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Abstract: For a vessel in open seas, the sudden indirect excitation of roll motions due to waves
from the front or rear leads to dangerous situations, sometimes even capsizing. We derive a
general non-linear model, which is appropriate for the analysis of parametric excited roll motions
in head or following random seas. The irregular waves are modelled in terms of a continuous time
autoregressive moving average process. The resulting model of stochastic differential equations is
investigated numerically by Local Statistical Linearization. The necessary stochastic moments
and their derivatives are computed using Itô’s differential rule and Gaussian closure.
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1 INTRODUCTION

For modern ships like fast roll-on/roll-off ferries and

container vessels, the sudden appearance of roll

motions due to waves from the front or rear in open

seas leads to dangerous situations up to capsizing.

On the other hand, the current criteria of the

International Maritime Organization (IMO) for the

evaluation of the intact stability of ships [1] are

based only on considerations of stability in still

water and do not take into account the dynamic

behaviour of the vessel, nor the stochastic nature of

the sea. There is a major interest in developing criteria

for dynamic behaviour of ships in random seas.

Therefore, in refernce [2], stability criteria based on

numerical simulations in long crested random waves

were developed. Furthermore, IMO is currently

developing new intact stability criteria, which include

considerations of dynamics due to random wave exci-

tation [3]. Dangerous situations and accidents of

ships at sea could often be avoided, if the risks

could be predicted through improved and reliable

calculation procedures. The difficulty in developing

sufficient design rules lies in the very complex fluid–

structure – interaction of the ship hull with the inci-

dent waves, as well as in the irregularity of the ocean

waves. For a ship in unidirectional head or following

waves no direct excitation of the roll motion can

occur. However, it is well known, that parametric res-

onance is possible due to oscillations of the roll

restoring moment [4]. First model tests on parametric

roll were obtained in reference [5]. A non-linear

model has to be used when large amplitude ship roll-

ing is analysed. Theoretical and experimental studies

of this issue were presented in reference [6, 7].

Investigating ship motions in regular waves it is

found, that parametric excited roll motions occur at

a wave frequency, which is twice the roll motion

eigenfrequency. Probabilistic modelling is necessary

for a realistic description of ocean waves. In reference

[8], the concept of the Grim effective wave [9] was

extended to a travelling effective wave described by

stochastic processes for its amplitude and phase.

Besides Monte Carlo simulations different methods

for the study of non-linear stochastic systems exist,

which could be applied to the above stochastic

problem. In reference [10], Lyapunov exponents for

*Corresponding author: Mechanics and Ocean Engineering,

Hamburg University of Technology, Eißendorfer Straße 42,

21073 Hamburg, Germany.

email: kreuzer@tu-harburg.de; dostal@tu-harburg.de

2464 SPECIAL ISSUE PAPER

Proc. IMechE Vol. 225 Part C: J. Mechanical Engineering Science

http://crossmark.crossref.org/dialog/?doi=10.1177%2F0954406211414523&domain=pdf&date_stamp=2011-09-30


six-degree-of-freedom ship motions are computed

numerically and invariant measures are determined

for a one-degree-of-freedom roll model.

The probability density of the system response can

be obtained by solving the Fokker–Planck equation.

However, analytical solutions are possible only for a

very limited class of systems [11]. Numerical solu-

tions of the Fokker–Planck equation are feasible

only for low-dimensional systems, due to the storage

and processing capacity needed for the numerical

computations.

Stochastic averaging can be used if the system exhi-

bits different time scales. Then, stochastic averaging

can lead to a dimension reduction, so that the

Fokker–Planck equation can be solved, if the dimen-

sion of the averaged system is small enough [12]. This

procedure needs a good knowledge of the underlying

non-linear dynamical system.

Statistical and equivalent linearization techniques

are widely used and well developed [13]. When

applied, the original non-linear system is replaced

by an equivalent linear system, depending on differ-

ent error measures. The disadvantage of these meth-

ods is, that the linearized system response has

Gaussian distribution and could differ significantly

from the non-linear system response. However, the

key advantage is, that with these methods, high-

dimensional problems can be solved while generat-

ing relatively low computational cost.

Another possibility for the analytical study of sto-

chastic dynamic systems is the closure method. By

applying the Itô formula [14], differential equations

for stochastic moments can be derived. These equa-

tions will, however, not form a solvable closed set for

a non-linear problem. Therefore, closure methods for

closing the infinite set of equations were developed

[15, 16].

With the cell mapping method, global properties of

non-linear dynamical systems can be investigated.

The basics of this method were developed by Hsu

[17, 18]. Recently, an extension of this method was

proposed [19] which is appropriate for the global

analysis of non-linear dynamical systems under sto-

chastic excitations. However, the high computing

time required by the cell mapping method allows

yet the analysis of lower dimensional systems only.

Although a large number of analytical and numer-

ical methods for the study of non-linear stochastic

systems exist, there is still a gap between methods

which takes the non-linearities into account accurate

enough, but are suitable for low dimensional

problems only, and methods for higher dimensional

problems, which cannot accurately consider the

non-linearities. This gap can be closed to some extend

by the concept called Local Statistical Linearization,

which is an extension of the linearization and closure

techniques. In contrast to the linearization techniques,

the non-linear system is not replaced by a single global

linear system, but by many local linear systems. The

Local Statistical Linearization was first proposed by

Pradlwarter in reference [20]. The number of local den-

sities required for a good approximation also increases

with the state space dimension. However, Pradlwarter

showed in references [20, 21] that the computational

cost can be significantly reduced in the case where state

space directions with small deviations from Gaussian

distributions exist.

In this article, the modelling of random wave forces

on the ship hull in following or head seas by an effec-

tive wave is discussed, and parametric excitation of

the roll motion resulting from the random wave

forces for this case is investigated. The random ampli-

tude and phase of the effective wave is described by a

Continuous time Autoregressive Moving Average

(CARMA) process. The amplitude and phase pro-

cesses are used as parameters in a simplified model

for the ship roll motion. Further, it is shown how the

developed model equations can be solved by the

Local Statistical Linearization method. The equations

for moments of the model equations are obtained

using the Gaussian closure method. They are used

for the computation of local density evolutions in

the Local Statistical Linearization.

2 SHIP DYNAMICS

The motions of the ship and the wave flow are

described with respect to the coordinate system

(x, y, z), where z is pointing upwards out of the fluid

domain. The (x, y) plane is parallel to the free water

surface at rest, and the x axis coincides with the aver-

age forward direction of the ship. The centre of gravity

of the ship is located at the origin. It follows from

linear ship motion analysis, that for symmetric float-

ing bodies with respect to the x–z plane, the surge,

heave, and pitch motions are decoupled from the

sway, roll, and yaw motions. The forces F and

moments M on the hull are determined by integrating

the fluid pressure p over the wetted surface � of the

ship hull

F ¼ �

Z Z
�

pn d�

M ¼ �

Z Z
�

pðr � nÞd� ð1Þ

where n is the unit normal vector on � and r the cor-

responding position vector. A common model for

random ocean waves is the superposition of infinitely

many harmonic waves (Section 4). On the other hand,

the superposition principle is not valid for non-linear
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wave theory, so that random seas cannot be modelled

by a superposition of non-linear waves. Therefore,

linear wave theory is used, where the velocity poten-

tial of incident waves is [22]

� ¼
�ag

!

cosh kðz þ d Þ

cosh kd
sinðkx � !t Þ ð2Þ

This yields the waveform

� ¼ �acosðkx � !tÞ ð3Þ

with wave frequency !, wave number k(!), water

depth d, amplitude za, and acceleration due to grav-

ity g. The pressure distribution due to the incident

waves at a depth z below the calm water surface is

p ¼ ��
@�

@t
� �gz ð4Þ

¼ �g�a
cosh kðz þ d Þ

cos kd
cosðkx � !t Þ � �gz ð5Þ

Higher order effects due to ship generated waves are

neglected. The restoring forces of a ship in waves can

be determined by the righting lever GZ which is

obtained by computation of (2.1). We assume

a quasi-static behaviour. This means that for the inci-

dent wave the ship is in static equilibrium with

respect to heave and pitch. The righting lever func-

tion GZ(�, �,  ) : R
3
!R is computed for various roll

angles � and for long crested waves of the same

length as the ship length with an elevation of �. The

wave crest is located at cos(2px/Lþ ) in the ship

coordinate system. The righting lever should be com-

puted for all values which can be reached during

computation, even if they are not relevant in praxis

(e.g. very large roll angles). Therefore, GZ(�, �,  ) is

computed for roll angles up to 90� and wave heights

up to 19 m. Different projections of GZ(�, �,  ) are

shown in Figs 1 and 2. The rolling behaviour of a ship

in head or following waves can be represented by the

following equation if heave and pitch motions are

small

ðIxx þAxxð!nÞÞ €�þ b1
_�þ b3

_�3 þ g ��GZ ð�,�, Þ ¼ 0

ð6Þ

where Ixx is the roll moment of inertia, Axx(!n) the

hydrodynamic added mass evaluated at the natural

Fig. 1 Righting lever GZ(�, �,  ) for  ¼ 0

Fig. 2 Approximation of GZ(�, �,  ) (mesh) with GZ 9,4,1
app ð�, �, Þ (surface) for �¼ 8 m
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frequency !n, b1, and b3 linear and cubic damping

coefficients, g the acceleration due to gravity, and �

the displacement. For further analytical analysis,

GZ(�, �,  ) is approximated by a combination of

polynomial and Fourier expansion

GZappð�, �, Þ

¼
XN�

i¼0

 XNk

k¼0

Qi,0,2k�
2k þ

XNS

j¼1

XNk

k¼0

QS
i,j,2kþ1�

2kþ1

� sinð j Þ þ
XNC

j¼1

XNk

k¼0

QC
i,j,2kþ1�

2kþ1

� cosð j ð þ QC
0 ÞÞ

!
�i ð7Þ

GZapp(�, �,  ) is fitted to the righting lever curve data

by solving a least squares minimizing problem

minimize I ðGZappÞ

¼
1

4��o�o

Z 2�

0

Z �o

0

Z �o

��o

ðGZ ð�, �, Þ

� GZappð�, �, ÞÞ2d� d�d ð8Þ

where the maximal fitting roll angle �o¼ 70� and

wave amplitude �o¼ 9.5 m have been chosen for the

computations in Table 1.

The parameter values used for the computations

are given in Table 2 and Fig. 3. As can be seen in

Fig. 2, the righting lever approximation GZ 9,4,1
app is

already very accurate. Comparing different righting

lever approximations shows, that even the approxi-

mations GZ 3,1,1
app and GZ 3,1,0

app give good results, whereas

the approximation error is too high for the linear

approximations GZ 1,NC ,0
app (Table 1).

3 CARMA PROCESS APPROXIMATION

OF RANDOM SEAS

The irregular elevation of ocean waves at a fixed point

is described most often by a spectral density. For deep

water ocean waves, the Pierson–Moskowitz spectrum

is widely used. Since we are interested in the most

critical sea states to which a vessel can be subjected,

we will use the JONSWAP spectral density, which

describes irregular shallow water waves [25]. The

JONSWAP spectrum has a small bandwidth com-

pared to other sea elevation spectra so that paramet-

ric resonances occur more likely. If the ship is moving

with speed U, then the wave spectrum has to be

described with respect to a reference frame moving

with the ship. The encounter frequency !e due to the

ship motion is

!e ¼ !� kð!ÞU ð9Þ

A negative encounter frequency corresponds to

following sea. In Section 8, the case of para-

metrically excited roll motion in random seas is

studied, where !e is approximately twice the natural

eigenfrequency of roll. If !e¼ 0, then pure loss of

stability is more likely to occur, but this special case

is not analysed here. Time series like sea elevation

can be modelled by Autoregressive Moving

Average processes (ARMA). The spectral density of

an ARMA process is a quotient of polynomials,

which can approximate a given sea spectrum prop-

erly [26]. Because the ship motions are modelled

by differential equations, CARMA processes are

needed [27].

Table 1 Comparison of righting lever approximations GZ N�, NC , Nk
app for NS¼ 0

N� NC Nk I ðGZ N� , NC , Nk
app Þ Optimization variables

9 4 1 0.008 734 7 51
9 3 1 0.009 263 9 41
9 2 1 0.012 938 3 31
9 1 1 0.018 073 0 21
7 4 1 0.009 225 4 41
7 3 1 0.009 986 2 33
7 2 1 0.013 397 3 25
7 1 1 0.018 295 3 17
5 4 1 0.011 032 7 31
5 3 1 0.011 803 1 25
5 2 1 0.015 209 9 19
5 1 1 0.019 634 4 13
3 4 1 0.021 344 1 21
3 3 1 0.021 975 0 17
3 2 1 0.025 125 0 13
3 1 1 0.028 810 9 9
3 1 0 0.061 060 2 4 (with QC

3,1,1 ¼ 0)
1 4 0 0.340 615 0 6
1 3 0 0.340 674 0 5
1 2 0 0.342 606 0 4
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Definition 3.1 (CARMA(p,q) PROCESS, state

space representation)

A CARMA(p,q) process y(t ), 0�q<p, bj¼ 0 if j>q, in

state space representation is defined as the stationary

solution of the following equations

y ¼ c uðt Þ ð10Þ

with the linear Itô differential equation for the state

vector u(t)2R
p

duðtÞ ¼ A uðtÞ dtþ b dWðtÞ ð11Þ

where dW(t)9W(tþdt)�W(t) is the increment of a

Wiener process with E{dW(t)}¼ 0 and

E{dW(t)dW(tþdt)}¼s2 dt, s2
2R, d(�) is the Dirac

function.

A ¼

�a1 1 0 � � � 0

�a2 0 1 . .
. ..

.

..

. ..
. . .

. . .
.

0

�ap�1 0 � � � 0 1

�ap 0 � � � � � � 0

0
BBBBBBB@

1
CCCCCCCA

, b ¼

bp�1

bp�2

..

.

b1

b0

0
BBBBBBB@

1
CCCCCCCA

,

c ¼

1

0

..

.

0

0
BBBB@

1
CCCCA ð12Þ

The above-defined CARMA(p,q) process has the

well-known spectral density

Scarma ¼
�2

2�

jb0 þ b1s þ . . .þ bqsqj2

jsp þ a1sp�1 þ . . .þ apj
2

ð13Þ

where s9 i!. It should be mentioned, that the

state space representation in Definition 3.1 is not

unique.

The irregular ocean wave elevation can be approx-

imated by a CARMA(p,q) process very efficiently

in comparison with the harmonic superposition

approach, see Section 4 and reference [26]. For

reliable results, it is sufficient to use a CARMA(2,1)

process given by the following differential equation

y ¼ u1

du1 ¼ ðu2 � a1u1Þdt þ b1� dW

du2 ¼ �a2u1dt ð14Þ

This CARMA(2,1) process has the transfer function

H2ðsÞ ¼
b1s

s2 þ a1s þ a2
ð15Þ

and the spectral density

S2ð!Þ ¼ H2ðsÞH2ð�sÞ
�2

2�
ð16Þ

A more accurate approximation is obtained using the

following CARMA(4,2) process

y ¼ u1

du1 ¼ ðu2 � a1u1Þdt

du2 ¼ ðu3 � a2u1Þdt þ b2� dW

du3 ¼ ðu4 � a3u1Þdt

du4 ¼ �a4u1dt ð17Þ

Beam B 26.00 m

Draft T 6.50 m

Displacement D 16800 t

Pitch radius of gyration iyy 45.20 m

ixxRoll radius of gyration 10.17 m

vsService speed 28 kts

Length between perpendiculars 173.00 mL
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Fig. 3 Main data of RoRo ferry [23] used for computations

Table 2 Parameter values used for computations [24]

IxxþAxx(!n) 2.20� 106 t m2

GM 3.54 m
!n 0.515 rad/s
b1 1.99� 105 kN m s
b3 2.11� 106 kN m s3

g 9.81 m/s2
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Here, the transfer function is given by

H4ðsÞ ¼
b2s2

s4 þ a1s3 þ a2s2 þ a3s þ a4
ð18Þ

with spectral density

S4ð!Þ ¼ H4ðsÞH4ð�sÞ
�2

2�
ð19Þ

The coefficients ai and bj defined in (12) have to be

determined by minimizing the least squares error

between the spectral density of the CARMA(p,q) pro-

cess Scarma and the desired spectral density. The spec-

tral densities of the CARMA(2,1) and CARMA(4,2)

processes were fitted to a JONSWAP spectral density.

The good accuracy of the fitting is shown in Figs 4

and 5.

4 EFFECTIVE WAVE

The irregular long crested wave surface can be mod-

elled by a superposition of infinitely many harmonic

waves with wave numbers k(!) and frequencies !

corresponding to a one-sided spectral density S(!).

To account for the irregularity of the wave surface, a

random phase shift z(!) is added, which is equally

distributed in the interval [0, 2p). Such an irregular

long crested wave surface can be written as

Z ðx, t Þ ¼

Z 1
0

cosð!et � kð!Þx þ �ð!ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sð!Þd!

p
ð20Þ

The irregular wave surface Z(x, t) has to be simplified,

because there are infinitely many possibilities how

waves can surround a ship. For most ship hulls, a

wave of the same length as the ship length will

cause the largest variations of righting lever.

Therefore, Z(x, t) is approximated by an effective

wave

Zeff ðx, t Þ ¼ �c ðt Þ cos
2�

L
x

� �

þ �sðt Þ sin
2�

L
x

� �

¼ �ðt Þ cos
2�

L
x þ  ðt Þ

� �
ð21Þ

The wavelength is chosen equal to the ship length L.

The effective wave Zeff consists of two harmonic com-

ponents with random amplitudes �c(t) and �s(t),

which can be transformed into a cosine wave with

random amplitude �(t) and random phase  (t) by

the well-known transformation

�ðt Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sðt Þ

2
þ �cðt Þ

2
q

 ðt Þ ¼ arctan
�sðt Þ

�cðt Þ

� �
ð22Þ

If  ¼ 0 or equivalently �s¼ 0 is set, then the original

Grim effective wave [9] is obtained, i.e. the wave crest

or trough is always amidships. The effective wave Zeff

is a travelling wave, in contrast to the Grim effective

wave, which is a standing wave. Therefore, the use of

Zeff yields a much better approximation of random

seas then the Grim effective wave. The random pro-

cesses �c(t) and �s(t) are determined by solving the

minimizing problem

minimize I ð�s , �c Þ

¼

Z L=2

�L=2

Z ðx, t Þ � Zeff ðx, t Þ
� �2

dx ð23Þ

Solving for @I ð�s , �c Þ

@�s
¼

@I ð�s , �c Þ

@�c
¼ 0 gives

�sðt Þ ¼

Z 1
0

fsðkð!ÞÞ sinð!et þ �ð!ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sð!Þd!

p
ð24Þ
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Fig. 4 JONSWAP spectrum and CARMA(2,1) approxi-
mation for significant wave height of 12 m
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Fig. 5 JONSWAP spectrum and CARMA(4,2) approxi-
mation for significant wave height of 12 m
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and

�c ðt Þ ¼

Z 1
0

fc ðkð!ÞÞ cosð!et þ �ð!ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sð!Þd!

p
ð25Þ

where the transfer functions are given by

fsðkð!ÞÞ ¼
2� sin r

�2 � r2

fcðkð!ÞÞ ¼
2r sin r

�2 � r2

ð26Þ

with r ¼ L
2 kð!Þ. By comparing the processes (24) and

(25) with the irregular wave surface (20), the spectral

densities S�c
and S�s

of the stochastic processes �c and

�s, respectively, are obtained as

S�s
ð!Þ ¼ 2Sð!Þ fsðkð!ÞÞ

2

S�c
ð!Þ ¼ 2Sð!Þ fcðkð!ÞÞ

2
ð27Þ

The major advantage of the effective wave Zeff(x, t) in

comparison with the irregular wave surface Z(x, t) is,

that we have a model for the excitation due to irreg-

ular seas which depends only on two parameters �c

and �s or � and  , respectively, which are actually

stochastic processes with known spectral densities.

If the effective wave needs to be simulated numeri-

cally, then one has to choose a finite number N of

harmonic components, which results in

�N
s ðt Þ ¼

XN

n¼1

fsðkð!nÞÞ sinð!e,nt þ �ð!nÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sð!nÞ�!n

p
ð28Þ

�N
c ðt Þ¼

XN

n¼1

fc ðkð!nÞÞ cosð!e,nt þ �ð!nÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sð!nÞ�!n

p
ð29Þ

where �!n¼!nþ1�!n, n¼ 1, 2,. . ., N� 1, !n> 0. The

frequency !N should be chosen so that the spectral

density is nearly different from zero in the interval

[!1,!N]. However, there are also known shortcomings

if the processes �c(t) and �s(t) are modelled by a

superposition of N harmonic components as given

in (28) and (29). The processes �N
s ðt Þ and �N

c ðt Þ are

periodic (with period 2p/�! if an equidistant step

length �! is chosen). On the other hand, the compu-

tational cost increases with the sample size N. A way

how to overcome the high numerical cost of the

above superposition approach is the generation of

the stochastic processes �s(t) and �c(t) by CARMA pro-

cesses (Section 3). Parametric resonance can also

occur in shallow water. For this case, the computa-

tion of the effective wave can be simplified further.

The time derivative of �s is

d

dt
�sðt Þ ¼

Z 1
0

!efsðkð!ÞÞ cosð!et þ �ð!ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sð!Þd!

p
ð30Þ

From (26), the relationship between the transfer func-

tions is got

fsðkð!ÞÞ ¼
�

r
fc ðkð!ÞÞ , fsðkð!ÞÞ ¼

2�

Lkð!Þ
fcðkð!ÞÞ

ð31Þ

In the case of shallow water conditions, the relation-

ship between wave number and frequency is given by

kð!Þ ¼ !ffiffiffiffi
gd
p , and it follows

fsðkð!ÞÞ ¼
2�

ffiffiffiffiffiffi
gd

p
!L

fc ðkð!ÞÞ ð32Þ

Substituting this into (30) results in

d

dt
�sðt Þ ¼

2�

L

ffiffiffiffiffiffi
gd

p
�U

� � Z 1
0

fcðkð!ÞÞ

� cosð!et þ �ð!ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sð!Þd!

p
ð33Þ

Finally, in the shallow water case

d

dt
�sðt Þ ¼

2�

L

ffiffiffiffiffiffi
gd

p
�U

� �
�c ðt Þ ð34Þ

5 MODEL FOR SHIP ROLL IN HEAD

OR FOLLOWING RANDOM SEAS

In the following, the above results are combined, and

a model with which one is capable to investigate

parametric induced roll motions in head or following

random seas is derived. From (6) and (7), the general

model in state space is got, which is given by

dX1 ¼ X2 dt

dX2 ¼ ð��1X2 � �2X2
3 � 	GZappð�, �, ÞÞdt ð35Þ

Here, the wave amplitude � and phase  are given in

terms of �s and �c by (22), and the coefficients are

�1 ¼
b1

Ixx þ Axxð!nÞ
, �2 ¼

b3

Ixx þ Axxð!nÞ
,

	 ¼
g ��

Ixx þ Axxð!nÞ

ð36Þ

The random processes �s and �c are generated by

CARMA(p,q) processes with spectral densities S�s
(!)

and S�c
(!), given by (27). In the case of shallow water

conditions, the dimension of the dynamical system

(35) can be reduced using the relationship (34).

Then, we get

dX1 ¼ X2 dt

dX2 ¼ ð��1X2 � �2X2
3 � 	GZappð�, �, ÞÞdt

d�s ¼
2�

L

ffiffiffiffiffiffi
gd

p
�U

� �
�c dt ð37Þ

where only �c has to be generated by a CARMA(p,q)

process.
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6 MOMENT EQUATIONS

The time evolution of mean vectors li and covariance

matrices Ci, needed in the Local Statistical

Linearization procedure, is determined by the deriv-

atives of the first- and second-order moments, E{Xj}

and E{XjXk}, which are obtained from Itô’s differential

rule [14] and Gaussian closure. Therefore, the follow-

ing Itô stochastic differential equation is considered

dXðt Þ ¼ f ðXÞdt þ Gðt ÞdWðt Þ ð38Þ

The vector d W(t)9W(tþdt)�W(t) represents inde-

pendent increments of the standard Wiener process,

X2R
n, f(X)dt denotes the drift and G(t)dW the diffu-

sion. Itô’s differential rule states

dEf�g

dt
¼
Xn

i¼1

E
@�

@Xi
fiðxÞ

	 

þ

1

2

Xn

i¼1

Xn

j¼1

E ðGGT Þij
@2�

@Xi@Xj

	 


ð39Þ

with �ðXÞ :¼
Qn

i¼1 X Oi

i . From (39), a system of ordinary

differential equations for moments E{z} can be gen-

erated. Because of non-linearities in (38), the equa-

tions obtained from (39) will not form a closed set.

Instead, equations for moments of order O, withPn
i¼1 Oi ¼ O, will involve moments of order higher

then O. In order to close this set and obtain a solution,

a closure technique has to be used.

In the following, a closed set of moment equations

for the roll equation (35) excited by an irregular wave

elevation process (21) is determined. If a closure

method is applied, GZapp has to be choosen so that

it is a polynomial in �S and �C. This is for example the

case, if GZ 9,1,1
app is chosen. However, for simplicity, the

following can be used

GZ 3,1,0
app ð�, �, Þ : ¼ Q1,0,0�þ Q3,0,0�3

þQC
1,1,1� cosð þQC

0 Þ� ð40Þ

which captures the relevant characteristics of

the righting lever curve, (Table 1). The process

�c ¼ � cosð þ QC
0 Þ (cf. equation (22)) has spectral

density S�c
(!), which is approximated by the

CARMA(2,1) process u1. Due to righting lever approx-

imation (40), the process u1 excites the roll angle X1

parametrically. With the roll velocity X2, the following

stochastic Itô differential equations are obtaind from

the general roll model (35)

dX1 ¼ X2dt

dX2 ¼ ð��1X2 � �2X2
3 � �3X1

þ �4X1
3 þ �5X1u1Þdt

du1 ¼ ðu2 � a1u1Þdt þ b1�dW ðt Þ

du2 ¼ �a2u1dt ð41Þ

with

�3 ¼ 	Q1,0,0, �4 ¼ 	Q3,0,0, �5 ¼ 	QC
1,1,1 ð42Þ

The remaining coefficients are defined in (36) and

(15). For the system (41), we obtain from (39) four

first order moment equations, where X39u1 and

X49u2 are set

d

dt
EfX1g ¼ EfX2g

d

dt
EfX2g ¼ ��1EfX2g � �2EfX 3

2 g

� �3EfX1g � �4EfX 3
1 g � �5EfX1X3g

d

dt
EfX3g ¼ EfX4g � a1EfX3g

d

dt
EfX4g ¼ �a2EfX3g ð43Þ

and ten second-order moment equations

d

dt
EfX 2

1 g ¼ 2EfX1X2g

d

dt
EfX1X2g ¼ EfX 2

2 g � �1EfX1X2g � �2EfX1X 3
2 g

� �3EfX 2
1 g � �4EfX 4

1 g

� �5EfX 2
1 X3g

d

dt
EfX1X3g ¼ EfX2X3g þ EfX1X4g � a1EfX1X3g

d

dt
EfX1X4g ¼ EfX2X4g � a2EfX1X3g

d

dt
EfX 2

2 g ¼ �2�1EfX 2
2 g � 2�2EfX 4

2 g

� 2�3EfX1X2g � 2�4EfX 3
1 X2g

� 2�5EfX1X2X3g

d

dt
EfX2X3g ¼ ��1EfX2X3g � �2EfX 3

2 X3g

� �3EfX1X3g

� �4EfX 3
1 X3g � �5EfX1X 2

3 g

þ EfX2X4g � a1EfX2X3g

d

dt
EfX2X4g ¼ ��1EfX2X4g � �2EfX 3

2 X4g

� �3EfX1X4g � �4EfX 3
1 X4g

� �5EfX1X3X4g � a2EfX2X3g

d

dt
EfX 2

3 g ¼ 2EfX3X4g � 2a1EfX 2
3 g þ b2

1�
2

d

dt
EfX3X4g ¼ EfX 2

4 g � a1EfX3X4g � a2EfX 2
3 g

d

dt
EfX 2

4 g ¼ �2a2EfX3X4g

ð44Þ
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Applying Gaussian closure, expressions for moments

of order higher than two for relevant i, j, k2N are got

EfX 3
i g ¼ 3EfXigEfX

2
i g � 2EfXig

3

EfXiX
2
j g ¼ EfXigEfX

2
j g þ 2EfXjgEfXiXjg

� 2EfXigEfXjg
2

EfXiXjXkg ¼ EfXigEfXjXkg þ EfXjgEfXiXkg

þ EfXkgEfXiXjg � 2EfXigEfXjgEfXkg

EfX 4
i g ¼ 3EfX 2

i g
2 � 2EfXig

4

EfXiX
3
j g ¼ 3EfXiXjgEfX

2
j g � 2EfXigEfXjg

3

ð45Þ

which have to be substituted in (44) in order to obtain

a closed set of equations.

7 LOCAL STATISTICAL LINEARIZATION

The probability density function (PDF) of roll and roll

velocity can be computed numerically by the method

called Local Statistical Linearization developed

by Pradlwarter [20]. The idea is to approximate

a non-Gaussian probability density p(X, t), X2R
n,

by superposition of Gaussian densities pi which yields

pðX, t Þ ¼
X

i

AipiðX, t Þ,
X

i

Ai ¼ 1, Ai � 0

ð46Þ

The rate of change of mean vectors li with corre-

sponding Gaussian densities pi(X, t) is given by

d

dt

i ¼

d

dt
EfXg ð47Þ

For the rate of change of covariance matrix entries

C i
jk , the following equation is derived

d

dt
C i

jkðXj , XkÞ ¼
d

dt
EfXjXkgv � EfXjg

d

dt
EfXkg

� EfXkg
d

dt
EfXjg, j, k ¼ 1, . . . , n

ð48Þ

The required moments can be determined by apply-

ing a closure method [15, 16, 28] to close the moment

differential equations obtained from (39). Gaussian

closure is applied to an example system in Section

6. The evolution of mean vectors li and covariance

matrices Ci can be computed by numerical

Table 3: Optimal proportionality constant j for different m

m � m � m �

1 1.334 9 3.310 17 4.736
2 1.660 10 3.516 18 4.885
3 1.917 11 3.714 19 5.026
4 2.147 12 3.904 20 5.174
5 2.356 13 4.081 21 5.309
6 2.598 14 4.253 22 5.443
7 2.851 15 4.419 23 5.580
8 3.088 16 4.578 24 5.706

Fig. 7 min Bdk(s0) for m¼ 8Fig. 6 min Bdk(s0) for m¼ 1
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integration, since all required moments and their

derivatives are known. In the numerical implementa-

tion, the moment equations are integrated to obtain

the moments for the actual time step. Then, the

covariance matrices Ci are computed. This is more

efficient then integrating (48).

7.1 Decomposition

Due to the diffusion of the stochastic differential

equations, the local densities pi(X, t) will spread.

If their variance exceeds a certain level �2
lim, then

they have to be decomposed into densities with a

smaller variance in order to capture the local system

dynamics. In this case, some of the weighted densities

(Aj, pj(X, t)) have to be decomposed into 2mþ 1 den-

sities according to

Ajpj ðX, t Þ ¼
Xm

k¼�m

AjkpjkðX, t Þ,
Xm

k¼�m

Ajk ¼ 1, Ajk � 0

ð49Þ

If the covariance matrix is diagonalized, then the

Gaussian density can be represented as a product of

univariate Gaussian densities. It is sufficient to decom-

pose only one univariate Gaussian density with the

highest variance, say �d, into 2mþ 1 densities with var-

iances0. After retransformation of densities to the orig-

inal coordinates the decomposition is finished. This

procedure results in the following equations for the

decomposition [20]. The density pd is represented as

pd ðXd Þ ¼
Xm

k¼�m

BdkpdkðXd Þ ð50Þ

The coefficients Bdk are solutions to the following

least squares minimizing problem

minimize

Z 1
�1

pd ðXd Þ �
Xm

k¼�m

BdkpdkðXd Þ

 !2

dXd

ð51Þ

where Xd ¼ �
T
d � ðX � 
j Þ is the coordinate in direc-

tion of the highest variance.

The optimal solution of (7.6) with optimization var-

iables Bdk is given by

Xm

k¼�m

�jkBdk ¼ bj , j ¼ �m, . . . , m ð52Þ

�jk ¼
1

2�0

ffiffiffi
�
p exp �

ð j� kÞ2

4

� �
ð53Þ

bj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�ð�2
d þ �

2
0Þ

q exp �
j2�2

0

2ð�2
d þ �

2
0Þ

 !
ð54Þ

The optimal solution of the minimizing problem (51)

could result in negative amplitudes Bdk and thus neg-

ative densities which are not defined. To circumvent

a constrained minimizing problem, the following

is introduced

�max
0 ¼ max

�02Rþ
min

k
Bdkð�0Þ ð55Þ

and the proportionality constant k is found at which

�max
0 ¼

�d

�
ð56Þ

where �max
0 4 0. This proportional dependence is

exemplary shown in Figs 6 and 7. The look up

Table 3 could be useful for the choice of m and k.

Pradlwarter suggested to choose �� 2.5 for accept-

able decomposition error. The retransformation of

the decomposed densities to the original coordinates

is done by

Ajk ¼ Aj � Bjk


jk ¼ 
j þ k�0 � �jk

Cjk ¼ �
2
0 � �ji � �

T
ji þ

X
s 6¼i

�2
js�js � �

T
js ð57Þ

Fig. 8 Initial PDF at t¼ 0 s

Fig. 9 Initial PDF at t¼ 200 s
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The eigenvectors /js to the eigenvalues �2
js have unit

length and lj, Cj and ljk, Cjk denote mean vectors and

covariance matrices to the corresponding densities

pj or pjk.

7.2 Combination of adjacent densities

So far, the algorithm would produce an exponential

growth of densities because of the diffusion term in

the stochastic differential equation (38). In order to

obtain a feasible algorithm, adjacent densities pi(X, t),

pj(X, t) have to be combined to pc(X, t). This is done by

combining densities with a small difference between

their mean vectors Ilj� lkI<TOL, l2R
n, using the

following equations

Ac ¼AiþAj

lc ¼
liAiþljAj

Ac

Cc ¼

AiðCiþðli�lkÞðli�lkÞ
T
Þ

þAj ðCjþðlj�lkÞðlj �lkÞ
T
Þ

8<
:

9=
;

Ac
ð58Þ

If the distances of all N densities have to be deter-

mined, then N(Nþ 1)/2 distance evaluations are

needed. This produces the highest computational

cost in the Local Statistical Linearization routine,

since adjacent densities have to be combined in

each iteration step. An alternative approach is to

cover the state space with boxes and limit the

number of distributions within a box as described

by Ellermann [29]. This approach reduces the com-

putational cost for smaller system dimensions.

Of course, the number of boxes grows exponentially

with the system dimension. Hence, a hybrid combi-

nation of the different methods is suggested to be

computationally more efficient.

8 RESULTS

In this section, results for 2:1 parametric resonance

conditions in random seas are presented. Local

Statistical Linearization has been applied to (41)

under irregular waves, which were obtained from

the effective wave (21) due to a JONSWAP spectrum.

For example calculations, parameters for the RoRo

ferry with data given in Table 2 and Fig. 3 were used

for (41). The RoRo ferry is considered as capsized,

whenever it reaches the angle �crit of vanishing right-

ing lever, although a RoRo ferry will practically not

capsize, because of high freeboard of such ships.

However, in contrast, if a large container ship reaches

�crit, it will probably capsize. The peak frequency of

the JONSWAP spectrum was chosen as 0.95 rad/s,

which is nearly twice the roll eigenfrequency of the

considered ship. The transient evolution of the joint

probability density function of roll angle � and roll

velocity _� was computed for a significant wave height

of 15 m, starting from an initial density at t¼ 0 s

(Fig. 8). If maximum standard deviation slim¼ 4.4

and combining distance TOL¼ 3 are selected , then

the number of local Gaussian densities at t¼ 200 s

(Fig. 9) and t¼ 1000 s (Fig. 10) is between 3300 and

3700. In Fig. 11, the density is averaged over one

roll oscillation period from t¼ 1000 s to t¼ 1012.4 s.

The bi-modality of the densities in Figs 10 and 11 has

dynamic reasons. Sample trajectories move counter-

clockwise in the coordinate system used in Figs 8 to

11. Starting a sample trajectory at _� ¼ 0 and positive

�, the trajectory is slow in the first quadrant of the

coordinate system. Due to the parametric excitation

and the restoring forces, the roll velocity increases.

Therefore, the time spent in the fourth quadrant

decreases, leading to lower probability density

values. Because of symmetry, the same arguments

hold for a sample trajectory starting at negative �

and _� ¼ 0. Because no significant difference between

Fig. 10 PDF at t¼ 1000 s Fig. 11 Averaged PDF from t¼ 1000 s to t ¼1012.4 s
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the densities in Figs 10 and 11 can be observed, the

transient evolution of probability density already

converged to a stationary distribution in state space

at this time. However, as can be seen from Figs 9 and

10, the probability of stable roll motions gets lower

with time, because some Gaussian densities leave the

safe basin at the critical roll angle �crit, with

GZapp(�crit, �,  )¼ 0, where the restoring moment

due to buoyancy force of the submerged part of the

ship hull reaches zero. This corresponds to capsizing,

because for j�j> j�critj the righting lever GZapp(�, �,

 ) is negative and the ship cannot reach the stable

upright position anymore. Since the probability

P(j�j ¼ j�critj) for reaching �crit is greater zero, there

is a slow steady probability flow out of the safe basin.

Therefore, no normalizable probability density exists

for t!1, but for finite time joint probability densi-

ties can be computed. An advantage of Local

Statistical Linearization towards Monte Carlo simula-

tion is the accessibility to low probability events. This

is shown in Fig. 12, where the contour lines of the

density in Fig. 10 are plotted for very low probabili-

ties. In Fig. 13, the less accurate results from Monte

Carlo simulations are shown. The low probability

accessibility is crucial for ship stability analysis,

because large roll motions or even capsizing are low

probability events. Because of much shorter compu-

tation time compared to hydrodynamic calculations

for six-degree-of-freedom ship motions, the pre-

sented model can be used for optimization of hull

shape against parametric resonance in the first

design stage, where many designs have to be

compared.

9 CONCLUSIONS

In this article, a Multi Degree of Freedom (MDOF)

model for the roll motion in head or following

random seas was developed. The excitation caused

by random seas was modelled by an effective wave,

which consists of two stochastic processes. A combi-

nation of Fourier and polynomial expansion was used

to model the roll restoring force due to the travelling

effective wave. A further simplification was obtained

in the shallow water case, where a differential rela-

tionship between the stochastic processes, which

define the effective wave, was deduced. The stochas-

tic MDOF roll model can be used for fast simulations

in order to optimize a ship hull design against capsiz-

ing due to parametric resonance in the roll mode.

As an alternative approach to simulations, the Local

Statistical Linearization method can be used. It was

shown, how the MDOF roll model equations can be

analysed by the latter method.
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Stabilitäts-Versuche mit drei Fischdampfermo-
dellen. Werft, Rederei, Hafen, 1941, 22, 115–120.

6 Oh, I. G., Nayfeh, A. H., and Mook, D. T. A theoret-
ical and experimental investigation of indirectly
excited roll motion in ships. Phil Trans R Soc Lond
A, 2000, 358, 1853–1881.

7 Hashimoto, H. and Umeda, N. Nonlinear analysis of
parametric rolling in longitudinal and quartering
seas with realistic modeling of the roll–restoring
moment. J Mar Sci Technol, 2004, 9, 117–126.

8 Bulian, G. On an improved Grim effective wave.
Ocean Eng., 2008, 35, 1811–1825. (Nr. 17–18).

9 Grim, O. Beitrag zu dem Problem der Sicherheit des
Schiffes im Seegang. Schiff und Hafen, 1961, 6,
490–497.

10 Arnold, L., Chueshov, I., and Ochs, G. Stability and
capsizing of ships in random sea – a survey.
Nonlinear Dyn., 2004, 36, 135–179.

11 Dimentberg, M. F. Statistical dynamics of nonlinear
and time-varying systems, 1988 (Research Studies
Press, Taunton).

12 Onu, K. and Sri Namachchivaya, N. Stochastically
forced water waves in a circular basin. Proc. R. Soc. A,
2010, 466. (Nr. 2120).

13 Socha, L. Linearization Methods for Stochastic
Dynamic Systems., 2008 (Springer-Verlag, Berlin).
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