGRn1’n£17A2ESz |HCV1A1 * a2A2|HF (618)

s. t. A+ diag(d,) + v,e” + evl = A — A,,

Cutting Strategies 93

where the weighting coefficients oy and as are defined in respect of the eigenvalues of B:

= /Z A2 and Qg = | Z A2,
i A <0 i Xi>0

By solving problem (6.18), we obtain new reformulation vectors d, and v,. Since the
eigenspace of the corresponding reformulation of A is often more advantageous to compute

tight eigenvalue bounds, we utilize the eigenvalue decomposition of
A=A+ diag(d,) + v,e” + ev Z o (6.19)

to obtain the basis vectors (wy, ..., w,) = (p1,...,Pn). For these vectors, we assume that

the ordering of the eigenvalues {/i;} satisfies our presuppositions in (6.16).

If the respective SDP relaxation is used within a branch-&-bound algorithm, it is
possible to attain more beneficial sets of basis vectors {wy, ..., w,} in a significantly more
efficient way. The approach is as follows: suppose that the respective SDP relaxation
has already been computed for different subproblems of the considered QAP. From
the pool of already solved SDP relaxations, choose the instance which is most similar
to the problem that needs to be solved in the current bounding step. Instead of the
eigenvectors of the (possibly reformulated) coefficient matrix A, utilize the eigenvalue
decomposition of the matrix Y obtained from the solution vector to the chosen problem
instance. Order the eigenvectors with respect to the accompanied eigenvalues of Y and
apply the necessary adaptations for the applicability to the current relaxation instance.

The latter step may involve the transformation into another space.

By allowing higher efforts on the implementation as well as the computations, it is
possible to strengthen the EF'VB based cuts. In that context, let us consider the convex
quadratic programming framework SOCPB introduced in [110]. For the construction of

this relaxation, Xia uses the identity

M:

tr(AXBXT) = tr (

2,

=17

)

pipp; (Z N X i X T))

1 Jj=

-
Il

M:

pis tr(pp; X qigi XT) (6.20)
1

<.
<.
Il

M:

/L]<p27 XQJ>2

-.

—
<.
Il

—

94 Cutting Strategies

He defines a matrix S := (s;;) with s;; = {(p;, X¢;)* for 1 < i,j < n, and describes a

relaxation of the corresponding quadratic equalities via
sij = i X43), l<u,5<mn, (6.21)

together with the equality constraints that realize S € £". The latter condition is an

immediate consequence of the orthogonality of {p;} and {¢;}, yielding

VX ell"je{l,...,n}: > i, Xq)" = 1, opa) Xgl* = lgs)” =1
i=1
and

VX ell"Jie{l,...,n}: Z<pi,qu>2 = lpf X[q1, -, a.]|* = |pi]*> = 1.
=1

For the integration into the respective SDP relaxation, we introduce the same matrix
variable S, add the corresponding equality constraints for S € £" together with the
inequalities in (6.21), and exploit the identities

pi XBX"p, = p/ X <Z qujqu> XTp, = > Ndpi. Xqp)?, 1<ij<n,
j=1

J=1

to link the variables Y and S via the following equality conditions

piYp, =D Nsiy, 1<ij<n. (6.22)
j=1

From the proof of Lemma 6.2, it is clear that the incorporation of these conditions
into ESC, ES, or VL is redundant, at least if we assume ¢ = 0. Additional upper bound
constraints on the variables {s;;} can change this. In order to attain a further tightening
of the framework SOCPB, Xia utilizes the following linear upper bounds

Vi,je{l,...,np: (I; + uij)piTqu —l.u,. >s,

ij g K

(6.23)

where [;; 1= (p;, ¢;)— and w;; := {p;,q;)+ define lower and upper bounds of the corre-

sponding linear terms {p! X q;}, respectively.

Cutting Strategies 95

We derive similar upper bounds as in (6.23) by exploiting the following identities

VX ell", i,je{l,...,n}: piTquzz ekequJ

k=1
n

= Z Py exer X q;] + 2max{p] epef Xq;,0}

—pil" X |gi| + 2) max{p] e ef Xq;,0},
k=1

and

VX eIl i, je{l,....,n}: p/Xq; = |pi|" X|g:| +2) min{p]e,ef Xq;,0}.
k=1

Together with the limits of the respective sum terms

- :
0y Inin {2};max{pl ekequ],O}}

- (6.24)
0 = max {2 Z min{pf@ke;‘quj, O}} :
k=1
we obtain new linear bounding constraints:
max{u;;, —li;} |pi]" X|qi| + max{u;;6%, 1,0} = sij, 1 <i,j,<n. (6.25)

In this context, it is worth mentioning that the necessary computations for the values

defined in (6.24) can be realized very efficiently via

o =t gy +pillally and 8 = plap) — k], lab])-

Moreover, by introducing intermediate variables for the terms {X|g¢;|} (alternatively
{|ps]T X}), it is possible to reduce the number of nonzero coefficients that are necessary

for the implementation of (6.25) to about 2n?.

Although (6.25) does not imply the validity of (6.23) - meaning that (6.25) is not
strictly tighter than (6.23) - the former performs in general significantly better. This
statement is particularly true if the respective constraints are incorporated into one of

the discussed SDP frameworks.

96 Cutting Strategies

If the computational costs are of minor importance, it is possible to use the even
stronger upper bounds:

(Mij, X) + max{d}%, 05} = s, 1<i,j<n, (6.26)

where M;; 1= max(lijpiqu, uijpiqu) are defined as the element-wise maxima of the corre-

sponding rank-1 parameter matrices, and

N T 1 Tu T 1
5ij =)Igle%}fldijpiq]' - Mij7X>7 5% =)Igleaﬁ}fl<uijpin - Mij7 X)

define the corresponding adaptations to the offset corrections in (6.24). The respective
coefficient matrices still have low ranks, providing similar opportunities for the reduction
of the computational costs like the ones we indicated for the implementation of (6.25).
Nevertheless, due to the absence of reiterations in the corresponding computations, the
author has not been able to reduce the computational complexity below O(n?logn). In
respect of the small influence on the tightness of the considered SDP relaxations and the
significantly greater computational effort, the constraints in (6.25) seem preferable to
the ones in (6.26).

If we are concerned with larger QAP instances, even the constraints in (6.23) and
(6.25) seem rather impractical. Though it is possible to realize a deep integration into
ES and VL, the additional effort does not pay off in the same way for other relaxations
frameworks. By combining the approach in (6.17) with some of the bounds in (6.25), it
is possible to obtain a very efficient integration of the eigenvalue bound. Let {5;;} denote
upper bounds for the respective quadratic terms {(p;, Xg;)*}. For the eigenvector p, of
A, it is easy to see that

Py XBXTpy = Nopa, Xq2)* + A3 (1 — (p2, XC]2>Q) > AoS9g + Ag(1 — 522).

With S9.3 := min{Sas, S33}, we educe the inequality for the sum over the first two terms:

3
ZP?XBXTpi =)\252;3 + /\3(1 — 52;3) +)\2(1 — 52;3) +)\352;3 =)\2 +)\3.
=2

Cutting Strategies 97

This matches the second inequality in (6.17). The third condition may then again be

improved:

4
ZPZTXBXTPZ' > Ao+ A3+ AgSuy +)\5(1 — 544).
=2

It is therefore recommendable to replace every second inequality in (6.17) by
!
e = M) (L —50) < Do plYp,— N, for 1=2,46,.... (6.27)
i=2

Appropriate terms for s, can be taken from (6.23), (6.25), or even (6.26). For a minimal

computational costs, one may simply use s, = max{uj,[3}.

6.1.3. Linear bound constraints

For many relaxations instances, it is possible to attain a significant improvement of the
bounding quality by applying additional bounds to its optimization variables. In [73]
and [83], Mittelmann, Peng, and Li introduced new inequality constraints based on
symmetric functions [70].

Definition 6.4. A function f(v): R® — R is said to be symmetric if for any permutation
matriz X € 11", the relation f(v) = f(Xwv) holds.

One of these functions, namely the additive function f(v) = (e, v), has already been
used for the constraints (3.3e), (3.5d), (3.10d), and (3.11d). Other symmetric functions,
that are useful for the construction of valid constraints, are the minimum and the

maximum function as well as p-norms:

1<isn 1<isn

1
n P
YveR": min(v) = min v;, max(v) = maxv;, |[v|, = <Z |vi|p> :
i=1

If these operators are applied to a matrix M € M™" they act along the rows of the

respective matrix, i.e.

min(M) = (min(e M), min(ey M), ..., min(eﬁM))T.

In [73], [83], [84], and also [25], the minimum and maximum functions are used to obtain

linear bounds for several optimization variables and linear combinations of these. The

98 Cutting Strategies

corresponding constraints on the matrix variable Y have the form
(Xmin(B)); < (Y)i; < (Xmax(B));, 1 <i,j <n. (6.28)

For a further tightening of the respective relaxations, Peng, Mittelmann, and Li [83]
applied the same kind of constraints to each matrix variable Y, and Y_ as well as their
sum. When it comes to the relaxations ES and ESC, it is possible to exploit this approach
to the extreme by using all of their matrix variables and various linear combinations
of these. In this subsection, however, we are not so much interested in applying these
inequalities to different linear combinations of the respective matrix variables. We
are mainly concerned with investigating possible improvements of the corresponding

constraints.

Denote the vectors consisting of the minimal and maximal row elements of B by
Umin := min(B) and v, := max(B), respectively. Condition (6.28) may also be stated

in the following form:
Xvmine? <Y < Xvgaxe?® .
By the nonnegativity of X, clearly vmme! < B < Upmaxe! implies
Xvminel = Xvmmel XT < XBXT < Xvmaxe? X = Xvpaxe!,

and thus yields (6.28). The last observation motivates a further exploitation of sum-matrix

inequalities to obtain tighter constraints. Define, for instance,

Wi := min(BT — evl,) and Wpay = max(BT —evl).
o . T T T T . . .
By definition, we have v_; e +ew;;, < B < v, +ew;, .., which leads to the inequality

constraints

T T T T T T
Xvgme +ew, i X' <Y < Xvuy,.e +ew, X

min max

Since Wy, = 0 and wya < 0, it is apparent that these bounds are at least as good as
the ones in (6.28).

For the linear inequalities based on the minimum or the maximum function, Mittel-
mann and Peng [73] pointed out that - since the diagonal elements of Y, and Y_ are

already described by the corresponding equality constraints - it is sufficient to consider

Cutting Strategies 99

solely the off-diagonal variables. We further observe that, due to the symmetry of B, the

symmetric parts of the respective sum-matrices satisfy the same bounding conditions, i.e.

(v+w)e" + Le(v+w)" <o B. (6.29)

N | =

vel +ew! <jg B =—

Let the gap between a sum-matrix ve’ + ew’ and an arbitrary real matrix B = (b;;)

of the same dimension be defined as

Sgap (B, v, W) Z |bi; — vi — w;| = (Bogt, | B — vel — ew™)). (6.30)
z;ﬁj

A suitable approach to obtain tight sum-matrix inequalities is the minimization of the
respective gaps. By 8gap(B, v, W) = 0gap(B, 2 (v + w), 3(v + w)) and the implication in
(6.29), it is apparently sufficient to concentrate on the strictly lower triangular elements
of symmetric sum-matrices. The following linear programming problem can be used to

compute lower and upper symmetric sum-matrix bounds for B that accompany minimal

gaps:

inf {e,v, —v)
Vi,V ER™ (631)

T T T T
s.t. ve +evy <y B < ve tey,.

Symmetric sum-matrix bounds have a big advantage over their non-symmetric equiv-
alents. Due to the symmetry, they require only half as many LP inequalities. Indeed,
quite often there exists no sum-matrix bound that is not symmetric and involves the
same optimal gap as the solution to problem (6.31). On the other hand, sum-matrix
bounds with the same symmetric part but noticeable skew-symmetric components yield

tighter inclusions.

A significant skew symmetric part requires the computation of dissimilar parameter
vectors v and w. Unfortunately, the maximization of some p-norm difference between these
vectors leads to a concave optimization problem. For this reason, it seems advantageous
to switch to other optimization criteria. Here, we utilize the following program

inf (0,)+ (O, v

VI, W, Vag, Wy, ER

s. t. vel +ew] <5 B <. v,e’ +ew!, (6.32)

<€, Vl> = <€? Wl> = <€, @l>> <€, VU> = <€, WU> = <€7 @u>a

100 Cutting Strategies

where the vector coefficients 0, and 0, are obtained by solving problem (6.31). The
computed parameter vectors v;, w;, v,, and w, can then be used to construct non-

symmetric sum-matrix inequalities of the form

Xvel + ewf XT < g Y <. Xv,el +ewl X7, (6.33)

Obviously, there is nothing to gain by applying adapted sum-matrix bounds to
reformulated versions of the same problem instance. Suitable approaches for a further
tightening of these bounds are the application of multiple varying sum-matrix inequalities
or the construction of the same type of bounds for linear combinations of the respective
matrix variables. In consideration of the “eigenspace” SDP relaxation, for example, it is
possible to create linear bounds for each matrix variable Q;. The number of applicable

bounds is virtually endless if we consider arbitrary linear combinations of these.

In a very similar way, one can derive linear bounds for the lifted variable 7" in problem
(3.3). For some X € II" and the corresponding rank-1 matrix T = vec(X) vec(X)T, we

have
T=(I®X) vec(I)vec()T(I®X) with I®Xell”.

The lower sum-matrix bound for vec(I) vec(I)? that accompanies the smallest possible
gap is obtained for v; = w; = 0,2). By utilizing these vectors for the respective sum-

matrix bound, we derive the inequality condition
T >[I @X) vele +epw (IQX)=0. (6.34)

The same approach may be used to construct upper bounds on the variable 7. For those,

however, it can be shown that they are redundant.

Though the way how (6.34) was established is rather uncommon, we used this
explication because it is consistent to the previous explanations. A more natural deduction
of the element-wise inequality 7 > 0 is the inheritance of this property from its factors:
X eN" = Y e N". As a consequence of this natural deduction, the particular
relaxation design VLg supplemented by the constraint 7 > 0 has been investigated in
many different research papers. In [116], for instance, the respective relaxation is referred
to as QAPg,.

Cutting Strategies 101

Due to nearly %n‘l non-redundant inequality conditions, the incorporation of (6.34) is
very expensive. On the other hand, in comparison to its low-dimensional counterparts,
(6.34) is clearly superior. In order to show this, let us recall the connection between the
variable 7" and corresponding subsets of feasible points to the other presented relaxation
frameworks. In the proof of Theorem 3.2, we generated feasible instances for the variables
{O;} used in problem (3.11) out of a matrix 7" that satisfies the constraints of problem
(3.3). This was done by using the identities

0= (D™ (g®I) = (e®)T (Tol(qqf ®F)) (e®1), 1 <i<n.

In Subsection 4.3, we proceeded similarly to introduce the variable Y into relaxation
VL, see (4.30) and the corresponding equality constraints in (4.29¢). By the proofs of
Theorem 3.2 and Corollary 5.4, it is clear that any feasible Y in problem (4.29) can be
used to generate feasible variables to the other level-1 relaxations. The same procedure
can be applied in order to construct feasible points for all SDP frameworks that have

been considered until this point.

Consider, for instance, a lower sum-matrix bound to variable Y, used in IIMS:
Xvel +ewl XT < Y,.
The relation v,e” + ew! < B, and the nonnegativity of 7" implies

Xve' +ewf X" = (e®@I)" (T o ((ve" +ew))®FE)) (e®1)
<E@NT (T o(BQE)) (e®I) =:VY,,
where Y, denotes the generated instance for the variable Y, , thereby satisfies all constraints

of problem (5.29). By the same argument, we conclude the compliance with all other

sum-matrix bounds.

6.1.4. Cuts based on p-norm conditions

The third type of constraints that can be derived from symmetric functions are norm
conditions on the rows and columns of the respective matrix variables. In [83], [84],

and [25], the introduced SDP relaxations are tightened via additional norm constraints

102 Cutting Strategies

of the form
Lo(Y) < X Lo(B), (6.35)

where £,(B) denotes the column vector whose components are the p-norms of the

corresponding rows of B,? i.e.

T
Ly(B) = (lei Bl lezBly, -, lemBly) - (6.36)

In our attempt to enhance these norm conditions, we made three discoveries. Firstly,
the semidefiniteness condition in (3.5b) necessitates the validity of the vector inequality
diag(Z) > diag(Y?), such that

L5(Y) o Lo(Y) = diag(Y?) < diag(Z) = X diag(B?) = X (L2(B) o L2(B)). (6.37)

The inequality in (6.37) implies ||Y||s < || B]|r and may be interpreted as a squared
version of (6.35). Though this does not imply the redundancy of the constraint in (6.35),
it is a good indication for a moderate effect on the feasible set. This connection is
mirrored in different numerical examples. Naturally, this statement is also true for all
SDP relaxation which are provably tighter than ML. This includes all versions of MLX,
ESC, ES, and VL.

Our second discovery concerns the effect of the applied reformulation approach. A
suitable idea to tighten the respective norm cuts is based on the construction of a
reformulated matrix B + vpeT + ewg which accompanies minimal p-norm values for each
of its rows. This may be realized via

inf (e, L,((B+ ve" +ew, o))

n
Vvp,WpER

The reformulated version of the respective norm constraints is then given by
L,((Y + Xvye” + ew X)og) < X L,((B + vpe’ + ew))og). (6.38)

In the absence of other constraints, the application of this procedure usually improves
the bounding quality of the corresponding relaxation. However, incorporated into the

full relaxation frameworks together with the other applicable constraints, the influence is

2This notion is taken over from the cited papers. It should not be confused with Lebesgue spaces.

Cutting Strategies 103

marginal and the effect often reversed. For this reason, we advice against using additional

QAP reformulations.

The final observation is based on numerical tests for different p-norm conditions.
Amongst the tested p-norm conditions, the strongest bounds were usually obtained
for p = 1. Compared to many other p-norm conditions, it is furthermore possible to
implement 1-norm inequalities quite efficiently. They are therefore well suited for the
incorporation into the respective SDP relaxation. On the other hand, if the applied solver
has direct support for second order cone programming constraints, 2-norm conditions

are handled even more efficiently.

In order to achieve tight relaxations, we combine both types of norm constraints.

However, instead of a straightforward implementation of
L1(Y) < XL(B) and Lo(Y) < X Ly(B), (6.39)

we design constraints that accompany a stronger interrelation between these constraints.

Let By define the matrix that is obtained from B by setting its diagonal elements
as well as all negative entries to zero, i.e. By 1= (max{b;;,0})og. In the actual imple-
mentation, we introduce a symmetric matrix Ypus € 8" N N™ with only nonnegative
entries. Additionally, we assume that the diagonal elements of Y,,s are equal to zero,
which means that Y, is characterized by (72‘) nonnegative variables. This matrix is used

to relax the quadratic term X By X?, thereby complies with the conditions
Yplus i Y and Ypluse = XBpluse. (640)

Instead of applying the 2-norm conditions directly to the rows of Y, we use the introduced

matrix variable Yj,s to generate the following constraints:

£2(Yp1us) < XEQ(BPIUS) and EQ((Yp]uS — Y)Off) < X;CQ((BPIUS — B)Og>. (641)

The following result shows that the new constraints in (6.40) and (6.41) are superior
to the conditions in (6.39).
Lemma 6.5. Consider a matriz triple (X, Y, Yoms) € D" x 8™ x {8" " N}, and assume
that the matrices Y and Yy satisfy the equalities

diag(Y) = X diag(B), Ye = XBe, diag(Ypus)=0. (6.42)

104 Cutting Strategies

Then (6.40) implies the validity of the vector constraint L,(Y) < X L1(B). Furthermore,

(6.40) and (6.41) together necessitate the compliance with the 2-norm inequalities Lo(Y) <
X Ly(B).

Proof. By Ypuus =t Y and Ypus = 0, it follows 2Yus — Yo = | Yorr|. Together with the
identity |B| = 2Bpius — Bost + | Bdiag|, this yields

L1(Y) = |Yogle + | diag(Y)|
< (2Yoms — Yorr)e + | diag(Y)|
= X(2Bps — Bosr)e + | X diag(B)|
< X(2Bpius — Boft + | Baiag|)e
= X L1(B)

and verifies the first statement.

For the proof of the second statement, we use Lemma 2.10 and the convexity of norm
functions. Together with the nonnegativity of Yy © (Yps — Yor) and the identities

Yplus o Ydiag = JToff © Ydiag = 07 we get

Lo(Y) < Lo[Yorus Ypius — Yot Yaiag))

Lo([L2(Yotus) Lo2(Yors — Yorr) Lo(Vaiag)])
Lo(X [Lo(Bpius) Lo(Bplus — Bost) La(Baiag)])
X Lo([La(Bpius) La(Bpius — Bot) La(Baiag)])-

Nl

N

The last inequality is due to the convexity of £, and the circumstance that X is doubly
stochastic. Every row of X therefore describes a different convex combination of the rows
of the matrix [La(Bpius) L2(Bpius — Bott) L2(Baiag)]- Finally, Bpius © (Bplus — Bot) = 0
and Bpys © Baiag = Bosi © Baiag = 0 give the identity

Lo([L2(Bpius) La(Bpus — Bor) L2(Baiag)]) = L2(B),

which completes the proof.]

Cutting Strategies 105

6.2. Level-2 relaxations

With all the previously discussed constraints in our repertoire, we are now in the position
to finalize the considered relaxation frameworks. This section serves the purpose of giving
appropriate selections of constraints for the different types of relaxation frameworks. The

following choice of cuts is driven by a trade-off between relaxation quality and efficiency.

We investigate the suitability of the respective constraints in the reversed order
they were introduced, starting with the norm cuts presented in the last subsection
and finishing with the GLB based cuts discussed in the first part of this section. Via
numerical tests, it is easily shown that none of the presented norm constraints is redundant
in any of the relaxations. Our improved version defined in (6.40) and (6.41) still
gives a good trade-off between computational complexity and tightening effect on the
relaxations. The application of the corresponding norm cuts in the level-2 versions of
the respective relaxation is therefore strongly recommended. For the incorporation of
2) nonnegative variables to characterize a matrix variable
Yous € {M € 8" n N | diag(M) = 0} and add the constraints

these cuts, we introduce ("

Ypluse = XBplusey
Y <tri YpluS7
£2(Yplus) < XEZ(BpluS)7

£2((Yplus - Y)off) < X£2((Bplus - B)off)-

(6.43)

The described procedure is the same for each relaxation framework. For reasons of
efficiency, it is advisable to omit the corresponding second order cone inequalities in

(6.43) whenever the applied solver has no explicit support for the SOCP constraints.?

Naturally, the relative tightening effect of the constraints in (6.43) depends on the
quality of the relaxation which they have been added to. Independent of the considered
relaxation framework and independent of the constellation of the other cuts, we made
the following observation: except for a small number of QAP instances with very special
coefficient structures, the conditions in (6.43) typically tighten the respective relaxations

noticeably.

The second type of cuts that unites all these favorable properties is the class of

sum-matrix bounds discussed in Subsection 6.1.3. In order to obtain strong cuts, we

3Since it is possible to formulate SOCP constraints via semidefinite conditions, every SDP solver has
implicit support for this cone.

106 Cutting Strategies

solve the auxiliary LP problem (6.32). From the computed solution vector, we obtain
parameter vectors v;, wy, v,, and w, for the implementation of the following inequality

constraints
Xvel + ewf XT < g Y <. Xv,el +ewl X7, (6.44)

Using (6.44) often leads to a significant improvement of the relaxation quality. On top
of this, the involved increase of computational costs is fairly moderate. In the context of
these beneficial properties, it is clear that we apply (6.44) to the level-2 versions of each

relaxation framework.

It is true that the nonnegativity condition 7" > 0 can result in significantly tighter
relaxation instances of VL,. Nevertheless, we refrain from the integration of these
conditions, since their use limits the practical applicability drastically. For dimensions
n > 30, even in the absence of these constraints, VL based relaxations involve extremely
high computational costs. With these inequalities being applied, it becomes very difficult
to compute bounds even for problems of dimension n > 20. The situation is significantly
better if the used solver handles the cone S, N N efficiently. To the best of the author’s
knowledge, SDPNAL+ by Yang, Sun, and Toh [113] is the only solver that is capable of
this. However, even in conjunction with this solver, vector lifting relaxations for QAPs
of dimensions n > 35 become extremely expensive. On the contrary, it may be beneficial
to reduce the (possibly) non-symmetric sum-matrix bounds in (6.44) to their symmetric

counterparts if the computational cost plays a very critical role.

By Lemma 6.2, it is clear that the integration of EVB based cuts into the frameworks
ESC, ES, or VL is typically redundant. This circumstance can be changed via a different
QAP reformulation or the incorporation of upper bounds such as (6.25) and (6.26). Both
types of modifications involve a significant increase of the computational costs and usually
accompany hardly noticeable quality improvements of the respective relaxation. For this
reason, we only consider the integration of F'VB based cuts into the relaxations ML,
MLX, MS, and IIMS. Under the assumptions that the QAP reformulation defined in
(4.20) was applied a priori, it follows the existence of a specific eigenvalue-eigenvector
pair (u1,p1) = (M, q1) = (0, ﬁe). For the remaining eigenvalues of A, we assume that
they are indexed in non-ascending order uo > s = ... = u,. Reversely, the eigenvalues
of B shall be denoted in non-descending order Ay < A3 < ... < \,. These are the same

presuppositions we made in (6.16). The incorporation of the EVB based cuts is realized

Cutting Strategies 107

by adding the constraints

l
0< N plyp, —)\, for l=3,5,7,...,2gJ—1,
e (6.45)
1
()‘l+l_)\l)(1_§ll>gzpfypz_Al for 1227476772\:”2 Ja
=2

where 5;; is used as a replacement character for the linear term
Su = max{uy, —lu} [po " X]q| + max{u, oy, 0}
with

by = <le,q;>a 5zlz =l + <’pzl‘a ’(JZTD? Uy = <le7qu>7 = Uy — <|le|, ‘QIi|>

For the integration into framework MS,, we additionally exploit the observation made in
Lemma 6.3. This means that we split and reduce the constraints in (6.45) by the same

approach that was used for (6.14).

In the author’s opinion, the incorporation of GLB based cuts is worth to be discussed.
The addition of (6.8) or (6.9), respectively, is not redundant and affects the overall
computational complexity only slightly. However, numerical tests have shown that - in
the presence of the other discussed constraints - the influence of GLB based cuts on the
bounding quality of the respective relaxation is even smaller than their slight effect on
the computing times; typically, there is no effect at all. Another issue is the computation
of suitable reformulation parameters. Of course it is possible to apply the reformulation
procedures proposed by Assad and Xu [3] or Carraresi and Mallucelli [20] to improve the
quality of the Gilmore-Lawler bound, which also strengthens the incorporated constraints.

This, however, increases the computational costs significantly.

In the absence of the constraints (6.44) the application of GLB based cuts is still
strongly recommended. Nevertheless, for the numerical examples presented in Section

7.4, we refrain from using these constraints and stay with the constellation of cuts given
in (6.43), (6.44), and (6.45).

108

Chapter 7.

Implementation and Numerical
Results

7.1. Motivation

In the previous chapters, we described different SDP relaxations for the QAP. We also
discussed a range of applicable constraints in terms of their effect on the bounding quality
and the accompanied computational costs. The former part has been emphasized to some
extent by giving a few numerical examples. Regarding the latter part, however, the author
clearly avoided the presentation or any further discussion of computing times. This
section shall be used to give reason for this circumstance. To be more specific, the object
of this section is to demonstrate the significant influence of different implementation
strategies on the computing times as well as the numerical stability of the corresponding
SDP frameworks.

In his research, the author had to realize that details about the actual implementation
and their influence on the performance of the respective programming instances receive
very little or no consideration in the majority of cited works that are concerned with convex
relaxations of the QAP. Besides the typical distinction between the mathematical model
and the technical realization, there is another important reason for this. In addition to
high-level modeling languages for mathematical programming, such as AIMMS, AMPL,
GAMS, or OPL, there exists a wide range of user-friendly interfaces to various conic
optimization solvers for many different programming languages. The packages CVX [41],
YALMIP [64], ROME [39], Convex.jl [104], and CVXPY [26] picture just a small
selection of actively developed modeling tools for the programming languages MATLAB,

109

110 Implementation and Numerical Results

Julia, and Python. The recent improvements in stability and efficiency, as well as the
continuously improving reformulation automatisms that have been incorporated into the

listed modeling tools, allow the implementers to neglect various implementation details.

Despite the tremendous advances in the development of solvers and modeling languages,
the consideration of certain implementation questions is still of importance for the design
of numerically stable, memory efficient, and practically solvable programming problems.

This circumstance shall be demonstrated via the numerical results presented in Table 7.1.

The accuracy of the computed approximations is measured by relative duality gaps.
Let 0 be the optimal objective value to a given SDP problem with a finite solution and

zero duality gap.! The relative duality gap for an approximation is then defined as

drel = Ma (71)

2|
where 0, and @g4,, are the computed primal and dual optimal objective values, re-
spectively. In Table 7.1, we consider two different implementations I1 and I2. The

t I correspond to a straightforward

measurements that are labeled by the superscrip
implementation of the corresponding relaxation instances, whereas the superscript 2
refers to numerical results computed with an alternative implementation whose realization
details are discussed in the following sections. The considered relaxation frameworks are
problem (3.5) and problem (3.10), alternatively referred to as MLy and MSy, respectively.
The relations between the corresponding computing times are displayed in the fourth and
seventh column of Table 7.1. Both implementations are realized using YALMIP [64].

The applied solver is SDPT3 [102] and the script language Octave [29].

Since I1 and I2 are just different realizations of the same relaxation, it is possible to
reconstruct the same optimal points ()A(, ?, ...) from the solution vectors to each imple-
mentation. The described feasible sets are indeed completely identical. In that context,
it is surprising how much the displayed results differ between these two implementation
strategies. The examples for 12 perform considerably better than their I1 counterparts.
Particularly interesting are the QAP instances Kra32, Tai35a, and Tho40. For the I1
implementations of the corresponding ML, instances, SDPT3 fails to compute feasible
points (hence the large gaps). It is also quite difficult to evaluate the numerical accuracy
of the other instances of I1 since most of the computed objective values have negative

duality gaps. The latter statement implies that the approximate primal or dual solution

Tt can be shown that this is the case for every presented SDP relaxation.

Implementation and Numerical Results 111

Table 7.1.: Relative gaps and timings for different implementations and selected QAPs

ML, MS,
Problem i 2 ¢ 12 dr >, th 2

Esc32g —2.27-107% 7.02-107% 4.82 —1.66-10"° 2.66-107% 5.79
Kra32 —6.34-10™ 5.94-107% 16.88 1.65-1077 1.07-1077 4.48
LiPa40a —3.37-107% 2.23-107¢® 8.05 —8.64-107% 5.44-107% 4.92
Nug30 -1.79-107° 543-107% 278 —1.15-107% 833-107% 3.66
Ste36a —5.51-107° 1.66-107% 7.67 5.18-107% 8.82-1077 5.18
Tai3ba —2.22-10" 551-100" 9.80 —1.07-107¢ 1.44-107" 5.79
Tho40 —8.06-10™ 7.69-107°% 1544 —2.06-107% 4.77-107% 4.78

violates certain constraints. On top of this, the computing times for the corresponding
I2 implementations are significantly shorter than the times required for solving their I1

counterparts.

Similar numerical issues were observed in [83] by Peng, Mittelmann, and Li. The
authors of [83] attacked this problem using a procedure described in [54]. Here the issue
is resolved by applying the reformulation technique that will be described in the next
section. Jansson’s procedure for the computation of rigorous lower bounds [53,54] is of

course still applicable.

7.2. Numerical difficulties

Alongside the conic solvers SEDUMI [101], SDPT3 [102,103], SDPA [112], SDPNAL+
[113,117], and SCS [77], there are many more solvers which are capable of handling
semidefinite programming problems. The use of such a solver reduces the implementation
effort to the task of reformulating the given problem instance for compliance with the
corresponding input format. The most important aspect of each input format is the
underlying standard form. Fortunately, for almost all of these solvers, the required

formulation can be traced back to the same SDP form. The primal standard form is

112 Implementation and Numerical Results

given as

inf (C,X)
Xesn (PSDP)
s.t. (A, X)=b; for i=1,...,m,

with its dual

sup bly

yeR™

m (DSDP)
s. t. C_Zy’LAZ ESZ,
=1

where b = (by,...,by,) T e R™and Ay,...,A,,,CeS".

If we attempt to use one of the listed solvers for computing the optima to our relaxation
programs, it is reasonable to discuss numerical stability issues and implementation details
in consideration of (PSDP) and (DSDP). Many of the following explanations will

therefore refer to these standard forms.

Another important background for the following discussion is the notion of ill-posedness
(well-posedness) in the context of semidefinite programming problems. To the best of
the author’s knowledge there are two definitions for condition measures of a linear
programming problem. The first one was introduced by Mangasarian [71]. His definition
of a condition number for a system of linear inequalities and equalities is related to the
error bounds introduced by Robinson [90]. Robinson’s results, in turn, are based on a
well-known theorem by Hoffman [47]. For more recent results on this topic, see [8,115]
and the references therein. The second definition is due to Renegar [89], who approaches
this topic from a slightly different perspective. He defines a condition measure with
regard to the decision problem about the consistency of a system of constraints. Both
types of condition measures lead to a very similar but not identical notion of ill-posedness.
In the following, we consider the notion of ill-posedness in regard to its decision problem

which was given by Renegar [89].

A problem instance in primal standard form is called ill-posed in regard to its decision
problem if it lies in the intersection of the closure of feasible and infeasible problems of

(PSDP). This is the case if at least one of the following three statements applies:
e The equality constraints on X are linearly dependent.

e The problem is weakly feasible, or

Implementation and Numerical Results 113

e weakly infeasible.

In the following, whenever a problem is characterized as ill-posed, the term is meant
in regard to the decision problem about its consistency. The complement to the set of
ill-posed problem instances is the set of well-posed ones. This includes not only strongly
feasible problems whose linear map defined by {A;} is onto, but also strongly infeasible

optimization problems.

7.2.1. Ill-posed programming problems

The ill-posedness of an SDP problem accompanies a list of undesirable properties. The
presence of redundant variables and constraints has a negative effect on the computational
costs and the stability of the corresponding problem instance. Even more problematic are
the cases for which Slater’s condition [99] is not satisfied. The absence of interior feasible
points can have a significant impact on the convergence rate in the solving procedure.

Both circumstances are also major obstacles for the computation of verified bounds.

Fortunately, in the context of the discussed semidefinite programming relaxations, it
is not necessary to consider weak infeasibility. The boundedness of each optimization
variable implies the absence of weak infeasibility (c.f. [68, Proposition 3]). On the other
hand, weak feasibility as well as linearly dependent equality constraints actually occur.
Theorem 7.1. If the corresponding approximation tolerance € is set to zero, every

possible instance of any relaxation framework given in Chapter 3 - 5 is ill-posed.

Proof. By construction and the nature of the underlying QAP, all discussed SDP relax-
ations necessarily state feasible programming problems. For the proof of Theorem 7.1, it

is therefore sufficient to validate the absence of interior feasible solutions.

In the first part of the argument, we consider the basic relaxations presented in
Section 3.1. The equality constraints (3.3c) and (3.3e) of the relaxation VL imply the
identity

=0 (7.2)
x T I®e e®x1

114 Implementation and Numerical Results

for every feasible point (x,7") to problem (3.3). By the same operandi, we use (3.5d),
(3.10d), and (3.11d) to verify

X I Y 0 —el| =0, (7.3)

=0 for ¢e€ {-f—,—}, (74)

and

g/ X" | [afe

Il
o

for i=1,...,n, (7.5)

respectively. Due to the rank deficiency within the accounted SDP constraints there
are no feasible solutions that satisfy strict positive definiteness. The corresponding
programs are weakly feasible because all feasible points lie on the boundary of the cone

of semidefinite matrices.

For the remainder of the proof, we notice that any feasible programming problem
which contains conditions implying the positive semidefiniteness of a variable Z € &

together with an equality constraint of the form
(B,Z2)=0 <= ¢e'Ze=0 (7.6)

is necessarily ill-posed. The validity of this statement is an immediate consequence
of the fact that arbitrary small negative perturbations of the right-hand side of (7.6)
render this problem infeasible. Apparently, this argument is applicable to all level-1
and level-2 relaxations. The considered variables are Gj, Q;, Ui, Yy, Y-, Y4, ¥y, and Z,

respectively. O]

The fact reported in Theorem 7.1 seems to be in stark contrast to statements about
generic properties of SDP problems in [2,28,82]. Alizadeh, Haeberly, and Overton
[2] showed that primal and dual nondegeneracy are generic properties of semidefinite
programs. In [82], Pataki and Tungel proved the corresponding generalization for conic

linear programming problems. Recently, Dir, Jargalsaikhan, and Still [28] surveyed

Implementation and Numerical Results 115

different genericity results for this kind of programming problems. They showed that
strong duality holds generically in a stronger sense. By taking these results into account,
it is straightforward to show that well-posedness is a generic property of (PSDP) and
(DSDP). Roughly speaking, this means that almost all linear semidefinite programming

problems are well-posed.

The last statement about the genericity of well-posedness provokes an interesting
question: How is it explainable that all derived relaxation programs are ill-posed, although
the underlying relaxation techniques differ in various ways? This matter is particularly
interesting considering the fact that the ill-posedness property is not limited to some
specific implementation. The applied QAP reformulation introduces a constant nullspace
(Be = 0) which is present in all previously considered relaxation frameworks. Nevertheless,
even if we remove any nullspace from the reformulated matrix B, the corresponding

relaxation instance remains ill-posed.

Actually, the answer to the question above is quite simple: the design of relaxation
frameworks is not haphazard. Our desire to model tight SDP relaxations often introduces
redundancies and produces ill-posed programming problems. Indeed, the situation is very
similar for a wide range of problems occurring in practice. The results in [2,28,82] hold
for programming problems with specific conic structures but without consideration of any
sparsity structure. They are therefore not applicable to the limited set of SDP problems
that occur in practice. A good demonstration for the coherence of this statement is
due to Ordénez and Freund who found that 71% of the LP problem instances from the
NETLIB test suite [76] have infinite condition measure. Numerical difficulties associated
with the ill-posedness of these problems were investigated, for instance, by Keil and

Jansson [58].

7.2.2. Regularization

An appropriate way to deal with ill-posed or strongly ill-conditioned problems is the ap-
plication of regularization techniques. Subsequently, we will explain a possible procedure

for the regularization of an ill-posed primal semidefinite programming problem. For this

116 Implementation and Numerical Results

purpose, consider the following modification of (PSDP):

inf (C, X)
XeSn, peRy
s. t. <A1,X>:bz for = 1,...,TTL, (77)

X +pleSt.

Under the assumption that the linear map described via the coefficient matrices {A;}
is onto, the primal of the modified programming problem is evidently well-posed. How-
ever, without any further constraints on p or a penalization of nonzero values, the

semidefiniteness condition on X is effectively nullified.

The general idea for the presented regularization approach follows the concept of
penalty methods. Instead of requiring strict compliance with all initial constraints, we
allow arbitrarily large perturbations to certain ones. The constraint violations are kept
small for the respective optimal points by incorporating a penalization term into the

objective function. In the standard form, a possible relaxation of (PSDP) may look like

_inf ’ , X
Xesy* 01y co—tr(C)

s. t. ’ X) =Db; for 1=1,...,m,
_0(77;71) —tr(Al)

where c, is an appropriate penalization coefficient and X can be interpreted as a substitute
for diag(X + pI, p).

In the process of designing an SDP relaxation framework, the redundancy of certain
equality constraints may not always be apparent. Consider, for instance, the condition
X € D". 1In [25,73,83,84] and many other papers, this condition is realized via n?
nonnegative variables and 2n equalities: X € N™ and Xe = XTe = e. It is straightforward
to show that one of the corresponding equality constraints is redundant. The lack of
attention to this simple detail is already enough to render the problem ill-posed. In
contrast to the given example, there are other redundancies whose detection and validation

can be a comparably difficult task. The following relaxation deals with this by allowing

Implementation and Numerical Results 117

a perturbation of the right-hand side of the equality constraints:

e, (€0 + gl .

s. t. (Aj, X)) =b; + p; for i=1,...,m.

For reasons of clarity, we skip the formulation of problem (7.9) in standard form. The
same applies to the treatment of ill-posed dual problems. The general regularization

strategy is very similar to the one for the primal SDP problem.

A closer look at the presented approaches reveals their connection to typical regular-
ization techniques from which they inherit some very beneficial properties. In exchange
for inexact results, we derive a well-posed relaxation that requires only marginal changes
to the structure of the base model. The modifications increase the problem dimension
only slightly and retain the sparsity structure of the coefficient matrices. They thereby
have a relatively small footprint on the computational costs of the solving procedure.
On top of that, the described approaches are applicable without knowledge about the

constraints which cause the ill-posedness of the considered problem.

7.2.3. Minimal face representation

The regularization procedure is a good technique for the construction of well-posed
approximations of the original programming problem. It can be realized straightforwardly
and has many beneficial properties. Nevertheless, the procedure is not suitable as a
general approach. Though the constructed approximation can be very strong, it is still
just that, an approximation. It is therefore not applicable if we attempt to evaluate
certain properties of the original relaxation program. It can also not be used to compute
verified upper bounds or to determine infeasibility. The latter situation may be an issue
if the relaxation is embedded in a branch-&-bound procedure. A sensible approach
that resolves the ill-posedness but pertains the addressed properties requires certain

reformulations.

Several years ago, in [44], Hadley, Rendl, and Wolkowicz proposed a relaxation model
for the QAP which implicitly incorporates the requirement X € £ by a reformulation via
projection. Although their stimulus was different from our current one, the considered
procedure is exactly what is needed to encounter the issue shown in Theorem 7.1. The

reformulation via projection implements a suggestion of Boyd who pointed out that:

118 Implementation and Numerical Results

[...] any feasible nonstrict LMI can be reduced to an equivalent LMI that is
strictly feasible, by eliminating implicit equality constraints and then reducing

the resulting LMI by removing any constant nullspace. [12, Chapter 2.5.1]

Regarding the discussed relaxations for the quadratic assignment problem the culprit is
easily found. The presence of a constant nullspace is originated in the condition X € &£.
To be more precise, the ill-posedness is caused by the constant subspace defined via
the vector equality X?e = e and the quadratic nature of the respective semidefiniteness

conditions.

A possible approach to address this issue is the reduction of the corresponding
programming variables to a smaller subspace. By providing a tractable representation
of the linear manifold spanned by £, one can eliminate the explicit equality constraints
Xe = XTe = e and resolve the accompanied ill-posedness. A good example of this
procedure is given in [27]. Though Theorem 7.1 validates the existence of a constant
nonempty nullspace in the feasible sets of MSDR; instances, this issue is resolved in the
final version of this framework which is referred to as MSDR3. In order to obtain stronger
bounds, the authors of [27] apply their relaxation to a projected version of the quadratic

assignment problem based on a reformulation by Hadley, Rendl, and Wolkowicz [44]:

cinf (VTAVXVTBV + VI(C + 2AEB)V, X)) +{C + LAEB, 1FE)
Xeerm (PQAP)
s.t. VXVT > -1E

where V' is a real nx (n—1) matrix that satisfies V'V = I(,_;) and V'e = 0. It is straight-
forward to show that (PQAP) is indeed equivalent to (KBQAP). The corresponding

optimization variables are related via
X=VXVT+1iF

By applying their framework to the reformulated version (PQAP), Ding and Wolkowicz
[27] not only tighten the relaxation, they also decrease the number of equality constraints
and reduce the dimension of the semidefiniteness condition. A positive side effect of this
reformulation procedure is the resolution of ill-posedness. After a closer look on the other
presented relaxation frameworks, it becomes apparent that the same idea can be used to

construct well-posed equivalents to all presented relaxations for the QAP.

The process of reducing an arbitrary SDP problem with no strict interior feasible

points to an equivalent program in smaller space satisfying Slater’s condition is called

Implementation and Numerical Results 119

minimal face reduction.> The development of this procedure goes back to the early 80’s
when Borwein and Wolkowicz worked on a Lagrange multiplier theorem which holds
without any constraint qualification [10,11]. For more recent developments on this topic,
see [22,23,67,81,106] and the references therein. In the context of the presented relaxation
programs, it should also be mentioned that a detailed explanation about the design of a
minimal face representation for the framework VL is given in [116] by Zhao, Karisch,
Rendl, and Wolkowicz. The described procedure was also adopted in [87] by Rendl and

Sotirov to ensure the existence of interior feasible solutions.

For a brief recap of the general reformulation procedure, consider the SDP problem
given in primal standard form. Denote by F the feasible set to the considered instance
of (PSDP). The corresponding nullspace - which Boyd is referring to in [12, Subsection
2.5.1] - can be defined as

null(F) ;= {veR" | VX € F: Xv=0}. (7.10)

Let n, be the dimension of the orthogonal complement of null(F), ie. n, :=
dim(null(F)+). Furthermore, define a matrix W e M™ " that satisfies

Yo e null(F), w e null(F)\{0}: Wov=0# Wuw. (7.11)

Apparently, W has full rank and its row vectors state a basis of null(F)L. As an

immediate consequence of (7.10) and (7.11), we have
VXeF: XWW=X=Wwwx=wmw'x.

For every X e F, there exists an 71 x fi symmetric positive semidefinite matrix X satisfying
the two identities X = W1 XWT and X = WTXW. The latter identity is used to
reformulate (PSDP) in the following form:

inf (WCWT,X)
Xest ~ (7.12)
s. t. <WAZ~WT,X> =b; for 1=1,...,m.

By (7.10) and (7.11), we deduce the existence of some strictly interior feasible X e S*

and validate the conformance with Slater’s condition. The final step of the reformulation

2This description actually refers only to a specific version of minimal face reduction procedures. The
generalization of this reduction scheme can be applied to arbitrary conic linear programming problems.

120 Implementation and Numerical Results

procedure requires the elimination of all redundant equality constraints. We therefore

reduce the coefficient matrices {IWWA; W7} to a linearly independent base.

For reasons of comprehensibility, let us discuss an actual example for the minimal face
reduction of MSy. The different LP and SDP constraints of problem (3.10) result in a
block-diagonal form of the optimization variables of the corresponding (PSDP) instance.
One can exploit this block-diagonal structure by regarding the respective nullspace
for each block separately. In the case of problem (3.10), it is sufficient to limit our
consideration to the SDP constraints in (3.10b). The relevant, parameter independent
parts of the nullspaces have already been used in (7.4) for the proof of Theorem 7.1.
Additionally, the nullspaces depend on the kernel of B, and B_, respectively. We denote
the feasible sets for each SDP block individually by F, and F_. The accompanied

nullspaces are

v—ae
null(F,) = aeR,veR" Boo=0 for oe{+,—}.
e

We define the corresponding transformation matrices for the minimal face reduction in
regard to a matrix V € {M € Q""" | MTe = 0}:

T

Otnon—
W, = Qap (=) for oe{+,—},

%EQQQ V

where the index set definitions for 27, QO are taken from (5.4). The usage of these index
set subscripts is described in (5.5). By the compliance with all equality constraints of

problem (3.10), one can easily validate that

B, BXT| Agg QuBX'V

XB, Y, VIXB,Qq VY.V

Voe {+,-}: WJT

O =

Implementation and Numerical Results 121

We exploit these identities to construct the following reformulation of MSy:

jnf~ <A7 Y(Xa Y/Jr - Y/*a B)> + <Ca X> (7133)
XeD™, Y,,Y_eSn—1
s. t.
A T BXTV
8 2 €S, oe{+ -1, (7.13D)
VIXB,Qqo Y,
diag(Y (X, Y., B.)) = X diag(B,), o€ {+,—}, (7.13c)

where {Y,} are used as substitutes for {V7¥,V'}, and the transformation Y: D" x 8"~ x
S" — S™ is given by

. 1
Y(X,Y,,B,)=VY.VT ¢ - (EB. X" + VVTXB,E). (7.14)

Since Y (X, Y., B,)e = XB.,e holds valid for every X € D", the explicit incorporation of

these equality constraints is redundant.

If one of the matrices By, B_ is representable as a sum-matrix, then the respective
semidefiniteness condition is irrelevant. In all other cases, problem (7.13) contains interior

feasible points, such as

- 1 (B, VVT B.,VVT
(X ¥ Vo) = <nE B, <n_1>f<n—l>) '

The problem is well-posed if the accompanied equality constraints are linearly independent.
In order to satisfy this requirement, the condition X € £” has to be implemented via
2n — 1 linearly independent equalities. These can be obtained as a subset of equality

constraints from Xe = XTe = e.

7.2.4. Remarks on applicability of regularizing procedures

Regarding their practical applicability, both the regularization approach presented in
Subsection 7.2.2 and the minimal face reformulation given in Subsection 7.2.3 have their
pitfalls. A beneficial utilization of the described techniques requires a good portion of
cautiousness since a straightforward implementation of these may result in semidefinite
programming problems which are even more difficult to solve with the available SDP

solvers.

122 Implementation and Numerical Results

Two major drawbacks of the presented regularization approach have already been
pointed out in the last subsection. The initial qualification as an “appropriate way to deal
with ill-posedness” is indeed a strong exaggeration for this technique. Its application leads
to a well-posed approximation with a slightly weaker bound. Properties like boundedness
or infeasibility are not preserved. In that context, the regularization approach seems
to be hardly appropriate for the computation of verified bounds or the application in a
branch-&-bound procedure. In addition to these limitations, the regularization techniques
involve the difficult task of finding appropriate penalty coefficients. Too small values
cause weak bounds, whereas unnecessary large ones produce ill-conditioned objective
functions. The former situation renders the relaxation unusable, the latter has a negative

effect on the convergence rate and the overall numerical stability.

Fortunately, in the context of the discussed relaxation programs, we can overcome most
of these issues. For the QAP, it is possible to implement a branch-&-bound algorithm in
such a way that every branching node contains feasible solutions. The boundedness of
all variables can be recovered by setting explicit bounds for the introduced constraint
violations, i.e. p < const. Reasoned in our detailed knowledge about the respective
problem structures, we are in the position to compute good estimations for appropriate

penalty coefficients and reduce the constraint modifications to the necessary minimum.

The last statements shall be exemplified by the following redesign of ML:

inf (A, YY) +{C, X) +{cy, p) (7.15a)

XeDn, Y, ZeS™, peR?

s. . I X' BXT

X IT+pl Y |€8s, (7.15b)

XB Y V4

diag(Y) = X diag(B), diag(Z) = X diag(B?) + pae, (7.15¢)
(I1-E,7)={I—E,B%, (7.15d)
p<1l, p,<|BJ* (7.15¢)

This relaxation is derived from problem (4.31) by incorporating the defects p;I into the
respective optimization variables. Positive defects are penalized in the objective function
multiplied by the coefficients in vector ¢, € R, In order to restore the boundedness of all

variables, we added the inequalities in (7.15e). Negative coordinates in p are not feasible:

Implementation and Numerical Results 123

the semidefiniteness condition implies Z > XB2XT and thereby
tr(Z2) = el Ze+ (I — E,7) = €' XB*XTe + (I — E, 7) = tx(B?).

Together with (7.15¢), this necessitates p, > 0. By a very similar argument, [+p; I > XXT

implies the nonnegativity of p;.

There are some details where the applied modifications in problem (7.15) deviate
from the standard approach described in Subsection 7.2.2. The diagonal defect is
subdivided into partitions to allow individual penalization of differently scaled matrix
blocks. Defects are incorporated solely into the critical part of the semidefiniteness
condition. Furthermore, by removing the redundant coefficients on the diagonal elements
of Y in (7.15d), we avoided unnecessary entries of perturbation variables p;, which would
have been present in the straightforward design: (E,Z) — np, = (E, B®).

For the determination of appropriate penalization coefficients in c¢,, we first need
to analyze the relation between the respective diagonal perturbations and possible

perturbations AY of variable Y. Constraint (7.15b) implies
(1+p)Z =Y =(Y+AY2 =Y 4 (AYY + YAY + AY?), (7.16)

This relation gives a rough indication for the relative disposition of the respective optimal
points: perturbations of Y involve perturbations of the left-hand side of (7.16) which are
scaled by 2| Y||2 ~ 2[|Bl2. For small values of p;, this implies

p~ 12 =2l 2 112 = V22 2 20 Yll2 [1AY [l ~ 2[| B2 [|AY |2
Moreover, (7.16) and the assumption || Z||, ~ || B3 give
pL R 1Bl IAY]),:
The final ingredient used to obtain appropriate penalization coefficients is the estimate
(A, AV < (Al [JAY 2.

For the goal of keeping the optimal objective value to the regularized problem very close
to the original optimal objective value, it is necessary to request (A, AY) + {c,, p) R 0.

Based on this and the estimates above, we educe the following suggestions for the vector

124 Implementation and Numerical Results

of penalization coefficients:

2|| Bl
¢p = || Allx) (7.17)
18Iz

for some k in the interval [1, 50].

The applied modifications are fixing most of the discussed issues of the regularization
approach from Subsection 7.2.2. Its applicability is nevertheless strongly limited. For
feasibility tests and the computation of rigorous upper bounds, the approach is generally
not applicable. On top of this, the partitioning of the introduced defect and the com-
putation of suitable penalization coefficients require knowledge about specific modeling

details of the considered problem.

The difficulties with the minimal face reduction approach are of different nature
but existent nevertheless. In particular, this refers to the knowledge of the constant
nullspace. It is possible to automatize the minimal face reduction procedure by solving
stable auxiliary subproblems which serve the computation of (dual) recessing directions
or a similar type of reduction directions. Corresponding algorithms are described
in [23,81] and [67]. However, the construction of a minimal face presentation by iterative
computations of reduction directions can be very expensive. In the presence of rounding
errors, it is moreover not possible to guarantee the equivalence of the computationally

obtained presentations and the programs they originated from.

Even if the nullspace is given - which means that the minimal face reduction is
easily applicable -, the reformulation may not help to resolve the numerical difficulties
accompanied by the original SDP problem. It is actually possible that the obtained
minimal face representation is more difficult to solve. An important factor in this
context is the increased fill-in of the coefficient matrices. For an illustration, consider
the diagonal equality constraints in (3.10c) and their counterparts for the reformulated
relaxation framework given in (7.13c). Each of the original equality constraints described
by the vector identities diag(Y,) = X diag(B,) necessitates n + 1 nonzero coefficients in
the actual implementation. The number of coefficients that is necessary to implement

(7.13¢) depends on the choice of the matrix V. The application of the simple but dense

Implementation and Numerical Results 125

representative used in [44],

_Bea—l) 1 1
V= with o= ———, 8= —,
I(nfl) _ OzE(n,D n+ \/ﬁ \/ﬁ

leads to the introduction of 2n? — 2n + 1 additional nonzero coefficients for each of the 2n
equality constraints. If we replace the term VVIXB,E in (7.14) with XB,E — %EBOE ,

2

this number reduces to n* — n + 1 coefficients per equality. The additional fill-in is

nevertheless immense.

In modern SDP solvers the sparsity structure of the coefficient matrices influences the
computing times and the numerical stability. Roughly speaking, an increased number
of nonzero coefficients due to constraints requiring linear transformations such as (7.14)
may nullify the advantages of the reformulation approach described in Subsection 7.2.3.
With the additional LP and SOCP constraints presented in Section 6.1 the situation
becomes even worse. The heavily increased fill-in leads to poor convergence properties

and higher computational costs.

In order to overcome this issue, one may search for sparser choices of V', as given by

the following recursive definition:

V(n €(nq On no—
(m) 7€) Doma- if n>1,
V =V(n):= Omama—1) 0€(ny) V(ng) (7.18)
[] else,

where n; = [%], Ng =N — Ny, Y = 4 /n%v and 0 = —, /n%f This representative of V'
contains only about nlog, n nonzero elements, which decreases the average fill-in per

equality constraint to O(nlog,n).

For a given subspace, it can be very difficult to construct a sparse orthogonal basis.
It is, for instance, not possible to give a construction rule for the matrix V' such that the
number of its nonzero elements is bounded by O(n). Fortunately, there is no substantial
necessity for orthogonality. For a good reason, the transformation matrix W used in (7.11)
is not required to have orthogonal row vectors. The essential requirement on W is that
its rows span the orthogonal complement of the respective nullspace. If the dimension of

this nullspace is significantly smaller than the dimension of its orthogonal complement,

126 Implementation and Numerical Results

then it is possible to construct transformation matrices W with very beneficial sparsity

structures.

Let us once again consider the framework ML;. The nullspace accompanied by the
feasible set to the semidefinite block matrix in (4.31b) is already indicated in (7.3).
The corresponding set of feasible semidefinite matrices shall be denoted by F. The

accompanied nullspace is given by

T
e 0
null(F) = {Uv [veR*} =RUT) with U=|—-¢ 0| . (7.19)
0 —e

We are thus looking for a matrix W e M?3" =23 that has full rank and satisfies WU” = 0.
In addition, we demand a high sparsity level of W. For the construction of this matrix,
it is sufficient to find an index set for a regular basis of column vectors of U. Let
U := {2n,3n} be this index set, and denote by ¥’ the complement to ¥ in {1,...,3n},
such that

T
1o €(n) Otn)
U\IJ == aIld U\I// == —e(n_l) 0(71—1)
0 —1
On-1) —€(n-1)

The index sets ¥ and ¥’ can then be used to construct a sparse representative for W':
W e MPn=25m, Wy = (=Ug' Uy)", Wy =I5, g (7.20)

Evidently, the matrix defined via (7.20) satisfies the basic condition WU” = 0 as well as
the full rank requirement. On top of this, the specific sparsity structure of W has the
beneficial side effect that the reduced SDP constraint in the corresponding minimal face
representation is derived from the original semidefiniteness condition simply by removing
the row and column vectors specified in W. The sparsity structure is thus kept unaltered
for all components of matrix variables that are not positioned on the respective rows

and /or columns.

Implementation and Numerical Results 127

Based on these observations, we design the following minimal face representative for
MLll

i inf (A, Y(Y)) +(C, X(X)) (7.21a)
XeNn—Ln y 7eSn—1
8. 1.](n))~(T BXT
X Ipy Y |€877 (7.21D)
XB Y 7
diag(Y) = X diag(B), tr(Y(Y)) = tx(B), (7.21¢)
diag(Z) = X diag(B?), tr(Y(2)) = tr(B?), .
Xewy=1, XTewm 1y < e, (7.21d)
where the corresponding transformations are given as
: X ~ Vo Ve
X(X) = ~ and Y(Y) = B B . (7.21e)
6?;1) — e%;hl)X —eafl) Y (E)Y)

The matrix variables X, Y, and Z have been modified with respect to the eliminated
row and column vectors. For a further reduction of the number of nonzero coefficient
entries, we replaced the equality constraints on the last elements of the diagonal vectors
diag(Y(Y)) and diag(Y(Z)) with the respective trace equalities in (7.21c). The mutual
implication of the replaced constraints follows immediately from the remaining diagonal

equalities.

Numerical tests suggest that the described procedure is applicable in a practical
manner and more favorable than the original problem formulation. There are still
matters of detail that require individual treatment, such as the handling of eliminated
variables which remain to be used implicitly, or the proper dealing with a possibly high
condition measure of the reduced problem instance. Nevertheless, since these issues seem
to be easily fixable for the individual problem instance, the author is convinced that
the described version of the minimal face reduction is preferable to the regularization

approach described in Subsection 7.2.2.

Considering the many additional constraints discussed in Section 6.1 that involve
the use of X(X) and Y(Y), it can be advantageous to spent additional variables for the
components that are not contained in the respective matrix variables X and Y. This

approach requires one additional equality constraint for each of the removed components.

128 Implementation and Numerical Results

On the other hand, the reduction of the overall fill-in of the coefficient matrices caused by

the implicit use of the eliminated coordinates often lead to improved computing times.

Our final remark in this subsection concerns the condition measure of the respective
problem instance. For a given SDP problem, the described minimal face reduction
approach can be used to construct an equivalent problem which is well-posed and therefore
suitable for the application of an interior point algorithm. By no means, however, does
the exploitation of this procedure induce the creation of a well-conditioned programming
problem. An unbalanced scaling of the respective programming variables can cause a bad
convergence behavior and noticeable numerical problems. For the relaxation programs
based on matrix lifting, the correlation || Z||z ~ || B|l2/| Y|l ~ [|B2||2]|X]| indicates a
particular sensitivity to the scaling of the respective QAP instance. To overcome the
accompanied numerical difficulties, we normalize the parameter matrix B in such a way

that the trace of B? is equal to its rank. To be precise, we determine the corresponding

_ [IB]E
= Al ank (B}’ (7.22)

and apply a counterbalanced scaling to the parameter matrices A and B, which creates
a reformulated QAP instance (oA, a !B, C).

scaling factor

7.2.5. Rigorous bounds via verification methods

The awareness about the presence of numerical instabilities leads us to the reasonable
question whether it is possible to compute rigorous bounds for the true optimum of the
respective relaxation framework. The answer to this question is “yes”, albeit with minor

restrictions.

In 2004, Jansson introduced a new method to compute rigorous upper and lower
bounds for the optimal objective values of linear programming problems [52]. The
proposed procedure works much more efficient than previous approaches and is applicable
even in the degenerated case. A short time later, the procedure was adapted for
more general convex conic programming problems [53,54] and implemented in the
MATLAB software package VSDP [46]. In this subsection, we discuss an appropriate
way to compute verified bounds for the optimal objective values to the respective QAP

relaxations using the software package VSDP.

Implementation and Numerical Results 129

For the use of VSDP, it is required to install two further software packages: an
SDP solver for computing approximate solutions to the given problem instances and the
interval package INTLAB by Rump [93]. The latter is used mainly for the computation
of rigorous inclusions of solutions to the accompanied linear systems [92,94,95]. Other
important features of the package INTLAB that are relevant in this context are the
support of interval input data in VSDP as well as the possibility to handle rounding
errors in the computations which are required for the preparation of the respective

relaxation instances.

In the software package VSDP, different post-processing routines are implemented
for the result verification of semidefinite programming problems. Given the correct input
data (see below) of an SDP program, rigorous bounds for the true optimal objective
value can be computed. All rounding errors due to floating point arithmetic are taken
into account. Since the necessary post-processing and the result verification is done
within VSDP - and thereby do not require additional involvement of the user -, here we

concentrate on the necessary preparation steps.

In order to obtain verified bounds for the optimal objective value to the original
relaxation program, we must make sure that the input data for VSDP are correct. This
means that the (interval) input data must contain the original problem. There are various
ways to ensure this inclusion requirement; the choice depends on the specific relaxation
model and the available verification tools. Though the use of INTLAB simplifies the
implementation of the required computations significantly, a straightforward application of
the available verification techniques is not recommended. This begins with the validation
of the applied QAP reformulation defined in (4.20). The attempt to compute rigorous
interval inclusions for the reformulation parameters in (4.19) seems quite naive. Firstly,
with todays verification methods this attempt is difficult to realize for the solution to
problem (4.18) and may fail due to degeneracy. Secondly, the early introduction of an
interval matrix B results in additional data dependencies. These, in turn, lead to larger
interval expansions. It is an important principle of verification methods to avoid such

data dependencies, see [94, Utilize Input Data Principle (5.13)].

Another obstacle for the straightforward application of interval arithmetic is that most
of the discussed SDP relaxations require an eigenvalue decomposition of the parameter
matrix B. By exploitation of the symmetry of B and an appropriate application of
Weyl’s eigenvalue inequality [107], it is possible to compute rigorous inclusions for the

eigenvalues of B very efficiently. On the other hand, the determination of rigorous

130 Implementation and Numerical Results

inclusions for all eigenvectors of B is more difficult, involves greater computational costs,

and results in noticeable interval expansions.

Many practical verification methods make use of floating-point approximations and
compute rigorous inclusions via implementation of a backward directed error handling.
For this purpose, they often exploit suitable results from perturbation theory. Here we
are following the same approach. Let QAQT denote an approximation of the eigenvalue

decomposition of B, hence
B~ QAQ" ~ B + diag(d,) + v,e” + et!

where d, and @, are approximate reformulation vectors computed numerically by im-
plementing (4.19). Instead of the exact B with eigenvalue decomposition B = QAQT,
we only have the original input matrix B as well as the approximates dg, 5, A, and
Q. Since Q is a floating point matrix, we cannot expect orthogonality. For reasons
of simplicity, the following explanation is limited to problem (4.32) and it is assumed
that d, = v, = 0. If one places great emphasis on computing rigorous lower and upper
bounds for the original definition of this framework, it is necessary to compute rigorous
inclusions for d; and v, as well as an approximate) which satisfies @53 QQQ =0. In
practice, the validation of these presuppositions is of minor significance; we therefore
skip the discussion of the corresponding details. We just suppose that dy, Uy describe the
applied QAP reformulation and that (Q93 /NXQR @53 , Qﬂg /N\Qg Qgg) states the used positive
semidefinite matrix splitting of QAQT.

The general idea is to assume that the approximates Q and A define the actual param-
eter matrix B. Rigorous bounds for the original problem are obtained by incorporating
the quadratic residual term (A, X(B — QAQT)XT) into the linear term (C, X) of the
objective function. Besides the easily transformable sum-matrix part introduced by the

applied QAP reformulation, this concerns in particular the handling of the remainder
R = B+ diag(d,) + 9,¢” + evl — QAQT. (7.23)
The open question is how to deal with the corresponding quadratic term (A, XRXT) in

the objective of the original QAP.

Usually, we will not be able to increase the computational accuracy to the point that
R vanishes. On the other hand, it is possible to utilize algorithms for the computation of

accurate dot products to obtain very tight inclusions for the actual remainder term given

Implementation and Numerical Results 131

on the right-hand side of (7.23). Efficient algorithms for these accurate computations
are explained in [61,78,79,118] and the references therein. The (interval) inclusion of
(7.23) may be used to compute rigorous norm bounds for R. Together with appropriate

estimates, such as
VX e D" [KAXRXT)| < min{||Afle|| Blle, [|Al]I R},

we may obtain efficient bounds for the considered residual term (A, XRX™). For tighter
inclusions of this residual term, it is expedient to apply one of the discussed bounding
techniques. The author suggests to use the Gilmore-Lawler bound procedure [37,60] in

order to obtain matrices L, and Uy that satisfy
VX elI": (L X) < (A XRXT) < (Up, X).
The final preparation step is the construction of interval matrices B, B_, and C
satisfying
B, > QQ—?—]\Q-?— Qz;?_, B_ > QQEAQE Qg;g, and C 2 é — 2A€?~J§ + [LR, UR]

The corresponding interval data (A, B, — B_,C) contains a nonempty set of QAP
instances with the same optima as the original problem (A,B ,C’) With all these
preparations done, we are finally in the position to present an interval SDP problem that
is suitable for the post-processing process implemented in VSDP. The corresponding

interval programming problem
P - {P(A,E,R,é,@,ﬁ) B.eB, B eB._, éec} (7.24)

specifies a family of SDP problems P(A, By, B_,C,Q, A) defined via

X€D7z7l%f’y_esn <A’ Y+ - Y—> + <Ou X> (725&)
s. t. 1—1 T T
A X
9EET les,, oe{+,—), (7.25h)
XQqo Y,
diag(Y,) = X diag(B.), o€ {+,-}, (7.25¢)

Y.e = XB,e, Y.e= XB_e. (7.25d)

132 Implementation and Numerical Results

Table 7.2.: Rigorous bounds for ill-posed MS instances

Problem o b/t dry tr/t
Esc32g 9.37-1078 0.623 1.45-1077 3.63-1074
Kra32 2.43-1077 0.009 3.15-1077 2.63-107*

LiPa40a 7.38-1071% 1.020 7.80-1071° 2.64-107*

Nug30 127-1078 4.034 9.19-1078 3.42.10~*
Ste36a 2.10-10°¢ 0.015 2.10-10°¢ 2.72-10~*
Tai35a 537-107% 1.030 5.38-10"% 3.37-1074
Tho40 141-107 1.015 1.41-107% 2.92.10~*

Obviously, the minimal face reduction has not yet been applied to problem (7.25).
Since the respective interval problems contain ill-posed programming instances, they
typically also enclose infeasible programs. For this reason, it is not possible to compute
upper bounds for these instances, and VSDP naturally fails to do so. On the other hand,
VSDP is able to compute rigorous tight lower bounds. In Table 7.2, we present these
bounds for selected instances of the interval problem (7.24). The quality of the computed

lower bounds is measured in form of relative duality gaps defined as in (7.1). Due to

*

the absence of rigorous upper bounds, d ., and dZ,

describe relative gaps between the
computed rigorous lower bounds and the corresponding approximate upper bounds. We
use d,e to denote the gaps for rigorous lower bounds computed without any additional or
non-default options in VSDP. The asterisk in d}, refers to the computation of rigorous
lower bounds with additional consideration of the boundedness of each optimization
variable. This means that the respective VSDP function is called with the boundedness
informations obtained a priori from the relaxation model. The relations between the
computing time ¢ for the approximation and the times ¢; and ¢; for the respective verified
lower bound computations are displayed in the third and the fifth column of Table 7.2,

respectively.

The rigorous bounds displayed in the fourth column of Table 7.2 are slightly worse than
the bounds obtained via VSDP’s post-processing. On the other hand, the accompanied
computational costs are hardly perceptible. It is therefore beneficial to use the fast

bounding procedure if possible. The numerical results given in Table 7.2 exemplify the

Implementation and Numerical Results 133

Table 7.3.: Rigorous bounds for well-posed MS; instances

Problem .o tuft b/t drg tr/t

Esc32g 569-107* 1.097 1.238 3.58-107° 4.50-10~*
Kra32 4.89-107° 5615 1.202 212-107% 3.41-10"*
LiPa40a 5.75-107° 2.036 1.042 1.56-10"% 2.57-10"*
Nug30 1.35-107° 4.638 1.035 4.45-107% 3.92-1074
Ste36a 4.02-107* 3.011 1.175 4.74-10° 3.29-10*
Tai35a 1.45-107* 1.017 1.045 1.08-10"7 3.92-107*
Tho40 4.87-10* 2,007 0.992 4.33-107% 3.03-107*

possibility to compute rigorous lower bounds for the discussed relaxation frameworks
with very low additional efforts. This is possible even without applying a minimal face

reduction approach, and thereby without knowledge about the accompanied nullspace.

For the computation of verified upper bounds, it is necessary to apply the minimal face
reduction described in Subsection 7.2.3. In the context of problem (7.25), it is sufficient
to remove the last row and column from the block matrices in (7.25b). Considering the
applicable cuts and their effect on the sparsity structure of the coefficient matrices, the
elimination of the corresponding variables as demonstrated in Subsection 7.2.3 and 7.2.4
is not recommended since the transformation into implicit variables introduces additional

intervals with larger radius, resulting in weaker inclusions.

In Table 7.3, we use a notation that is consistent with the one used in Table 7.2. The
difference is that the presented relative gaps describe the quality of actual inclusions of
the respective true optimal objective values because the upper bounds are computed
rigorously as well. The computing time for obtaining verified upper bounds is denoted
by t.,.

7.3. Implementation details

The inspection of implementation issues shall be completed by some final remarks on the

exploitation of intrinsic problem structures. This comprises not only general properties

134 Implementation and Numerical Results

of the respective relaxation programs, such as the type and number of variables or the
distribution of equality versus inequality constraints, but also the presence of low-rank

and/or sparsity structures in the corresponding coefficient matrices.

7.3.1. Formulation in dual or primal standard form

A wide range of LP solvers, including IBM ILOG CPLEX [49], GLPK [38], GUROBI [43],
and lp_solve [4], accept as input LP problems of the following form:

inf (e,)
TER™
s.t. Ax»b, (7.26)

| <z <u,

where A e M™" beR™ »e {=,>,<}" and [,u e {RuU {+o0}}". Indeed, most of these
solvers support even more general formulations of the respective LP instance. Obviously,

problem (7.26) covers both the primal standard form

oo
s.t. Ax =0,
x =0,
as well as its dual
sup <(b,y)
yeR™

s.t. ATy <.

The greater flexibility of formulation (7.26) allows a good exploitation of the individual
problem structure. For a wide range of LP instances, this provides the possibility to
construct quite efficient implementations, more efficient than it would have been possible
in one of the two standard forms. This improved efficiency comprises the simplicity of
bringing a given LP model into formulation (7.26), a reduced memory usage, and usually

also a faster solution procedure.

Implementation and Numerical Results 135

Consider, for instance, the minimization problem

inf 25171 — X2
zeR?

s.t. a1+ 29 = -2,

Though this problem is trivial, it suffices for demonstrating the benefit of formulation
(7.26). The transformation of this problem into primal standard form requires four
variables and two equality conditions. For a formulation in dual standard form, only two
variables but four inequality constraints are needed. Formulation (7.26) allows the most
efficient implementation, since only two variables (with lower and upper bounds) and
one equality condition are required. If a primal-dual approach is used to solve the LP
problem, it is also important to consider the number of variables and constraints in the
corresponding dual problem. Even in this context, the general advantage of formulation
(7.26) can be shown.

Unfortunately, solvers that support the cone of semidefinite matrices are usually
requiring rather restricted formulations for their input format. In contrast to pure SDP
solvers - which typically allow the exploitation of block-diagonal structures but are
otherwise limited to semidefiniteness conditions -, conic solvers support the optimization
over direct products of different convex cones, such as semidefinite cones, second-order
cones and nonnegative orthants. Solvers like CSDP [9] or SDPA [112] fall into the first
category; SEDUMI [101], SDPT3 [102,103], MOSEK [75], and SCS [77], for example,
belong to the class of conic solvers. All these solvers require that the considered problem
is given in some format which is an extension to either (PSDP) or (DSDP), but does
not cover both formulations. This is typically caused by the underlying algorithms that

require one of these standard formulations.

For reasons of simplicity, let us assume that LP variables can be treated efficiently
in form of 1 x 1 semidefinite matrices and that second-order cone variables are not
present. In this context, it is sufficient to consider the formulations (PSDP) and (DSDP)
with an underlying block-diagonal structure. The input format for the applied solver
shall be designed for problems given either in the form (PSDP) or (DSDP). Since these
formulations are dual to each other, it is possible to choose the form that is more suitable

for the respective relaxation.

136 Implementation and Numerical Results

In order to demonstrate the benefit in considering both standard forms, we will

evaluate the corresponding formulations for a relaxation based on the matrix lifting

approach:
XENni,an,2esn (A Y)Y +(C, X) (7.27a)
5.5 I XT BXT
X 1 Y | =0, (7.27Db)
XB Y [/

diag(Y) = X diag(B), diag(Z) = X diag(B?), (7.27¢)

(E,7)={FE,B?, (7.27d)

Xe=X"e =e, (7.27¢)

Xvel +ew X" < Y <o Xv et + ewl X7, (7.27f)

Problem (7.27) is described via 2n? + n variables (of different type), a semidefiniteness
condition in §**, 2n? — 2n linear inequalities and 4n equality constraints (not counting
the single redundant equality in (7.27¢)). Although there is still room for improvements,
this formulation states already a quite efficient realization of the corresponding relaxation

program.

Let us now consider a reformulation in primal standard form. In this formulation,
inequalities are implemented by introducing adequate conic variables. The links to already
introduced variables are established via additional equality constraints. To formulate an
equivalent problem to (7.27) in primal standard form, we introduce a matrix variable
H e 82" that is used to realize the semidefiniteness condition in (7.27b). Moreover, we
introduce two nonnegative matrix variables Y, Y € N to implement the linear inequality
constraints in (7.27f). For a better link to the variables X, Y, and Z in problem (7.27),

we handle H as a block matrix arranged as

Hy Hie His
H = Hay Hay Ha | s
Hsi Hsy Hsg

Implementation and Numerical Results 137

where all matrix blocks {H,;} are of dimension n x n. By taking all these things together,

we obtain the following formulation:

inf (A, Hsz) +{C, X (7.28a)
HeS3™, X,Y,YeN™

s. t. H11 = H22 = [, H21 = X, H31 = XB, H32 = Hg;, (728b)
diag(Hs;) = X diag(B), diag(Hs3) = X diag(B?), (7.28c)
<E7 H33> = <E7 B2>7 (728d)
Xe = XTe =e, (7.28¢)
Y = Hsy — Xvel — ew] XT
= o e T A et A (7.28f)
Y =g Xv,e' +ew, X* — Hss.

The corresponding equality constraints are in one-to-one correspondence to the respective
conditions in problem (7.27). The semidefiniteness condition is now incorporated into
the variable H. However, the interrelations between its components and the link to X
has to be reestablished via the equality conditions in (7.28b). We even need constraints
to reestablish the symmetry of the matrix block Hs, which corresponds to the variable
Y. Taking the symmetry of H into account, (7.28b) describes %nQ + %n non-redundant

equality constraints. In total, problem (7.28) requires t>n? — 1n variables (not counting

2 2
the diagonal elements of Y, Y) and 4'n? + 2n equality constraints.

The construction of an equivalent reformulation that complies with the dual standard
form is more straightforward. Equality constraints can be implemented via two oppositely

directed inequalities.®> Conic properties of the respective variables have to be realized via

3A way to circumvent the accompanied numerical problems will be described in the next subsection.

138 Implementation and Numerical Results

additional conditions.* The respective formulation is given by

XeMni,n;ZeSn (A YY) +(C, X) (7.29a)
S. t. I XT BXT
X I Y |=o0, (7.29b)
XB Y V4
X diag(B) < diag(Y) < X diag(B), (7.20¢)
X diag(B?) < diag(Z) < X diag(B?),
(E,B* < (E,Z) < (E,B%, (7.29d)
X=0, e<Xe<e<Xle<e, (7.29)
Xve! +ew] X' < g5 Y <5 Xv,e! + ewl XT. (7.29f)

Formulation (7.29) is described via 2n? + n free variables, a semidefiniteness condition in

837 and 3n? + 6n linear inequality constraints. For a meaningful comparison of problem

(7.28) and (7.29), it is important to consider the same form, that is either the primal

of (7.28) with the dual of (7.29) or the other way around. Let us consider the first

%(n2 + n) variables and 2n? + n equality
152

constraints. In comparison to the primal problem of (7.28) which is realized via %n* + %n

variables and %n2 + gn equality constraints, the number of variables is slightly higher

case. The dual problem of (7.29) involves

whereas the number of equalities is significantly smaller. In the view of this situation,
formulation (7.29) is definitely the preferable choice for the actual implementation of
problem (7.27).

Let us conclude the discussion of possible formulations of the presented SDP frame-
works. Due to restrictions in the input format of the respective solvers, it is usually
necessary to use a formulation that conforms to either the standard primal or the standard
dual form. As seen exemplary for problem (7.27), the choice of this form can have a
significant influence on the number of accompanied equality constraints in the primal
standard form (= number of variables in its dual). For relaxation frameworks based on
matrix lifting, such as problem (7.27), the dual form is more beneficial. On the other
hand, the “eigenspace” SDP relaxation involves significantly fewer equality constraints
when implemented in the standard primal form. It is therefore important to ask, which
formulation is more suitable for a given SDP problem. The choice depends on the

structure of the corresponding conic inequalities. If the number of variables (counting

4They are transfered into dual slack variables.

Implementation and Numerical Results 139

each component) that are necessary to describe these inequalities is small compared to the
number of inequality constraints (again counting every component), then a formulation
that complies with the dual standard form is preferable. On the other hand, if there are
relatively few interrelations within and/or between the respective inequality conditions,
a formulation in primal standard form often results in a more efficient implementation.
In this context, it is apparent that we implement the vector lifting based relaxation
programs as well as the “eigenspace” SDP relaxations in compliance with the primal
standard form. Conversely, the frameworks based on the matrix splitting or the matrix
lifting technique are implemented in respect of the dual standard form. At this point, we
should mention that the compared frameworks in Table 7.1 have all been formulated in
compliance with the same standard form, there the dual one. The intentional choice of
the inappropriate primal standard formulation would have given even worse results for

the original frameworks.

7.3.2. Further implementation details and low-rank coefficient

structures

It is worth mentioning that the reformulation procedure discussed in the previous subsec-
tion as well as its dualization can be automated, see [40,41] and [64,65]. Nevertheless, a
manual reformulation of the respective relaxation framework may still be advantageous
because it gives a better control about implementation details that are relevant for the

running times of the corresponding solving processes.

As an example, consider problem (7.29) from the last subsection. If the input format
of the used solver covers the primal standard form but in addition also supports free
variables, then the corresponding dual also allows a direct implementation of equality
constraints. This results in realizations without the necessity of tricks such as the use
of oppositely directed inequalities. The default solvers used by CVX [41], including
SEDuUMI [101] and SDPT3 [102,103], support free variables in their primal form. The
CVX package makes use of this capability and avoids the implementation of equality
constraints via inequalities. Nevertheless, it is important to notice that - though the
mentioned solvers support free variables - they do not handle them very well. Internally,
these solvers do similar transformations from free variables to conic ones. For this reason,

we try to reduce the number of explicit equalities.

140 Implementation and Numerical Results

The diagonal elements of the matrix variables Y and Z are used only once in (7.29b).
It is therefore beneficial to avoid the explicit use of these variables. The corresponding
constraints in (7.29¢) can be removed if we replace (7.29d) with (Eyg, Z) < (E.g, B®)

and substitute

I XT BXT
X I Yo + diag(X diag(B)) | =0
XB Yor + diag(X diag(B)) Zyz + diag(X diag(B2))

for (7.29b). As a result of these substitutions, the diagonal components of Y and Z have
no coefficients in any of the constraints or the objective function. The corresponding

variables may therefore be removed.

Moreover, by the same procedure as the one we have already used for the minimal face
reduction of the respective problems, we can eliminate the constraints which implement
the condition X € £™. In the style of (7.21e), define the transformation X: M"~t — M"

as follows:

- X (I—X)e
X(X) =)] . (7.30)
el (I—X) ef'(X —1)e

It is then possible to replace the variable X € M™ in problem (7.29) with X € M~ and

substitute X (X) for every other occurrence of X. For the compliance with the conditions

in (7.29¢), it is sufficient to require X(X) = 0.
Very similar reduction strategies are applicable to the respective formulations of other
relaxation frameworks. For the design of the actual implementations, we combine these

strategies with the facial reduction procedure discussed in the previous section.

Before we finally get to the numerical results and the conclusion of this work, let us
complete the inspection of implementation details with two further examples of possible
improvements. We begin with a beneficial utilization of intermediate variables. In the first
part of this subsection, we reviewed a simple strategy to reduce the number of equality
constraints via elimination of variables. This approach works well for formulation (7.29)
because the removed variables are involved in very few other constraints. In many other
cases, the elimination of variables would be counterproductive. The reason for this is that
the elimination of variables typically destroys the sparsity structure of the corresponding

coefficient matrices. By introducing additional variables for intermediate calculations,

Implementation and Numerical Results 141

we aim for the opposite effect: more variables in exchange for a more beneficial sparsity

structure of the coefficient matrices.

A good example for a beneficial use of additional variables that keep results of
intermediate computations has already been emphasized in Subsection 6.1.2. Without
further modifications, the upper bound constraints in (6.25) involve n* + 2n? coefficients
(n?+2 coefficients for each inequality). By the introduction of n? additional variables, this
number can be reduced to 2n® + 2n%. It usually makes a huge difference for the applied
solving method whether an SDP problem involves O(n*) or O(n?) nonzero coefficients.
Beyond such extreme cases, the introduction of additional variables for intermediate
results can also be sensible for less expensive constraints such as (7.29f). In the actual
implementation, we introduce 4n additional variables in form of four n-component vectors

Vizs Wiz, Vuzs Wue € R™ and substitute

(7.31a)

T T T T
veo Few, <.p Y <.p Ve +ew,, (7.31Db)

Xv, <v,, Xw, <w, Vo < Xv,, W, < Xw

x) ux u?

for (7.29f). Since problem (7.29) is formulated with respect to the dual standard form,
it is recommended to avoid the introduction of unnecessary equality constraints. The
utilization of the inequalities in (7.31a) is more practical than the incorporation of their

equality counterparts and the cutting effect on the matrix variable Y is the same.

In certain cases, it can be beneficial to use the variables which are introduced to keep
the results of intermediate computations as substitutes for original variables. Consider,
for instance, the relaxation based on the inverse interrelated matrix splitting approach.
The block matrix for the semidefiniteness condition in (5.29b) contains the two matrix
blocks X BA% and X Bv% . Actually, after the multiplication with the block-diagonal matrix
Dy, the corresponding blocks are X BA% Qe and X Bv% Qg , respectively. For reasons of
simplicity, assume that B is of full rank and that the approximation threshold ¢ is set to

zero. Under these assumptions, we have
1 1 1
XB3Qq: = XBsQ = XQA2 for ©e{a,v},

where B, = QA,QT and By = QAyQT denote the spectral decompositions of the
corresponding matrices. By introducing a new matrix variable X, € M" for the term

X(@Q and substituting X,Q* for the original variable X, we reformulate problem (5.29)

142 Implementation and Numerical Results

and obtain

XoeM™, clir,lYf,YA,YveSn (4,7 +{CQ, Xg) (7.32a)
s. t. [Lo Lor
I AZX, AGX,

XQAA% Y, G >0, (7.32b)

XA G X

B 1 Nt
Igé (DT —AZ Av2>]U}, I&Xg >0, (7.32¢)
XQ]U; D, =G

diag(Y,) = Xo(Q" diag(B,)) for o€ {A,V},

171 (7.32d)
diag(G) = X, (Q" diag(B: B)),
(Yo, By = (By, By, (Yo, E) = (By, E), (7.32¢)
Y=Y, - Y, (7.32f)
X,Q" =0, XQ(QTe) = e, XQTe = Qle, (7.32g)

1 1
where the index set UL := {i | |[N(B2BZ)| < ||BZBZ||»} and the diagonal matrix
D, := 7(B)I comply with their definitions in Subsection 5.1.3.

The orthogonal matrix () typically contains very few zero components. Under the
assumption that @) is full or at least almost full and that the dimension is not too small
(n > 16), the implementation of problem (7.3.2) requires only about half as many nonzero
coefficients as the realization of the original formulation (5.29). Moreover, numerical tests

have shown that the described modification accelerates the solving procedure noticeably.

Our final remark concerns the capability of some conic solvers to exploit low-rank
structures in coefficient matrices. The tools SDPLR [13,14], SDPT3 [102,103], LMI
LAB [36], as well as modified versions of CSDP [50] cover just a small selection of
SDP solvers which support low-rank input data. In the view of the discussed relaxation
frameworks, making use of this possibility is particularly beneficial for the implementation
of EVB related inequalities.

To be more precise, here we consider the constraints in (6.17). A rewrite of these

constraints for compliance with the dual standard form gives

l l
<Y,2pipiT>>Z/\i for le{2,...,n—1}. (7.33)
=2 =2

Implementation and Numerical Results 143

Apparently, the rank of the corresponding coefficient matrices depends on the summation
limit . However, with a very similar trick as before - which is referring to the introduction
of variables for intermediate calculations -, it is possible to reformulate (7.33) in such a
way that only rank-one coefficient matrices are present. For this purpose, one needs to

incorporate n — 2 additional variables r € R"~2 and replace (7.33) with

r>0, I‘1<<Y,p2pg>—)\2,

(7.34)
rlfl—l’l,2<<Y,plplT>—)\l for le{Q,,n—2}

If the low-rank structure in (7.34) is also accounted in the process of generating the input

data for the respective solver, then the SDP problem is handled more efficiently.

The counterpart formulation to (7.34) for compliance with the primal standard form
can be realized even more straightforwardly. On top of this, the respective formulation
is more efficient since it does not require the introduction of additional variables. The
modification for the actual used EVB constraints given in (6.45) follows the same

approach.

7.4. Numerical results

After having specified the final model of constraints for the respective level-2 relaxations
in Section 6.2 and after having given the necessary explanations for their actual imple-
mentation in the last two sections, it is time to discuss the practical applicability of
these relaxations on the basis of numerical tests. Since this section serves the purpose of
evaluating the quality and applicability of the finalized versions of our SDP frameworks,
the numerical results are significantly more extensive than in the previous chapters. Here
we give bounds for all symmetric problem instances from the QAP library [18] up to

dimension n = 99.

As already mentioned in Subsection 7.3.1, the implementation of VLs, ES5, and ESC,
is done in compliance with the primal standard form (PSDP). The low-dimensional
relaxations MLy, MLXs, MS,, and IIMS, are implemented with regard to the dual
standard form (DSDP). The practical realization of the minimal face reduction described
in Subsection 7.2.4 is applied to all these frameworks. For the implementation of the SDP
relaxations which are formulated in dual standard form, also the strategies described

in Subsection 7.3.2 are exploited. This comprises the ideas to reduce the number of

144 Implementation and Numerical Results

equality constraints as well as the substitution of the matrix variable X, for X@). The
reformulation of the additional LP constraints via (7.31) is again used on all relaxations.
However, the author refrained from using reformulation techniques whose exploitation
requires specific capabilities of the applied solver. This includes the substitute (7.34) for
the conditions in (7.33).

The computational costs for solving MLy are usually less than the ones for computing
the solution to the respective MLX, instances; indeed the measured computing times
were very similar to the ones for IIMS,. However, MLy clearly falls behind its successor
MLX, when it comes to bounding quality. The framework ML, is therefore omitted from

the subsequent evaluation.

The numerical results are presented following the style in [83]. As before, the bounds

are given in form of relative gaps

Lower bound computed via relaxation
Reop =1

" Best known upper bound or optimal value’

Under the ’CPU’ columns, the corresponding computing times are listed in seconds. The
labels in the column "Problem’ consists of three or four letters indicating the names of
the authors or contributors of the respective QAP instance, together with a number that
gives their dimension. If the authors provided multiple problem instances for the same
dimension, the respective instance is indicated by another letter at the end of the name.

For more information on the naming scheme and the individual applications, see [18].

Our testing software sdprQAP is written in MATLAB and utilizes the modeling
language YALMIP [64] in many parts of the code. For the computation of the bounds
presented in Table 7.4 and 7.5, we used the solver SDPT3 [102] that implements an

infeasible primal-dual path-following interior-point algorithm. The interpretation of the

code of sdprQAP is done by Octave [29].

Table 7.4.: Numerical results for instances with size n < 30

VL, ES, ESCy™

Problem Rgp(%) CPU Rgap(%) CPU Rgp(%) CPU

Chr12a 4.85 193 10.16 110 10.64 103
Chr12b Fail — 16.20 113 16.34 84

continued . ..

Implementation and Numerical Results

145

VL,

ES,

ESCy™

Problem Rg,(%) CPU

Rep(%) CPU

Rep(%) CPU

Chrl2c 6.78 118
Chrlba 11.40 253
Chr15b 18.93 287
Chrl5c 0.25 288
Chrl8a 8.44" 380
Chr18b 0.00 297
Chr20a 1.58 632
Chr20b 2.07 582
Chr20c 11.66" 686
Chr22a 1.01 1049
Chr22b 1.07 1075
Chr25a 6.49 1811
Els19 2.00" 977
Escl6a 14.71 251
Esc16b 2.74 204
Escl6e 12.50 265
Escl6d 34.37 222
Escl6e 33.12 232
Escl6f 0.00 0
Escl6g 30.56 445
Esc16h 2.04 218
Esc16i 18.78 229
Esc16j 11.13 208
Had12 0.46 117
Had14 0.47 193

10.68 161
19.71 231
30.71 196
5.89 228
14.18 295
0.00 309
1.64 467
2.53 433
18.48 401
2.73 479
2.35 507
13.73 549
Fail —
17.14 179
2.74 226
16.10 255
80.23 197
37.11 206
0.00 0
30.56 174
2.07 200
100.00 164
89.21 174
1.30 111
1.26 171

11.14 99
21.53 152
33.95 145
8.80 190
15.95 210
0.00 168
1.64 351
2.72 271
18.95 221
3.03 319
2.73 338
15.89 444
Fail —
17.14 55
2.74 48
16.10 102
80.23 59
37.11 65
0.00 0
30.56 53
2.07 92
100.00 121
89.21 60
2.03 73
1.50 138

continued . ..

146 Implementation and Numerical Results

VL, ESs ESCy™

Problem Ryp(%) CPU Rgp(%) CPU Run(%) CPU

Had16 1.02 275 1.97 223 2.31 165
Had18 1.16 379 2.06 299 2.42 205
Had20 0.87 641 1.69 350 2.15 219
LiPa20a 0.12 557 0.38 373 0.48 224
LiPa20b 0.00 609 0.00 441 0.02 353
Nugl2 7.06 136 8.18 105 11.94 110
Nugl4 4.56 234 6.73 134 9.07 127
Nuglh 5.58 298 6.73 177 8.13 139
Nugl6a 4.75 372 5.80 210 7.73 140
Nugl6b 7.45 371 8.55 200 13.27 131
Nugl7 6.03 487 8.34 218 10.21 152
Nugl8 6.43 953 7.90 229 9.92 180
Nug20 6.88 877 7.76 304 8.94 219
Nug21 6.51 1181 7.67 318 9.38 247
Nug22 5.17 1530 6.88 354 8.86 321
Nug24 6.77 2360 7.54 423 7.86 295
Nug25 6.92 2875 7.68 439 707 386
Nug27 5.13 3128 6.50 011 7.12 487
Nug28 6.52 3973 7.45 574 8.80 570
Roul2 5.90 157 8.79 109 10.89 111
Roulb 8.58 298 11.21 152 13.78 164
Rou20 11.34 1032 13.89 289 16.29 276
Scrl2 5.54 148 7.04 118 10.07 119
Scrlb 10.10 319 18.96 181 20.13 164
Scr20 12.80 1007 14.38 376 16.92 295

continued ...

Implementation and Numerical Results

147

ES, ESCy™

Problem Rgy(%) CPU Rup(%) CPU Ry (%) CPU

Tail2a 3.65 164 6.79 115 9.00 117

Tail2b 3.75 257 Fail — Fail —

Tailba 9.73 302 12.29 162 14.11 175

Tailbb Fail — 0.47 113 0.55 124

Tail7a 10.11 374 12.52 253 14.64 196

Tai20a 11.93 716 14.65 376 16.54 273

Tai20b Fail — 20.12 380 Fail —

Tai2ba 13.28 3016 15.39 536 17.34 453

" solved with numerical problems, accuracy below 5 decimal digits

" approximation tolerance ¢ = 0.1

Table 7.5.: Numerical results for instances with size n < 100
MLX, MS, 1IMS,

Problem Rgap(%) CPU Rgap (%) CPU Rgap (%) CPU
Chrl2a 10.76 3 11.41 2 11.12 8
Chr12b 15.15 3 15.40 2 15.34 8
Chril2c 11.37 3 11.83 2 11.16 9
Chrlba 20.67 6 22.21 3 21.55 4
Chrlb5b 31.32 5 32.56 3 32.10 4
Chrlbc 7.51) 8.79 3 7.85 4
Chrl8a 15.31 9 16.32 4 15.63 6
Chr18b 0.00 7 0.00 4 0.00 5
Chr20a 1.64 14 1.64 7 1.64 10
Chr20b 2.58 14 2.74 7 2.66 10

continued ...

148 Implementation and Numerical Results

MLX, MS, IIMS,

Problem Rup(%) CPU Rgp(%) CPU Rup(%) CPU

Chr20c 19.89 13 19.08 7 18.90 9
Chr22a 3.04 23 3.28 9 3.09 13
Chr22b 2.58 23 2.84 10 2.66 13
Chr25a Fail — Fail — Fail —

Els19 Fail — 13.09 7 Fail —

Escl6a 24.02 4 24.02 3 19.82 4
Escl16b 4.83 4 4.83 3 3.96 5
Escl6c 23.70 4 23.88 3 21.12 5
Escl6d 75.00 4 75.00 3 75.00 4
Escl6e 49.84 5 49.84 3 45.80 5
Escl6f 0.00 0 0.00 0 0.0 0
Escl6g 40.55 5 35.41 3 32.84 6
Esc16h 3.64 4 2.07 3 2.82 4
Escl16i 100.00 4 100.00 2 100.00 3
Esc16j 75.01 4 75.02 3 75.01 4
Esc32e 100.00 60 100.00 17 100.00 36
Esc32g 100.00 53 100.00 17 100.00 39
Had12 1.51 2 1.78 2 1.71 9
Had14 1.76 3 2.26 3 2.13 3
Had16 2.30 4 3.01 3 2.90 4
Had18 2,77 7 2.88 4 2.78 6
Had20 2.46 9 2.33 6 2.31 8
Kra30a 13.40 54 18.01 17 16.56 45
Kra30b 14.48 o7 18.93 17 17.58 43
Kra32 15.34 79 20.49 22 19.06 54

continued ...

Implementation and Numerical Results

149

MLX, MS, IIMS,

Problem Rgp(%) CPU Rep(%) CPU Ryp(%) CPU
LiPa20a, 0.33 12 0.39 6 0.36 8
LiPa20b 0.00 17 0.01 7 0.00 11
LiPa30a 0.42 71 0.44 31 0.43 40
LiPa30b 0.00 92 0.01 27 0.00 58
LiPa40a 0.30 270 0.30 82 0.30 142
LiPa40b 0.00 357 0.03 83 0.01 170
LiPa50a, 0.24 795 0.24 516 0.24 975
LiPa50b 0.00 1622 0.05 504 0.03 950
LiPa60a, 0.22 2832 0.22 979 0.22 1498
LiPa60b 0.01" 2385 0.03" 764 0.03" 1101
LiPa70a, 0.16 4046 0.17 1144 0.17 1974
LiPa70b 0.01" 4721 0.05 1123 0.03" 2200
LiPa80a 0.12 7890 0.12 2039 0.12 3389
LiPa80b 0.02 9149 0.06 1947 0.05 4848
LiPa90a 0.10 19356 0.10 4721 0.10 8209
LiPa90b 0.03 17545 0.06 3696 0.05 6660
Nugl2 9.59 2 11.83 2 11.59 2
Nugl4 8.45 4 7.61 3 7.54 4
Nugl5 8.52 4 7.78 3 7.64 4
Nugl6a 6.45 5 6.93 4 6.59 4
Nugl6b 9.36 4 9.14 4 9.23 4
Nugl7 Fail — 9.35 4 8.93 5
Nugl8 8.82 7 9.32 4 8.69 7
Nug20 8.00 11 8.76 4 8.32 8
Nug21 Fail — Fail — Fail —

continued . ..

150 Implementation and Numerical Results

MLX, MS, IIMS,

Problem Rup(%) CPU Rgp(%) CPU Rup(%) CPU

Nug22 10.51 13 10.21 9 9.96 12
Nug24 7.94 22 8.82 7 8.16 16
Nug25 8.13 21 Fail — Fail —

Nug27 Fail — Fail — Fail —

Nug28 8.22 41 8.35 13 8.17" 27
Nug30 7.84 56 7.95 18 7.89 39
Roul2 10.05 2 10.90 2 10.40 9
Roulb 12.69 4 13.17 3 12.94 4
Rou20 15.01 12 16.04 6 15.51 9
Scrl2 7.69 2 10.64 2 10.55 3
Scrld 15.01 5 14.92 3 14.99 3
Scr20 14.36 12 15.21 4 14.90 9
Sko42 7.41 246 7.21 78 7.09 157
Sko49 Fail — Fail — Fail —

Skob6 6.91 970 6.53 230 6.47 642
Sko64 6.48 1358 6.08 424 5.97 1172
Sko72 6.07 3371 5.58 752 5.53 2037
Sko81 Fail — Fail — Fail —

Sko90 5.90 11459 5.20 2189 5.20 6354
Ste36a 18.11 143 20.61 41 18.37 96
Ste36b 15.85 115 20.45 49 16.32" 103
Ste36¢ 15.64 217 14.94 66 12.89 107
Tail2a 7.64 2 8.84 2 8.14 9
Tail2b 11.59 3 8.21 2 10.43 4
Tailba 13.11 4 13.92 3 13.59 32

continued ...

Implementation and Numerical Results

151

MLX, MS, IIMS,

Problem Rgp(%) CPU Rgp(%) CPU Re(%) CPU
Tail5b 0.62 6 0.68 4 0.73 5
Tail7a Fail — 14.59 3 14.08 5
Tai20a 15.59 12 16.33 6 16.017 14
Tai20b 8.30 12 4.70 9 5.66 12
Tai2ba Fail — Fail — Fail —

Tai25b Fail — Fail - Fail -

Tai30a 15.95" 74 16.74" 27 16.34" 40
Tai30b 18.05 60 10.76 34 12.50 51
Tai3ba Fail — Fail - Fail -

Tai35b 22.89 105 13.58 64 15.76 96
Taid0a 19.72" 541 20.28" 87 19.99 165
Taid0b Fail — 10.06 103 11.32 493
Tai50a 21.22 1480 21.63" 394 21.48 507
Tai50b 17.21 742 12.72 245 13.84 450
Tai60a 22.28" 1895 22.76 544 22.55 1237
Tai60b 17.68 1833 10.13 564 11.62 1105
Taib4c 55.52 3146 2.41 476 2.40 932
Tai80a 23.08 9962 23.38 2190 23.27 4111
Tai80b 17.71 9820 11.20 2211 11.98 3797
Tho30 13.61 44 12.17 20 11.77 40
Tho40 12.48 208 12.45 77 12.17 134
Wil50 3.88 589 3.61 202 3.58 354

" solved with numerical problems, accuracy below 5 decimal digits

The results presented in Table 7.4 reveal a significant superiority of VL, compared to

all other tested relaxations. Even without the integration of the nonnegativity condition

152 Implementation and Numerical Results

T > 0, we obtain very strong bounds for the respective QAP instances. Unfortunately, for
dimensions n > 30 the interior-point algorithm becomes too expensive for our hardware,
which is why the corresponding problems had to be omitted from the numerical tests.
The given bounds also reveal the limitations of the eigenvalue clustering approach. Even
the moderate approximation threshold ¢ = 0.1 often leads to a noticeable weakening
of ESCy compared to ESy;. The computing times of these two frameworks are quite
similar. Indeed, only the instances with exploitable low-rank parameter matrices benefit

noticeably from the eigenspace clustering approach.

Table 7.5 shows a different picture for the low-dimensional relaxation frameworks.
The bounds are typically quite close to each other. Overall, MLX, is the best performing
framework amongst the low-dimensional SDP relaxations. However, it is also more
expensive than its competitors. It is difficult to determine the most efficient relaxation

approach since the bounding quality depends too much on the respective problem classes.

The interior-point method becomes too expensive for SDP relaxations of higher
dimensions. It is possible to use different solving procedures such as operator splitting
or Newton-CG augmented Lagrangian methods, see [77] or [113,117]. However, for the
considered ill-conditioned relaxations, the corresponding solvers SCS and SDPNAL-+
tend to produce inaccurate results. Using the regularization technique described in
Subsection 7.2.2 together with the methods introduced in [53,54], it is still possible
to compute (verified) lower bounds for the optimal objective values to these problems.
However, both approaches are sensitive to the condition measure of the problem. In
combination with an inaccurate solving method, the obtained bounds can lie considerably
below the actual optimal objective value. The computed bounds may still be suitable
for branch-&-bound algorithms or other bounding strategies, but we do not want to
evaluate the strengths and weaknesses of the discussed SDP relaxations based on rather
inaccurate approximations. By the same argument, every approximate solution with an

accuracy below two decimal digits was marked as "Fail’ in the corresponding tables.

Finally, we want to demonstrate the advantage of the improved cutting strategies
and the introduced new SDP relaxations over competing bounding techniques which are
already known in literature. For this purpose, Table 7.6 contains new best known lower
bounds for selected instances from the QAP library [18]. Since the comparability to

other SDP relaxations is no issue, we added some more constraints for the computation

Implementation and Numerical Results 153

of the bounds given in Table 7.6. These are the 2-norm constraints

Lo(Y,) < X La(Bs) for o€ 0O,

where © is one of the subindex sets {1,2}, {+,—}, and {A,V}, respectively. For improved
computing times, we furthermore removed the eigenvalue related inequalities as well as
the 1-norm constraints from the MS5 relaxations, since these had no effect on the lower
bounds for the Taixxb instances. For the same reason, we did not apply the FVB based
inequalities in MLXJ or the 1-norm cuts in ITMSS.

Table 7.6.: New best known bounds for selected instances of the QAP library

Problem Old bound New bound Rgap (%) CPU Relaxation
Sko81 86072 86 084 5.40 2655 IIMSy
Sko90 109030 109529 5.20 4467 IIMSy
Sko100a 143 846 144 443 4.97 7676 IIMSy
Sko100b 145522 146 128 5.04 7781 IIMSy
Sko100c 139881 140619 4.90 8076 IIMSy
Sko100d 141 289 141 861 5.16 8391 IIMSy
Sko100e 140893 141673 5.01 7886 IIMSy
Sko100f 140691 141295 5.19 7954 IIMSy
Tai40b 564 428 353 574178 590 9.90 201 MS3
Tai50b 395543467 401 350 382 12.53 104 MS;
Tai60a 5578 356 5596911 22.33 1167 MLXS
Tai60b 542 376 603 551707169 9.29 236 MS3
Tai80b 717907 288 727622997 11.09 946 MS;
Tail00a 15844731 15881008 24.56 20378 MLX5
Tail00b 1058131796 1083089734 8.68 3311 MS3
Tail50b 441786 736 449903 397 9.81 28259 MS;
Wil100 264 442 265044 2.93 10969 ITMS,

154 Implementation and Numerical Results

For 17 out of 32 instances from the QAP library [19] that have not been solved
to optimality yet, Table 7.6 presents new best known bounds. Each of these bounds
were computed with a low-dimensional SDP relaxation. Moreover, every discussed
relaxation approach for the design of a low-dimensional SDP framework is involved in

the computations.

Chapter 8.

Conclusion

This thesis contributes to the topic of semidefinite programming relaxations for the
quadratic assignment problem by presenting new relaxation concepts and discussing
various ways to improve the respective bounding programs. These improvements primarily
comprise the application of the reformulation techniques presented in Chapter 4 as well
as the integration of different cutting strategies discussed in Chapter 6. In Section
7.4, we have shown that the newly introduced low-dimensional relaxation concepts are
competitive to the much more expensive eigenspace splitting approach. Moreover, we
have seen that the incorporation of the respective low-dimensional cutting strategies into
the high-dimensional vector lifting based relaxation leads to a framework that gives good

quality bounds for the corresponding problem instances.

A strong focus was also on the questions of implementation. We have seen that
the attempt to model tight, low-dimensional relaxations for the computation of good
quality bounds often results in ill-conditioned semidefinite programming relaxations.
Even with all our attention focused on this circumstance - including the absolution
of ill-posedness, the rescaling of the affected optimization variables, and the different
strategies for obtaining beneficial sparsity structures in the respective programming
model -, there are still some quadratic assignment problem instances for which the final
relaxation frameworks are not numerically stable. However, it is important to notice that
the situation would be a great deal worse without the various considerations in Chapter
7. Moreover, as pointed out in Section 7.4, these numerical problems can be resolved
by applying moderate approximations. The reason why we did not use the described

approximation procedure was given in the same section.

Quadratic assignment problems were, are, and most likely will remain to be optimiza-

tion problems which are extremely difficult to solve, at least for the next few years. This

155

156 Conclusion

thesis does not chance this. However, our results improve the situation, and in some
aspects they do so quite substantially. The modeled relaxation frameworks are sufficiently
stable for the application in branch-&-bound procedures. Moreover, the computed lower
bounds provide new bounding records for some difficult problem instances from the

quadratic assignment problem library [18].

8.1. Future prospects

The search for improvements of solving strategies is something that never ends. Not
surprisingly, there are several areas which seem promising for future researches and

further improvements of the presented results.

We opened Section 6.2 with the claim that the corresponding frameworks would be
finalized by the implementation of their level-2 versions. In a strict sense, this claim
has already been falsified by the application of further reformulation techniques and the
minimal face representation discussed in Subsection 7.2.3 and 7.2.4. But even in a wider
sense, the use of the verb finalize is limited to the examinations in this thesis. Neither
did we discuss the incorporation of the so-called triangle inequalities, nor did we consider
the application of the reformulation-linearization technique [98]. The author believes
that the mentioned techniques are too expensive for practical usage. Nevertheless, the

investigation of these techniques may be interesting from a theoretical point of view.

Another possible future direction is the investigation of problem specific reformulations
and constraints. Good examples for the exploitation of problem specific properties are
Karish and Rendl’s triangle decomposition approach for metric QAPs [56], Mittelmann
and Pengs’s SDP relaxation for quadratic assignment problems associated with a Hamming
or Manhatten distance matrix [73], as well as Klerk and Sotirov’s exploitation of group
symmetries [24]. In our tests, we also played with different property and constraint based
matrix splittings, respectively. For certain combinations of splitting approaches and
specific QAP instances, we observed promising bounding improvements. It is planned to
continue the research in this area. We hope to come up with a new strong low-dimensional

relaxation framework.

If the applied solver implements an interior-point algorithm, solving VL, instances
for dimensions n = 30 becomes very expensive. It seems to be an interesting idea

to attack this relaxation with Burer and Monteiro’s low-rank factorization approach

Conclusion 157

[13,14]. Their algorithm is designed for solving low-rank semidefinite programming
problems. Unfortunately, their implementation does not handle a large number of linear
programming inequalities so well. The relaxation VL, however, demonstrates a sensible
incorporation of a relatively small number of beneficial inequality constraints. We believe
that minor modifications in the relaxation framework as well as Burer and Monteiro’s
algorithm can lead to a bounding method for the QAP which enables us to obtain new

strong lower bounds for QAPs of size n < 80.

Besides the respective relaxation techniques, also the practical applicability of these
and the specific implementations deserve additional attention in future projects. In order
to evaluate the former, we implemented a simple branch-&-bound procedure. However,
the results were somehow discouraging for QAPs of sizes n = 40. The growing behavior
for the lower bounds seemed really bad. For the tested instances, the incorporation of
additional constraints with problem specific modifications worked significantly better.
Further investigations are needed to evaluate different branching strategies as well as the

requirements for applicability in branch-&-bound procedures.

In Subsection 7.2.5, we demonstrated the applicability of verifications methods for
the computation of rigorous bounds. Indeed, the presented numerical results illustrate
the possibility of computing tight verified bounds for the respective optimal objective
value with a very modest increase of the computational costs. We are currently working
on extending the corresponding verification code for all other presented relaxation
frameworks. Moreover, we believe that similar verification methods can be realized
completely via reformulation and inclusion automatisms. A possible future prospect
would be the implementation or extension of a mathematical programming language
which makes use of similar verification approaches. This language should be able to
handle different types of uncertainties in the input data and allow the computation of

verified inclusions of the corresponding solutions.

158

Appendix A.

sdprQAP Quick Reference

The software package sdprQAP is written in MATLAB version 7.13. It should be
compatible to all later versions of MATLAB and was also tested on Octave version 4.0.
In order to use sdprQAP, it is required to install the modeling toolbox YALMIP as
well as a suitable and supported solver. Compatible versions of YALMIP are RELEASE
20150626 and RELEASE 2015018. For the installation of sdprQAP, it is sufficient to add
the package directory and its subdirectories to the MATLAB search path.

Apart from the implementations vqapreform and vsdprqgap for verified computations
- which are still supporting only a small range of the functionality of their counterparts
qapreform and sdprqgap -, Table A.1 lists all functions and scripts of sdprQAP which

are relevant for the user.

The essential function for lower bound computations is sdprqap. It implements the
functionality to set up any of the presented SDP relaxations for the QAP. The respective
options are passed via a settings structure that can be generated with the function
sdprqapsettings. If, for example, one would like to test the framework MLX with an
approximation tolerance of 10% and without GLB based cuts, it is possible to use these

functions as in the following code example:

% QAP instance (A, B, C) is in workspace
opts = sdprqapsettings(
“framework ’, 'MIX’ |
"threshold’, .1,
"glb’, false |,
);
lbound = sdprqap(A, B, C, opts);

159

160 sdprQAP Quick Reference
Table A.1.: User functions and scripts in sdprQAP

Function Description

BBtree Object class with different functions for the
implementation of a branch-&-bound algorithm.

bnbscr Script for a simple branch-&-bound implementation.

evclusterapprox Implements the eigenvalue clustering algorithm that is
used for the framework ESC.

lsmatbnd Computes a lower sum-matrix bound for a masked,
square input matrix.

gaplibbench Simple benchmark script for instances from the QAPLIB.

qapreduce Reduces a given QAP with additional constraints X;; = 1
and Xy = 0 to an equivalent QAP of smaller size.

qapreform Reformulates a QAP depending on the settings.

readqap Import function for problem instances given in the format
used by the QAPLIB authors.

readqapsln Similar to readqap, but for the import of a best-known
assignment from the corresponding ’sln’ files.

sdprqgap Contains implementations for all presented relaxation
frameworks, including the respective cutting strategies.

sdprqapsettings Generates a settings object for the use of sdprqap. All
configuration of the applied relaxation framework is
done via the returned settings structure.

spaprojmat Creates sparse projection matrix to a given constant

nullspace.

sdprQAP Quick Reference 161

Table A.2.: Selected fields of sdprQAP settings structure

Field Range Description
evb [0, 2] Mode for EVB related cuts.
framework string Label for selected relaxation framework, 'ES’,

ESC, TIMS’, "ML, "MLX’, 'MS’, 'VL',

glb boolean Enable/disable GLB based cuts.

1pb [0, 2] Mode for sum-matrix bound inequalities.
normb [0, 4] Mode for p-norm cuts.

qapreform [—3, 3] Setup of QAP reformulation.

sdpmain struct YALMIP settings structure to set options for

the applied SDP solver.

sdpsolver string If not set via sdpmain, this option can be used

to select the applied SDP solver.
threshold [0.0, 1.0] Threshold for approximation of SDP constraints.

tolerance [0.0, 0.1] General error tolerance for approximate

computations in preparation code.

weightboost [1.0, 10.0] Exponent for computation of weighting

coefficients used for QAP reformulation.

The variable 1bound then contains the objective value computed by applying the respective
instance of MLX. If requested, sdprgap also returns the computed approximation for
the variable X as well as the diagnostics from YALMIP. A list of the most relevant
options in sdprQAP is displayed in Table A.2.

A more detailed description of possible configurations and the usage of each function
is given in the corresponding function documentation. For a complete list of all options

in sdprqapsettings, type
help sdprqapsettings
into the MATLAB command window. The same procedure applies to the other functions

listed in Table A.1. Alternatively, the author recommends to look into the benchmark

script gaplibbench to get a rough feeling for the general use of the respective functions.
pt qap g g g g p

162 sdprQAP Quick Reference

Constants & Sets

e vector with all components one

E matrix with all components one

e; i-th standard basis vector

I identity matrix

0 vector/matrix with all components zero

D set of doubly stochastic matrices

& set of matrices which column and row sums are equal to one
F feasible set to some or all variables of a given programming problem
M space of real matrices

N cone of matrices with nonnegative components only

Q set of matrices with orthogonal columns

II set of permutation matrices

R, set of nonnegative real numbers

S space of symmetric matrices

S, cone of symmetric positive semidefinite matrices

Syt cone of symmetric positive definite matrices

163

164

Notation

Ao B
A® B

(A, B)

v is majorized by w

element-wise inequality: A — Be N

Lowner’s partial ordering: A — B e Sy

vector consisting of diagonal entries of A

diagonal matrix to the components of v
dimension of vector space V

vector of eigenvalues of A

n x n matrix to vector v € R’ (column-wise indexing)
Euclidean norm

Frobenius norm

spectral norm

trace norm

vector consisting of the p-norms to the rows of A
constant nullspace to all matrices in the set A
vector containing all off-diagonal components of A
Hadamard Product: Ao B = (a;;b;;)

Kronecker Product: A® B = (a;;B)

trace inner product: (A, B) = tr(ATB)

165

166 Notation

AT Moore-Penrose pseudoinverse of A
R(A) range, column space of A

rank(A) rank of A

o(A) vector of singular values of A
tr(A) trace of A
tri(A) vector containing strict lower triangular elements of A (column-wise)

vec(A) vector obtained via column-wise vectorization of A

Bibliography

1]

[9]

[10]

ALBERT, A. Conditions for positive and nonnegative definiteness in terms of
pseudoinverses. SIAM Journal of Applied Mathematics (SIAP) 17, 2 (1969), 434—
440.

AvL1ZADEH, F., HAEBERLY, J.-P. A., AND OVERTON, M. L. Complementarity

and nondegeneracy in semidefinite programming. Mathematical Programming 77, 1
(1997), 111-128.

Assap, A. A., AND XU, W. On lower bounds for a class of quadratic 0, 1
programs. Operations Research Letters (ORL) 4, 4 (1985), 175-180.

BERKELAAR, M., EIKLAND, K., AND NOTEBAERT, P. Ip_solve, version 5.5.2.0,
2013. Open source (Mixed-Integer) Linear Programming system, http://1lpsolve.

sourceforge.net/5.5/.

BHATIA, R. Matrixz Analysis, vol. 169 of Graduate Texts in Mathematics. Springer
New York, 1997.

BiErwIRTH, C., MATTFELD, D. C., AND KOPFER, H. On permutation repre-

sentations for scheduling problems. Lecture Notes in Computer Science (LNCS)
(1996), 310-318.

BIRKHOFF, G. Tres observaciones sobre el algebra lineal. Universidad Nacional
de Tucumdan Revista, Serie A 5 (1946), 147-151.

BortE, J., NGUYEN, T. P., PEYPOUQUET, J., AND SUTER, B. From error

bounds to the complexity of first-order descent methods for convex functions. ArXiv
e-prints (2015).

BORCHERS, B. CSDP, a C library for semidefinite programming. Optimization
Methods and Software (OMS) 11, 1-4 (1999), 613-623.

BORWEIN, J. M., AND WorLkowiICcZ, H. Facial reduction for a cone-convex

167

168

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

programming problem. Journal of the Australian Mathematical Society (ANZIAM),
Series A 30, 3 (1981), 369-380.

BorwEIN, J. M., AND WoLKOWICZ, H. Regularizing the abstract convex program.
Journal of Mathematical Analysis and Applications (JMAA) 83, 2 (1981), 495-530.

Bovyp, S., GHaoul, L. E.; FERON, E., AND BALAKRISHNAN, V. Linear Matriz
Inequalities in System and Control Theory. Society for Industrial and Applied
Mathematics, 1994.

BURER, S., AND MONTEIRO, R. D. A nonlinear programming algorithm for solving

semidefinite programs via low-rank factorization. Mathematical Programming 95, 2
(2003), 329-357.

BURER, S., AND MONTEIRO, R. D. Local minima and convergence in low-rank
semidefinite programming. Mathematical Programming 103, 3 (2004), 427-444.

BURER, S., AND VANDENBUSSCHE, D. Solving lift-and-project relaxations of
binary integer programs. SIAM Journal on Optimization (SIOPT) 16, 3 (2006),
726-750.

BURKARD, R. E., CeELA, E., AND KLINZ, B. On the biquadratic assignment
problem. In Quadratic Assignment and Related Problems (1994), vol. 16 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, AMS, pp. 117—
146.

BURKARD, R. E., DELL’AMICO, M., AND MARTELLO, S. Assignment Problems.
Society for Industrial and Applied Mathematics Philadelphia, 2012.

BURKARD, R. E., KARISCH, S. E., AND RENDL, F. QAPLIB - a quadratic
assignment problem library. Journal of Global Optimization (JOGO) 10, 4 (1997),
391-403.

BURKARD, R. E., AND STRATMANN, K.-H. Numerical investigations on quadratic
assignment problems. Naval Research Logistics Quarterly (NRLQ) 25, 1 (1978),
129-148.

CARRARESI, P., AND MALUCELLI, F. A new lower bound for the quadratic
assignment problem. Operations Research 40 (1992), 22-27.

CeLA, E. The Quadratic Assignment Problem: Theory and Algorithms, vol. 1 of
Combinatorial Optimization. Springer US, 1998.

BIBLIOGRAPHY 169

[22]

[23]

[25]

[27]

[28]

[29]

32]

CHEUNG, Y.-L. Preprocessing and Reduction for Semidefinite Programming
via Facial Reduction: Theory and Practice. PhD thesis, University of Waterloo,
Waterloo, Ontario, Canada, 2013.

CHEUNG, Y.-L., SCHURR, S., AND WOLKOWICZ, H. Preprocessing and regu-
larization for degenerate semidefinite programs. In Computational and Analytical
Mathematics: In Honor of Jonathan Borwein’s 60th Birthday, vol. 50 of Springer
Proceedings in Mathematics € Statistics. Springer US, 2013, pp. 251-303.

DE KLERK, E., AND SOTIROV, R. Exploiting group symmetry in semidefinite
programming relaxations of the quadratic assignment problem. Mathematical
Programming 122, 2 (2010), 225-246.

DE KLERK, E., SoTirROV, R., AND TRUETSCH, U. A new semidefinite pro-

gramming relaxation for the quadratic assignment problem and its computational
perspectives. INFORMS Journal on Computing (IJOC) 27, 2 (2015), 378-391.

DiamoND, S., AND BoyD, S. CVXPY: A Python-embedded modeling language
for convex optimization. Journal of Machine Learning Research (JMLR) (2016).
To appear.

Ding, Y., AND WoLkowiICcZ, H. A low-dimensional semidefinite relaxation for
the quadratic assignment problem. Mathematics of Operations Research (MOR)
34, 4 (2009), 1008-1022.

DUR, M., JARGALSAIKHAN, B., AND STILL, G. Genericity results in linear conic
programming — a tour d’horizon. Mathematics of Operations Research (MOR)
(2016). To appear.

EATON, J. W., BATEMAN, D., AND HAUBERG, S. GNU Octave version 3.0.1

manual: a high-level interactive language for numerical computations. CreateSpace
Independent Publishing Platform, 2009.

EckART, C., AND YOUNG, G. The approximation of one matrix by another of
lower rank. Psychometrika 1, 3 (1936), 211-18.

EpwarDs, C. S. A branch and bound algorithm for the Koopmans-Beckmann
quadratic assignment problem. In Combinatorial Optimization II, vol. 13 of Math-

ematical Programming. Springer Berlin Heidelberg, 1980, pp. 35-52.

ELsHAFEI, A. N. Hospital layout as a quadratic assignment problem. Operational

170

BIBLIOGRAPHY

Research Quarterly (ORQ) 28, 1 (1977), 167-179.

[33] ESCHERMANN, B., AND WUNDERLICH, H.-J. Optimized synthesis of self-testable

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

finite state machines. In Fault-Tolerant Computing: 20th International Symposium
(FFTCS 20) (1990), Institute of Electrical & Electronics Engineers (IEEE), pp. 390
397.

FINKE, G., BURKARD, R. E., AND RENDL, F. Quadratic assignment problems.
Annals of Discrete Mathematics 31 (1987), 61-82.

FRIEZE, A. M., AND YADEGAR, J. On the quadratic assignment problem. Discrete
Applied Mathematics (DAM) 5, 1 (1983), 89-98.

GAHINET, P., AND NEMIROVSKI, A. The projective method for solving linear
matrix inequalities. Mathematical Programming 77, 1 (1997), 163-190.

GILMORE, P. C. Optimal and suboptimal algorithms for the quadratic assignment
problem. SIAM Journal of Applied Mathematics (SIAP) 10, 2 (1962), 305-313.

GNU Linear Programming Kit, version 4.57. http://www.gnu.org/software/
glpk/glpk.html, 2015.

GoH, J., AND SiM, M. Robust optimization made easy with ROME. Operations
Research 59, 4 (2011), 973-985.

GRANT, M., AND BoyD, S. Graph implementations for nonsmooth convex
programs. In Recent Advances in Learning and Control, V. D. Blondel, S. P. Boyd,
and H. Kimura, Eds., Lecture Notes in Control and Information Sciences. Springer
London, 2008, pp. 95-110.

GRANT, M., AND BoyD, S. CVX: Matlab software for disciplined convex pro-

gramming, version 2.1. http://cvxr.com/cvx, 2015.

GREENBERG, H. A quadratic assignment problem without column constraints.
Naval Research Logistics Quarterly (NRLQ) 16, 3 (1969), 417-421.

GUROBI OPTIMIZATION, INC. Gurobi Optimizer v6.5. http://www.gurobi.com,
2015.

HADLEY, S. W., RENDL, F., AND WoLKOWICZ, H. A new lower bound via

projection for the quadratic assignment problem. Mathematics of Operations
Research (MOR) 17, 3 (1992), 727-739.

BIBLIOGRAPHY 171

[45]

[46]

[47]

[48]

[49]

[51]

[52]

[56]

HArDY, G. H., LITTLEWOOD, J. E., AND POLYA, G. Inequalities. Cambridge
University Press, New York, NY, USA, 1934.

HARTER, V., JANSSON, C., AND LANGE, M. VSDP: A Matlab toolbox for
verified semidefinite-quadratic-linear programming. http://www.ti3.tuhh.de/

jansson/vsdp/, 2012.

HorrFMAN, A. J. On approximate solutions of systems of linear inequalities.
Journal of Research of the National Bureau of Standard (NIST) 49, 4 (1952),
263-265.

HorN, R. A., AND JOHNSON, C. R. Matriz Analysis, 2nd ed. Cambridge
University Press, New York, NY, USA, 2012.

IBM ILOG CPLEX Optimization Studio, version 12.6.2. http://www-03.ibm.
com/software/products/en/ibmilogcpleoptistud, 2015.

Ivanov, I. D., aAND DE KLERK, E. Parallel implementation of a semidefinite

programming solver based on CSDP on a distributed memory cluster. Optimization

Methods and Software (OMS) 25, 3 (2010), 405-420.

JAIN, A. K., AND DUBEs, R. C. Algorithms for Clustering Data. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988.

JANSSON, C. Rigorous lower and upper bounds in linear programming. SIAM
Journal on Optimization (SIOPT) 14, 3 (2004), 914-935.

JANSSON, C. On verified numerical computations in convex programming. Japan
Journal of Industrial and Applied Mathematics (JJIAM) 26, 2-3 (2009), 337-363.

JAaNssoN, C., CHAYKIN, D., AND KEIL, C. Rigorous error bounds for the optimal
value in semidefinite programming. SIAM Journal on Numerical Analysis (SINUM)
46, 1 (2008), 180-200.

KAriscH, S. E., CeELA, E., CLAUSEN, J., AND ESPERSEN, T. A dual framework
for lower bounds of the quadratic assignment problem based on linearization.
Computing 63, 4 (1999), 351-403.

KARiscH, S. E., AND RENDL, F. Lower bounds for the quadratic assignment

problem via triangle decompositions. Mathematical Programming 71, 2 (1995),
137-151.

172

BIBLIOGRAPHY

[57]

[58]

[59]

[60]

[61]

[62]

[67]

[68]

KAUFMAN, L., AND BROECKX, F. An algorithm for the quadratic assignment

problem using Bender’s decomposition. Furopean Journal of Operational Research
(EJOR) 2, 3 (1978), 207-211.

KEeIL, C., AND JANSsON, C. Computational experience with rigorous error bounds
for the NETLIB linear programming library. Reliable Computing 12, 4 (2006),
303-321.

Koopmans, T. C., AND BECKMANN, M. Assignment problems and the location

of economic activities. Econometrica 25, 1 (1957), 53-76.

LAwWLER, E. L. The quadratic assignment problem. Management Science 9, 4
(1963), 586-599.

L1, X. S., MARTIN, M. C., THOMPSON, B. J., TunG, T., Yoo, D. J., DEMMEL,
J. W., BAaLEy, D. H., HENRY, G., HIDA, Y., ISKANDAR, J., KAHAN, W.,
KANG, S. Y., AND KAPUR, A. Design, implementation and testing of extended
and mixed precision BLAS. ACM Transactions on Mathematical Software (TOMS)
28, 2 (2002), 152-205.

L1, Y., PArRDALOS, P. M., RAMAKRISHNAN, K. G., AND RESENDE, M. G. C.

Lower bounds for the quadratic assignment problem. Annals of Operations Research
(AOR) 50, 1 (1994), 387-10.

Lipskii, V. B. The proper values of the sum and product of symmetric matrices.

Doklady Akademii nauk SSSR 75 (1950), 769-772.

LOFBERG, J. YALMIP: A toolbox for modeling and optimization in MATLAB.
In Proceedings of the CACSD Conference (2004).

LOFBERG, J. Dualize it: software for automatic primal and dual conversions of
conic programs. Optimization Methods and Software (OMS) 24, 3 (2009), 313-325.

Loiora, E. M., DE ABREU, N. M. M., BOAVENTURA-NETTO, P. O., HAHN,

P., AND QUERIDO, T. A survey for the quadratic assignment problem. European
Journal of Operational Research (EJOR) 176, 2 (2007), 657—690.

LourENCO, B. F., MURAMATSU, M., AND TSucHIYA, T. Solving SDP com-
pletely with an interior point oracle. ArXiv e-prints (2015).

LOURENCO, B. F., MURAMATSU, M., AND TSucHIYA, T. A structural geomet-
rical analysis of weakly infeasible SDPs. ArXiv e-prints (2015).

BIBLIOGRAPHY 173

[69]

[70]

[71]

[72]

[73]

[80]

LOWNER, K. Uber monotone Matrixfunktionen. Mathematische Zeitschrift 38, 1
(1934), 177-216.

MACDONALD, I. G. Symmetric Functions and Hall Polynomials, 2 ed. The
Clarendon Press, Oxford University Press, New York, NY, USA, 1995.

MANGASARIAN, O. L. A condition number for linear inequalities and equalities. In
Methods of Operations Research: Proceedings of the 6th Symposium on Operations
Research (1981), G. Bamberg and O. Opitz, Eds., vol. 43, Athendum-Verlag,
pp. 3-15.

MIRrskKY, L. Symmetric gauge functions and unitarily invariant norms. Quarterly
Journal of Mathematics 11, 1 (1960), 50-59.

MITTELMANN, H., AND PENG, J. Estimating bounds for quadratic assignment
problems associated with Hamming and Manhattan distance matrices based on
semidefinite programming. SIAM Journal on Optimization (SIOPT) 20, 6 (2010),
3408-3426.

Moorg, E. H. On the reciprocal of the general matrix. Bulletin of the American
Mathematical Society (AMS) 26 (1920), 394-395.

MOSEK APS. The MOSEK optimization toolbox for MATLAB manual, version
7.1 (revision 28). http://docs.mosek.com/7.1/toolbox/index.html, 2015.

NETLIB linear programming library. A collection of linear programming problems,
http://www.netlib.org/lp/.

O’DoNOGHUE, B., CHU, E., PARIKH, N., AND BoyD, S. Conic optimization via
operator splitting and homogeneous self-dual embedding. Journal of Optimization
Theory and Applications (JOTA) (2016). To appear.

Ocita, T., Rump, S. M., AND OIsHI, S. Accurate sum and dot product. STAM
Journal on Scientific Computing (SISC) 26, 6 (2005), 1955-1988.

Ozaki, K., Ocita, T., O1sHI, S., AND Rump, S. M. Error-free transformations
of matrix multiplication by using fast routines of matrix multiplication and its
applications. Numerical Algorithms 59, 1 (2011), 95-118.

PArDALOS, P. M., RENDL, F., AND WoLKOWICZ, H. The quadratic assignment

problem: A survey and recent developments. In Quadratic Assignment and Related
Problems (1994), vol. 16 of DIMACS Series in Discrete Mathematics and Theoretical

174

BIBLIOGRAPHY

[82]

[33]

[84]

[91]

[92]

Computer Science, American Mathematical Society (AMS), pp. 1-42.

PATAkI, G. Strong duality in conic linear programming: facial reduction and
extended duals. In Computational and Analytical Mathematics: In Honor of
Jonathan Borwein’s 60th Birthday, vol. 50 of Springer Proceedings in Mathematics
& Statistics. Springer New York, 1980, pp. 613-634.

PaTAki, G., AND TUNCEL, L. On the generic properties of convex optimization
problems in conic form. Mathematical Programming 89, 3 (2001), 449-457.

PeENG, J., MITTELMANN, H., AND L1, X. A new relaxation framework for

quadratic assignment problems based on matrix splitting. Mathematical Program-
ming Computation (MPC) 2, 1 (2010), 59-77.

PENG, J., ZHU, T., Luo, H., AND ToOH, K.-C. Semi-definite programming re-
laxation of quadratic assignment problems based on nonredundant matrix splitting.
Computational Optimization and Applications (COAP) 60, 1 (2014), 171-198.

PENROSE, R., AND TODD, J. A. A generalized inverse for matrices. Mathematical
Proceedings of the Cambridge Philosophical Society 51, 3 (1955), 406—413.

PovH, J., AND RENDL, F. Copositive and semidefinite relaxations of the quadratic
assignment problem. Discrete Optimization 6, 3 (2009), 231-241.

RENDL, F., AND SoTIROV, R. Bounds for the quadratic assignment problem
using the bundle method. Mathematical Programming 109, 2-3 (2007), 505-524.

RENDL, F., AND WoLkOWICZ, H. Applications of parametric programming
and eigenvalue maximization to the quadratic assignment problem. Mathematical
Programming 53, 1-3 (1992), 63-78.

RENEGAR, J. Incorporating condition measures into the complexity theory of
linear programming. SIAM Journal on Optimization (SIOPT) 5, 3 (1995), 506-524.

RoBinsoN, S. M. Bounds for error in the solution set of a perturbed linear
program. Linear Algebra and its Applications (LAA) 6 (1973), 69-81.

RoucairoL, C. Un nouvel algorithme pour le probleme d’affectation quadratique.
RAIRO-Recherche Opérationnelle - Operations Research 13, 3 (1979), 275-301.

Rump, S. M. On the solution of interval linear systems. Computing 47, 3-4 (1992),
337-353.

BIBLIOGRAPHY 175

[93]

[94]

[95]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

Rump, S. M. INTLAB - INTerval LABoratory. In Developments in Reliable
Computing, T. Csendes, Ed. Kluwer Academic Publishers, 1999, pp. 77-104.

Rump, S. M. Verification methods: Rigorous results using floating-point arithmetic.
Acta Numerica 19 (2010), 287-449.

Rump, S. M., AND KAUCHER, E. Small bounds for the solution of systems of

linear equations. In Computing Supplementum. Springer Vienna, 1980, pp. 157-164.

SAHNI, S., AND GONZALEZ, T. P-complete approximation problems. Journal of
the Association for Computing Machinery (JACM) 23, 3 (1976), 555-565.

ScHUR, I. Uber eine Klasse von Mittelbildungen mit Anwendungen auf die
Determinanten-Theorie. Sitzungsberichte der Berliner Mathematischen Gesellschaft
(BMG) 22 (1923), 9-20.

SHERALI, H. D.; AND ADAMS, W. P. A Reformulation-Linearization Technique
for Solving Discrete and Continuous Nonconvexr Problems, vol. 31 of Nonconvex

Optimization and Its Applications. Springer US, 1999.

SLATER, M. Lagrange multipliers revisited. In Traces and Emergence of Nonlinear

Programming. Springer Basel, 2013, pp. 293-306.

STEINBERG, L. The backboard wiring problem: A placement algorithm. STAM
Review (SIREV) 3,1 (1961), 37-50.

STurM, J. F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones. Optimization Methods and Software (OMS) 11-12 (1999), 625—
653.

Ton, K.-C., Topp, M. J., AND TUTUNCU, R. H. On the implementation
and usage of SDPT3 — a Matlab software package for semidefinite-quadratic-linear
programming, version 4.0. In Handbook on Semidefinite, Conic and Polynomial
Optimization, M. F. Anjos and J. B. Lasserre, Eds., vol. 166 of International Series
in Operations Research and Management Science. Springer US, 2011, pp. 715-754.

TuTUNCU, R. H., ToHn, K.-C., AND ToDD, M. J. Solving semidefinite-quadratic-
linear programs using SDPT3. Mathematical Programming 95, 2 (2003), 189-217.

UbDELL, M., MoHAN, K., ZENG, D., HONG, J., DIAMOND, S., AND BOYD, S.
Convex optimization in Julia. SC14 Workshop on High Performance Technical
Computing in Dynamic Languages (2014).

176 BIBLIOGRAPHY

[105] vON NEUMANN, J. Some matrix-inequalities and metrization of matrix-space.
Tomsk University Review 1 (1937), 286-300.

[106] WaKI, H., AND MURAMATSU, M. Facial reduction algorithms for conic optimiza-
tion problems. Journal of Optimization Theory and Applications (JOTA) 158, 1
(2012), 188-215.

[107) WEYL, H. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller
Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraum-

strahlung). Mathematischen Annalen (MA) 71, 4 (1912), 441-479.

[108] WoLkowicz, H. Semidefinite programming approaches to the quadratic assign-
ment problem. In Nonlinear Assignment Problems: Algorithms and Applications,
P. M. Pardalos and L. S. Pitsoulis, Eds., vol. 7 of Combinatorial Optimization.
Springer US, 2000, pp. 143-174.

[109] X1A, Y. Gilmore-lawler bound of quadratic assignment problem. Frontiers of
Mathematics in China 3, 1 (2008), 109-118.

[110] X1A, Y. Second order cone programming relaxation for quadratic assignment
problems. Optimization Methods and Software (OMS) 23, 3 (2008), 441-49.

[111] X1A, Y., AND YAUN, Y.-X. A new linearization method for quadratic assignment
problems. Optimization Methods and Software (OMS) 21, 5 (2006), 805-818.

[112] YAaMmAsHITA, M., Fusisawa, K., Fukupa, M., KoBavasHi, K., NakaTa, K.,
AND NAKATA, M. Latest developments in the SDPA family for solving large-scale

SDPs. In Handbook on Semidefinite, Conic and Polynomial Optimization. Springer
US, 2011, pp. 687-713.

[113] YANG, L., Sun, D.,; aNnD ToH, K.-C. SDPNAL+: a majorized semismooth
Newton-CG augmented Lagrangian method for semidefinite programming with

nonnegative constraints. Mathematical Programming Computation (MPC) 7, 3

(2015), 331-366.

[114] ZuANG, F., Ed. The Schur Complement and Its Applications, vol. 4 of Numerical
Methods and Algorithms. Springer US, 2005.

[115] ZHANG, S. Global error bounds for convex conic problems. SIAM Journal on
Optimization (SIOPT) 10, 3 (2000), 836-851.

[116] ZHAO, Q., KaAriscH, S. E., RENDL, F., AND WoLkowICz, H. Semidefi-

BIBLIOGRAPHY 177

[117]

[118]

nite programming relaxations for the quadratic assignment problem. Journal of

Combinatorial Optimization (JOCO) 2,1 (1998), 71-109.

ZHAO, X.-Y., SuN, D., AND ToH, K.-C. A Newton-CG augmented Lagrangian

method for semidefinite programming. SIAM Journal on Optimization (SIOPT)
20, 4 (2010), 1737-1765.

Zuu, Y.-K., aAND Haves, W. B. Algorithm 908: Online exact summation of
floating-point streams. ACM Transactions on Mathematical Software (TOMS) 37,
3 (2010), 1-13.

178

Curriculum Vitae

Personal Information
Name Marko Lange
Nationality German
Date of birth 01/04/1985
Place of birth Rostock, Germany
Gender Male

Primary Education
08/1991 - 06/1995 Grundschule Alter Markt, Rostock

Secondary Education
08/1995 - 06,/2004 Gymnasium Grofle Stadtschule, Rostock

Civilian Service
09/2004 - 05/2005 Kath. Marienkrankenhaus gGmbH Hamburg

Tertiary Education
10/2005 - 01/2012 Hamburg University of Technology
Course: Electrical Engineering
Degree: Diplom Ingenieur

Work Experience
01/2012 - 03/2016 Research Associate
Institute for Reliable Computing
Hamburg University of Technology

179

