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Abstract

The subject of the paper is the derivation of finite volume evolution Galerkin schemes
for three-dimensional wave equation system. The aim is to construct methods which take
into account all of the infinitely many directions of propagation of bicharacteristics. The
idea is to evolve the initial function using the characteristic cone and then to project onto
a finite element space. Numerical experiments are presented to demonstrate the accuracy
and the multidimensional behaviour of the solutions. Moreover, we construct further new
EG schemes by neglecting the so-called source term, i.e. we mimic Kirchhoff’s formula.
The numerical test shows that such schemes are more accurate and some of them are of
second order.

Key words: hyperbolic systems, wave equation, evolution Galerkin schemes, recovery stage,
finite volume.

1 Introduction

Evolution Galerkin methods, EG-methods, were proposed to approximate evolutionary prob-
lems of first order hyperbolic systems. These schemes were introduced by Morton for scalar
problems and one-dimensional systems, see [2, 3]. In [11] Ostkamp generalized these schemes
to approximate the solution of the wave equation system as well as the Euler equations of
gas dynamics in two space dimensions. In [4] Lukáčová, Morton and Warnecke new EG-
schemes with better accuracy and stability were constructed. Further in [12] the approximate
evolution operator of the wave equation system in three space dimensions as well as other
two-dimensional evolution Galerkin schemes were derived. These methods were applied to
the Maxwell and to the Euler equations of gas dynamics, see [9], [6],[8]. Higher order finite
volume evolution Galerkin (FVEG) methods have been introduced and studied in [5], [7], [8],
[10].

The main objective of this paper is the derivation and analysis of FVEG schemes for the wave
equation system in three space dimensions. The bicharacteristics theory of linear hyperbolic
systems is used to obtain the exact integral equations. Applying numerical quadratures we
derive the approximate evolution operators. Projecting these operators on a finite element
space of piecewise constants we obtain the first order evolution Galerkin schemes.

The outline of this paper is as follows: in the next section we briefly describe the general
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theory used to derive the exact integral equations. In Section 3 we introduce the finite vol-
ume evolution Galerkin schemes. The exact integral equations as well as the approximate
evolution operators for the three-dimensional wave equation system are given in Section 4.
The derivation of the first order schemes is given in Section 5. In Section 6 numerical tests,
which demonstrate accuracy and multidimensionality of our schemes, are presented. Finally
in Section 7 we define further new FVEG schemes based on neglecting of the so-called source
term, we test and discuss their accuracy.

2 General Theory

In this section we recall the derivation of the exact integral equations for a general linear
hyperbolic system using the concept of bicharacteristics. The general form of the linear
hyperbolic system is given as

ut +
d∑

k=1

Akuxk
= 0, x = (x1, . . . , xd)T ∈ R

d (2.1)

where the coefficient matrices Ak, k = 1, ..., d are elements of R
p×pand the dependent variables

are u = (u1, ..., up)T = u(x, t) ∈ R
p. Let A(n) =

∑d
k=1 nkAk be the pencil matrix, where

n = (n1, ..., nd)T is a directional vector in R
d. The matrix A(n) has p real eigenvalues λk, k =

1, ..., p and p corresponding linearly independent right eigenvectors rk = rk(n), k = 1, ..., p.
Let R = [r1|r2|...|rp] be the matrix of right eigenvectors then we can define the characteristic
variable w = w(n) as ∂w(n) = R−1∂u. Since system (2.1) has constant coefficient matrices
Ak we have w = R−1u or u = R w. Multiplying equation (2.1) by R−1 from the left we get

R−1ut +
d∑

k=1

R−1AkRR−1uxk
= 0. (2.2)

Let Bk = R−1AkR = (bk
ij)

p
i,j=1, where k = 1, 2, ..., d, then the equation (2.2) can be rewritten

in the following form

wt +
d∑

k=1

Bkwxk
= 0.

Let us introduce the decomposition Bk=Dk+B′
k, where Dk contains the diagonal part of the

matrix Bk. This yields

wt +
d∑

k=1

Dkwxk
= −

d∑
k=1

B′
kwxk

=: s. (2.3)

The i-th bicharacteristic corresponding to the i-th equation of (2.3) is defined by

dxi

dt̃
= bii(n) = (b1

ii, b
2
ii, ..., b

d
ii)

T ,

where i = 1, ..., p. Here bk
ii are the diagonal entries of the matrix Bk, k = 1, ..., d, i = 1, ..., p.
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Figure 1: Bicharacteristics along the Mach cone through P and Qi(n), d = 2.

We consider the bicharacteristics backwards in time. Therefore the initial conditions are
xi(t + ∆t,n) = x for all n ∈ R

d and i = 1, ..., p, i.e. xi(t̃,n) = x − bii(n)(t + ∆t − t̃).
We will integrate the i-th equation of the system (2.3) from the point P down to the point
Qi(n) := Qi(xi(n, t), t), where the bicharacteristic hits the basic plane, see Figure 1. Note
that bicharacteristics are straight lines because the system is linear with constant coefficients.
Now the i-th equation reads

∂wi

∂t
+

d∑
k=1

bk
ii

∂wi

∂xk
= −


 d∑

j=1,i6=j

(
b1
ij

∂wj

∂x1
+ b2

ij

∂wj

∂x2
+ ... + bd

ij

∂wj

∂xd

)
 = si, (2.4)

where P ≡ (x, t + ∆t) ∈ R
p × R+ is taken to be a fixed point, while Qi(n) = (x − ∆tbii, t).

Taking a vector σi = (b1
ii, b

2
ii, ..., b

d
ii, 1), we can define the directional derivative

dwi

dσi
=

(
∂wi

∂x1
,
∂wi

∂x2
, ...,

∂wi

∂xd
,
∂wi

∂t

)
· σi =

∂wi

∂t
+ b1

ii

∂wi

∂x1
+ b2

ii

∂wi

∂x2
+ ... + bd

ii

∂wi

∂xd
.

Hence the i-th equation (2.4) can be rewritten as follows

dwi

dσi
= si = −

d∑
j=1,i6=j

(
b1
ij

∂wj

∂x1
+ b2

ij

∂wj

∂x2
+ ... + bd

ij

∂wj

∂xd

)
.

Now the integration from P to Qi(n) gives

wi(P ) − wi(Qi(n),n) = s′i, (2.5)

where

s′i =
∫ t+∆t

t
si(xi(t̃,n), t̃)dt̃ =

∫ ∆t

0
si(xi(τ,n), t + ∆t − τ)dτ.

Multiplication of equation (2.5) by R from the left and (d − 1)−dimensional integration of
the variable n over the unit sphere O in R

d leads to the exact integral equations for (2.1)

u(P ) = u(x, t + ∆t) =
1
|O|

∫
O
R(n)




w1(Q1(n),n)
w2(Q2(n),n)
w3(Q3(n),n)

...
wp(Qp(n),n)




dO + s̃, (2.6)
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where

s̃ = (s̃1, s̃2, ..., s̃p)T =
1
|O|

∫
O
R(n)s′dO =

1
|O|

∫
O

∫ ∆t

0
R(n)s(xi(τ,n), t + ∆t − τ)dτdO

and |O| corresponds to the measure of the domain of integration.

3 Evolution Galerkin Schemes

In this section we recall the definition of the finite volume evolution Galerkin (FVEG) schemes.
We assume that d = 3 and ∆x, ∆y, ∆z > 0 are the mesh size parameters in the x−, y−, z−
direction, respectively. We construct a regular mesh, which consists of the mesh cells

Ωklm =
[
(k − 1

2
)∆x, (k +

1
2
)∆x

]
×

[
(l − 1

2
)∆y, (l +

1
2
)∆y

]
×

[
(m − 1

2
)∆z, (m +

1
2
)∆z

]

=
[
xk − ∆x

2
, xk +

∆x

2

]
×

[
yl − ∆y

2
, yl +

∆y

2

]
×

[
zm − ∆z

2
, zm +

∆z

2

]
,

where k, l, m ∈ Z. Suppose that Sq
h is a finite element space consisting of piecewise polynomials

of order q ≥ 0 with respect to the mesh and assume constant time step, i.e. tn = n∆t. Let
Un be an approximation in the space Sq

h to the exact solution u(., tn) at time tn ≥ 0. We
denote by Rh : Sq

h → Sr
h a recovery operator, r > q ≥ 0 and by Eτ the so-called approximate

evolution operator, which is a suitable approximation to the exact integral equations (2.6).
In the next section such approximate evolution operators are derived for the wave equation
system.

Definition 3.1 Starting from some initial data U0 ∈ Sq
h, the finite volume evolution Galerkin

method (FVEG) is recursively defined by means of

Un+1 = Un −
∫ ∆t

0

3∑
j=1

1
∆xj

δxj fj(Ũ
n+ τ

∆t )dτ, (3.2)

where we use equivalent notation for the space variables (x, y, z) = (x1, x2, x3) and denote by
δxj fj(Ũ

n+ τ
∆t ) an approximation to the face flux difference and δx is defined by δx = v(x +

∆x
2 )− v(x− ∆x

2 ). The cell boundary value Ũn+ τ
∆t is evolved using the approximate evolution

operator Eτ to tn + τ and averaged along the cell boundary, i.e.

Ũn+ τ
∆t =

∑
k,l,m∈Z

(
1

|∂Ωklm|
∫

∂Ωklm

EτRhUndS

)
χ∂Ωklm

, (3.3)

where χ∂Ωklm
is the characteristic function of ∂Ωklm.

It is important to note that in the updating step (3.2) some numerical quadratures are used
instead of the exact time integration. In this paper we are using the midpoint rule for the
time integration in (3.2). Similarly, to evaluate the intermediate value Ũn+ τ

∆t in (3.3) the
three dimensional integrals along the cell face are evaluated by means of suitable numerical
quadratures, e.g. the trapezoidal rule is used in the numerical experiments below. Integrals
aroud the unit sphere O, which arrive from Eτ are evaluated exactly. In this way all of the
infinitely many directions of wave propagations are taken into account explicitly.
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Figure 2: Spherical coordinates.

4 Exact Integral Equations and Approximate Evolution Op-
erators for the Wave Equation System

In this section we derive two first order approximate evolution operators for the three-
dimensional wave equation system. We begin by applying the general theory given in Sec-
tion 2. It is well known that the wave equation can be written as a first order system of
partial differential equations in the form

φt + c∇ · v = 0,
vt + c∇φ = 0,

(4.1)

where c is a constant, speed of sound, and v(x, t) := (u, v, w)T (x, t), (x, t) ∈ R
3 × R

+ is the
velocity field. Let u := (φ,v)T be the vector of the unknown variables and let the fluxes
be f1(u) := (c u, c φ, 0, 0)T , f2(u) := (c v, 0, c φ, 0)T and f3(u) := (c w, 0, 0, c φ)T . The system
(4.1) can be written in the conservation form

∂u
∂t

+
3∑

k=1

∂fk(u)
∂xk

= 0. (4.2)

Using Jacobian matrices of the flux functions we can rewrite system (4.2) in the linearized
form

ut + A1ux + A2uy + A3uz = 0. (4.3)

Let n := (n1, n2, n3)T := (cos θ sin ϕ, sin θ sinϕ, cos ϕ)T be a directional vector in R
3 with

θ ∈ [0, 2π] and ϕ ∈ [0, π], see Fig 2. Then the system (4.3) has four real eigenvalues λ1 =
−c, λ2 = 0, λ3 = 0, λ4 = c and four corresponding right eigenvectors

r1 =

( −1
n

)
, r2 =




0
n2

−n1

0


 , r3 =




0
n3

0
−n1


 , r4 =

(
1
n

)
.

5



The vector of characteristic variables w = (w1, w2, w3, w4)T is given as

w(n) = R−1(n)u =




1
2
u · r1

1
n2

1
u · [(n2

1 + n2
3)r2 − n2n3r3]

1
n2

1
u · [−n2n3r2 + (n2

1 + n2
2)r3]

1
2
u · r4


 . (4.4)

To determine the points Qi(n), i = 1, 2, 3, 4, recall that the bicharacteristics xi, which
correspond to this system are given as dxi

dt̃
= bii = (b1

ii, b
2
ii, b

3
ii)

T , i = 1, 2, 3, 4. Hence we get
xi(n, t̃) = x − bii(t + ∆t − t̃). Therefore we have for the footpoints of the bicharacteristics
Qi(xi(n, t), t) = (x− bii∆t, t). From the diagonal matrices D1, D2, D3, see Section 2, we get
b11 = −cn, b22 = b33 = 0 and b44 = cn. Hence

Q2 ≡ Q3 correspond to λ2,3 = 0,

Q1 corresponds to λ1 = −c,

Q4 corresponds to λ4 = c.

In the following two lemmas we give some invariance properties for terms in spherical co-
ordinates. Let f be a continuous function. Consider the unit sphere

O = {(x, y, z) : (x − x0)2 + (y − y0)2 + (z − z0)2 = 1}.

Then the integral of f over O satisfies the following property:

Lemma 4.5
∫ 2π

0

∫ 2π

π
f(x, y, z) sin ϕdϕdθ = −

∫ 2π

0

∫ π

0
f(x, y, z) sin ϕdϕdθ.

Proof: The proof follows directly from the fact that the mappings

[0, 2π] × [π, 2π] → O ⊂ R
3, (θ, ϕ) 7→ (x0 + cos θ sin ϕ, y0 + sin θ sinϕ, z0 + cos ϕ),

[0, 2π] × [π, 2π] → O ⊂ R
3, (θ, ϕ) 7→ (x0 − cos θ sinϕ, y0 − sin θ sinϕ, z0 − cos ϕ)

are two parameterizations of the same unit sphere O. ¤

Corollary 4.6 Let a ∈ R be a constant. Then

1.
∫ 2π
0

∫ 2π
π (a + x)f(x, y, z) sin ϕdϕdθ = − ∫ 2π

0

∫ π
0 (a + x)f(x, y, z) sin ϕdϕdθ.

2.
∫ 2π
0

∫ 2π
π (a + y)f(x, y, z) sin ϕdϕdθ = − ∫ 2π

0

∫ π
0 (a + y)f(x, y, z) sin ϕdϕdθ.

3.
∫ 2π
0

∫ 2π
π (a + z)f(x, y, z) sin ϕdϕdθ = − ∫ 2π

0

∫ π
0 (a + z)f(x, y, z) sin ϕdϕdθ.

Proof: These properties follow from Lemma 4.5 by taking g = (a + x′)f(x, y, z), where
x′ ∈ {x, y, z}. ¤
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Lemma 4.7 Consider the characteristic variables w1 and w4 and the points Q1 and Q4.
Then

1. sin(π + ϕ)w4(Q4(θ, π + ϕ), θ, π + ϕ) = sinϕw1(Q1(θ, ϕ), θ, ϕ).

2. sin(π + ϕ) sin(π + ϕ)w4(Q4(θ, π + ϕ), θ, π + ϕ) = − sinϕ sinϕw1(Q1(θ, ϕ), θ, ϕ).

3. cos(π + ϕ) sin(π + ϕ)w4(Q4(θ, π + ϕ), θ, π + ϕ) = − cos ϕ sin ϕw1(Q1(θ, ϕ), θ, ϕ).

Proof: Using the symmetry between the points Q1 and Q4 we obtain

w4(Q4(θ, π + ϕ), θ, π + ϕ)

= 1
2 [φ(Q4(θ, π + ϕ)) + cos θ sin(π + ϕ)u(Q4(θ, π + ϕ))

+ sin θ sin(π + ϕ)v(Q4(θ, π + ϕ)) + cos(π + ϕ)w(Q4(θ, π + ϕ))]

= 1
2 [φ(Q1(θ, ϕ)) − cos θ sin ϕu(Q1(θ, ϕ)) − sin θ sinϕv(Q1(θ, ϕ))

− cos ϕw(Q1(θ, ϕ))] = −w1(Q1(θ, ϕ), θ, ϕ).

(4.8)

Then the three properties follow directly from equation (4.8). ¤
In the next lemma we give the integral equations that are equivalent to the wave equation
system in three dimensions (4.1). Let J = [J0|J1|J2|J3] be the matrix whose columns are the
vectors J0 = (0, 0, 0)T , J1 = (−1, 0, 0)T +n1n, J2 = (0,−1, 0)T +n2n, J3 = (0, 0,−1)T +n3n.
Set P̃ = (x, t + ∆t − τ), Q̃ = (x + cτn, t + ∆t − τ), P = (x, t + ∆t), Q = (x + c∆tn, t) and
P ′ = (x, t), where τ ∈ [0, ∆t].

Lemma 4.9 The exact integral representation (3.2) for the wave equation system (4.1) reads

u(P ) =
(

d − 1
d

)
u′(P ′) +

1
|O|

∫
O

u(Q) · (−1,n)T (−1,n)T dS + s̃, (4.10)

where d is the dimension, i.e. d = 3 in our case, u′(P ′) = (0,v)T (P ′) and

s̃ =
1
|O|

∫
O

∫ ∆t

0

(
(−1,n)T s(Q̃) + c∇φ(P̃ )J

)
dτdS, (4.11)

s =
c

1 − n2
3

(
n2

2ux − n1n2(uy + vx) + n2
1vy

)
+

1
τ

dn
dϕ

· dv
dϕ

, (4.12)

c∇φ(P̃ )J = (c∇φ · J0, c∇φ · J1, c∇φ · J2, c∇φ · J3)T .

Proof: See[12]. ¤

Remark 4.13 Since the point P̃ is independent of the directional vector n we can evaluate
the second part of the integral (4.11) to get

(
1−d

d

)
(u′(P ′) − u′(P )). Then substituting in the
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equation (4.10) and rearranging the terms we get the equivalent system of the exact integral
equations

u(P ) =
k

|O|
∫

O
u(Q) · (−1,n)T (−1,n)T dS + ks̃, (4.14)

where s̃ is given as

s̃ =
1
|O|

∫
O

∫ ∆t

0
(−1,n)T s(Q̃) dτdS, (4.15)

s is given in the equation (4.12). For the first component of the vector u, i.e. for φ, we have
k = 1, otherwise k = d.

To obtain explicit numerical methods we approximate time integrals in equations (4.11) and
(4.15) using the backward rectangle rule, which gives

s̃ =
∆t

|O|
∫

O

(
(−1,n)T s(Q) + c∇φ(P ′)J )

dτdS + O(∆t2), (4.16)

s̃ =
∆t

|O|
∫

O
(−1,n)T s(Q) dτdS + O(∆t2), (4.17)

respectively. In order to evaluate the integral of the source terms s we need the following
lemma. The proof can be found in [12].

Lemma 4.18

∆t

∫
O

s(Q)dS =
∫

O
(2n1u(Q) + 2n2v(Q) + 2n3w(Q))dS, (4.19)

∆t

∫
O

n1s(Q)dS =
∫

O

(
(−1 + 3n2

1)u(Q) + 3n1n2v(Q) + 3n1n3w(Q)
)
dS,

(4.20)

∆t

∫
O

n2s(Q)dS =
∫

O

(
3n1n2u(Q) + (−1 + 3n2

2)v(Q) + 3n2n3w(Q)
)
dS,

(4.21)

∆t

∫
O

n3s(Q)dS =
∫

O

(
3n1n3u(Q) + 3n2n3v(Q) + (−1 + 3n2

3)w(Q)
)
dS. (4.22)

¤
Using the Taylor theorem we can approximate the integral of the second term in the equation
(4.16), which yields

∫
O

c∇φ(P ′) · J1dS =
∫

O
−2n1φ(Q)dS + O(∆t2), (4.23)

∫
O

c∇φ(P ′) · J2dS =
∫

O
−2n2φ(Q)dS + O(∆t2), (4.24)

∫
O

c∇φ(P ′) · J3dS =
∫

O
−2n3φ(Q)dS + O(∆t2). (4.25)
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Let I(m) = [I0|I1|I2|I3], m ∈ {1, 3}, be the matrix with the column vectors

I0 = (0, 0, 0, 0)T + (1,−3n)T ,

I1 = (0,−1, 0, 0)T + n1(−m, 4n)T ,

I2 = (0, 0,−1, 0)T + n2(−m, 4n)T ,

I3 = (0, 0, 0,−1)T + n3(−m, 4n)T .

Substituting equations (4.19-4.25) in the equation (4.10) we get the following approximate
evolution operator, which we call the EG3 for 3D, see [6]

u(P ) =
(

d − 1
d

)
u′(P ′) +

1
|O|

∫
O

u(Q)I(3)dS + O(∆t2), (4.26)

where U(Q)I(3) = φ(Q)I0 + u(Q)I1 + v(Q)I2 + w(Q)I3.

Remark 4.27 Substituting equations (4.19-4.22) in the equation (4.14) we get the following
approximate evolution operator

u(P ) =
k

|O|
∫

O
u(Q)I(1)dS + O(∆t2), (4.28)

where U(Q)I(1) is defined analogously as U(Q)I(3). This approximate evolution operator is
analog to the two-dimensional approximate operator EG1, see [6].

5 Numerical Schemes and Discretisation

This section is devoted to the numerical experiments using the finite volume EG scheme based
on the approximate evolution operator (4.26) and on 3.1. Analogous to the two-dimensional
case, cf. [12], we use the midpoint rule to approximate the time integral in the equation (3.2)
and the trapezoidal rule to approximate the cell face integrals given in (3.3). Let Ũl denote
the intermediate value corresponding to the left side of the cell ijk, see Figure 3. Further,
let Ũf and Ũb be the intermediate values corresponding to the front and to the bottom
sides, respectively. Let Nx, Ny and Nz be the number of cells along the x−, y− and z−axis,
respectively; recall that ∆x, ∆y, ∆z are the mesh steps in the corresponding directions. Then
the first order evolution Galerkin algorithm is formulated as follows:

• input of the initial data U0.

• determine the time step ∆t from the CFL condition c∆t
min{∆x,∆y,∆z} = ν < 1.

• do the time loop

• calculate the intermediate values φ̃l, ũl, φ̃f , ṽf , φ̃b, w̃b according (3.3) using the
approximate evolution operator EG3-3D, cf. (4.26)
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• update:

φn+1
ijk = φn

i − c∆t

∆x
(ũl(i + 1jk) − ũl(ijk)) − c∆t

∆y
(ṽf (ij + 1k) − ṽf (ijk))

−c∆t

∆z
(w̃b(ijk + 1) − w̃b(ijk)) , (5.1)

un+1
ijk = un

i − c∆t

∆x

(
φ̃l(i + 1jk) − φ̃l(ijk)

)
, (5.2)

vn+1
ijk = vn

i − c∆t

∆y

(
φ̃f (ij + 1k) − φ̃f (ijk)

)
, (5.3)

wn+1
ijk = wn

i − c∆t

∆z

(
φ̃b(ijk + 1) − φ̃b(ijk)

)
. (5.4)

• carry out the boundary conditions.

• end of the time loop.

Cell ijk

left

front

bottom

i-1j-1k ij-1k i+1j-1k

i-1jk ijk i+1jk

i-1j+1k ij+1k i+1j+1k

k+1

k

k-1

Figure 3: Cell ijk and its neighbours

This is the so-called FVEG3-3D scheme, note that analogous numerical schemes based on the
approximate evolution operator (4.28) can be derived. Finally, we note that in the experiments
presented below we evaluate the intermediate values Ũ on cell face by using the piecewise
constant approximate functions, i.e. the scheme is first order in space.
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6 Numerical Tests

Example 6.1

Consider the three dimensional wave equation system together with the periodic boundary
conditions and the initial data

φ(x, y, 0) = −(sin(2πx) + sin(2πy) + sin(2πz)),
u(x, y, 0) = v(x, y, 0) = w(x, y, 0) = 0. (6.2)

where (x, y, z) ∈ [−1, 1] × [−1, 1] × [−1, 1]. The exact solution is

φ(x, y, t) = − cos(2πt)(sin(2πx) + sin(2πy) + sin(2πz)),
u(x, y, t) = sin(2πt) cos(2πx),
v(x, y, t) = sin(2πt) cos(2πy),
w(x, y, t) = sin(2πt) cos(2πz). (6.3)

The following two tables show the L2-error and the experimental order of convergence (EOC),
which is defined using two solutions computed on meshes of sizes N1, N2, as follows

EOC = ln
‖UN1(T ) − Un

N1
‖

‖UN2(T ) − Un
N2

‖/ ln
(

N2

N1

)
.

The numerical experiments are carried out with the FVEG3-3D scheme. We take the final
time T = 0.1 and T = 0.2, respectively, and set the constant c equal to 1. Moreover we
consider a uniform mesh, i.e. we take the mesh size h > 0, h = ∆x = ∆y = ∆z, and set the
CFL number to be 0.5. The last column of Tables 1 and 2 demonstrates that the experimental
order of convergence is 1.

N ‖φ(T ) − φn‖ ‖u(T ) − un‖ ‖U(T ) − Un‖ EOC
20 0.55892402464 0.16838548872 0.63044197493
40 0.27817890698 0.09911167224 0.32688358021 0.9476
80 0.13874739504 0.05362621166 0.16696751589 0.9692
160 0.06927101055 0.02788768195 0.08444904569 0.9834
320 0.03460647659 0.01422055263 0.04247682396 0.9914

Table 1: FVEG3-3D scheme, T=0.1, CFL=0.5

In Figures 4 we plot the first and the second components of the solution φ(x, 0.5, 0.5, T )
and u(x, 0.5, 0.5, T ) (on top and on bottom, respectively) restricted to a horizontal line for a
80×80×80 and a 320×320×320 mesh at the end time T = 0.2. The exact solution is plotted
as well. We can notice a good agreement between the approximate and the exact solutions.

Example 6.4

It is easy to see that the wave equation system preserves exactly the vorticity, i.e. the vector(
∂u

∂y
− ∂v

∂x
,
∂u

∂z
− ∂w

∂x
,
∂v

∂z
− ∂w

∂y

)T

is constant in time. Components of vorticity vector are
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−=exact solution
−.=numerical solution 
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−=exact solution
−.=numerical solution 

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
CFL=0.5,  80x80x80 

−=exact solution
−.=numerical solution 
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−0.5
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1.5
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−=exact solution
−.=numerical solution 

Figure 4: Solution of the wave equation system computed using the 80 × 80 × 80 mesh cells
(left) and 320×320×320 mesh cells (right); top: φ(x, 0.5, 0.5, 0.2), bottom: u(x, 0.5, 0.5, 0.2).
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N ‖φ(T ) − φn‖ ‖u(T ) − un‖ ‖U(T ) − Un‖ EOC
20 0.49587434262 0.59746694762 1.14751541347
40 0.23446528786 0.33325251909 0.62301339926 0.8812
80 0.11224035516 0.17664332961 0.32589337983 0.9349
160 0.05458773142 0.09102322692 0.16683975527 09659
320 0.02686871668 0.04621317753 0.08443282103 0.9826

Table 2: FVEG3-3D scheme, T=0.2, CFL=0.5

trivially zero in Example 6.1, because u depends on x only, v depends on y only while w
depends on z only. In this example we take the following nontrivial initial data for which the
exact solution still has vanishing vorticity

φ(x, y, 0) = − exp(−10(x2 + y2 + z2)),
u(x, y, 0) = v(x, y, 0) = w(x, y, 0) = 0. (6.5)

We compute the vector of discrete vorticity given by the formulae:

DV(1)
klm = µxδyuk+ 1

2
,l+ 1

2
,m− 1

2
− µyδxvk+ 1

2
,l+ 1

2
,m− 1

2
,

DV(2)
klm = µxδzuk+ 1

2
,l− 1

2
,m+ 1

2
− µzδxwk+ 1

2
,l− 1

2
,m+ 1

2
,

DV(3)
klm = µyδzvk− 1

2
,l+ 1

2
,m+ 1

2
− µzδywk− 1

2
,l+ 1

2
,m+ 1

2
(6.6)

for each k, l, m ∈ Z, where we denote by uk+ 1
2
,l+ 1

2
,m− 1

2
:= u((k − 1

2)h, (l + 1
2)h, (m + 1

2)h) the

values at the corner point ((k − 1
2)h, (l + 1

2)h, (m + 1
2)h) of the cubic mesh cell Ωkml. The

other corner values are defined analogously. The µ, δ−operators are defined, e.g. in the x−
direction, as

δxf(x) = f(x +
h

2
) − f(x − h

2
), µxf(x) =

f(x + h
2 ) + f(x − h

2 )
2

;

operators in other directions are analogous. In Table 3 we show the average value of DV(1)

(average values of DV(2) and DV(3) are same due to the symmetry of the problem) at time
T = 0.2 using N = 50, N = 100 and N = 200 mesh cells in each direction. The computational
domain is a cube [−1, 1]3 and CFL = 0.55. The results in this table indicate that the FVEG3-
3D preserves the discrete vorticity given by the equation (6.6). Further in the Figures 5 and
6 we plot the surface of the solution φ for the cross section z = 0.5 and the isosurface of φ,
respectively.

Mesh size 50 × 50 × 50 100 × 100 × 100 200 × 200 × 200
Average vorticity 1.871 × 10−5 6.480 × 10−6 3.350 × 10−6

Table 3: Vorticity preservation for the EG3-3D scheme
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−0.05

0
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Figure 5: Cross section surfaces (z = 0.5) of the approximated solution φ at T = 0.2 using
16 × 160 mesh cells.

Figure 6: Isosurface of the approximated solution φ(x, y, z, 0.2) using 16 × 160 mesh cells.
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7 Further EG schemes

It is well known that the solution of the wave equation in a space of odd dimension (>2)
depends on the initial data distributed on the surface of the sphere centered at the observation
point (Kirchhoff’s formula), see [1]. We follow this concept and ignore the s̃ part appearing
in the exact integral equations (4.10) and (4.14). This leads us to the following approximate
evolution operators:

u(P ) =
(

d − 1
d

)
u′(P ′) +

1
|O|

∫
O

u(Q) · (−1,n)T (−1,n)T dS, (7.1)

u(P ) =
k

|O|
∫

O
u(Q) · (−1,n)T (−1,n)T dS. (7.2)

We call these N1 and N2 approximate evolution operators, respectively. Now, we apply the
numerical schemes based on N1 and N2 operators to the problem given in the Example 6.1.
The L2 errors and EOC are given in Tables 4-6 and indicate a superconvergence of the finite
volume scheme N1. Actually using piecewise constants we have obtained the overall second
order accuracy. Further, Table 6 indicates that the finite volume scheme N2 is of the first
order.
We conjecture that the superconvergence phenomenon of the N1 method is due to the fact
that the source term s̃, cf. (4.11), that we have neglected, is actually at least of the order
O(∆t3). Moreover, it is important to keep the term

(
d−1

d

)
u′(P ′) in (7.1), which increases

apparently the order of accuracy. The proof of this fact is still open.

N ‖φ(T ) − φn‖ ‖u(T ) − un‖ ‖U(T ) − Un‖ EOC
20 0.03948481218 0.05612849451 0.10492985314
40 0.01297997347 0.01347014919 0.02669858553 1.9746
80 0.00360947268 0.00326143223 0.00670366419 1.9937
160 0.00094540786 0.00080017118 0.00167768226 1.9985
320 0.00024154741 0.00019803770 0.00041952585 1.9996

Table 4: N1 scheme, T=0.1, CFL=0.5

N ‖φ(T ) − φn‖ ‖u(T ) − un‖ ‖U(T ) − Un‖ EOC
20 0.17589540963 0.06529837724 0.20911917497
40 0.04832075618 0.01308638944 0.05337280435 1.9701
80 0.01247555949 0.00283409813 0.01340656261 1.9932
160 0.00315867513 0.00065347754 0.00335534309 1.9984
320 0.00079405157 0.00015651727 0.00083905355 1.9996

Table 5: N1 scheme, T=0.2, CFL=0.5
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N ‖φ(T ) − φn‖ ‖u(T ) − un‖ ‖U(T ) − Un‖ EOC
20 0.55892402464 0.11225699162 0.59177779767
40 0.28602634464 0.05665197288 0.30238949704 0.9686
80 0.14568931489 0.02860078232 0.15388109280 0.9746
160 0.07365113809 0.01439264027 0.07775560702 0.9848
320 0.03704518272 0.00722271923 0.03910049337 0.9918

Table 6: N2 scheme, T=0.1, CFL=0.5
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[8] M. Lukáčová, J. Saibartová, and G. Warnecke. Finite volume evolution Galerkin methods
for nonlinear hyperbolic systems. J. Comput. Phys., 183:533–562, 2002.
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