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A comparison of a level set method and the method of moving asymptotes
for the topology optimization of flexible components in multibody systems
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The gradient-based topology optimization of flexible multibody systems is considered, where the floating frame of reference
method is utilized to model the flexible components with an appropriate efficiency. Thereby, the quality of the optimization
results depends, among others, on the chosen gradient calculation strategy and the applied optimization algorithm. Here, both
a fully-coupled time-continuous adjoint sensitivity analysis and a weakly-coupled equivalent static load method are tested
for gradient calculation. Moreover, both the method of moving asymptotes and a level set method are taken to solve the
optimization problem. Different combinations of the mentioned gradient strategies and optimization algorithms are applied
for the topology optimization of a flexible piston rod in a slider-crank mechanism. The corresponding results and comparisons
shall be used as quality benchmarks for further studies.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

The method of flexible multibody systems is a well-established approach for modeling and analyzing dynamic systems, whose
components perform large non-linear motions including vibrations and deformations, see [14, 20]. Assuming that the body
deformations are small and linear elastic, the floating frame of reference method can be used to formulate the overall motion
of involved flexible components with high efficiency, and allows the compact description of the governing equations of the
flexible multibody systems, see [11, 13].

The topology optimization of flexible multibody systems is a challenging task of high interest. Currently, different fully-
and weakly-coupled methods are available to provide the gradient, which can be used within a gradient-based optimization
process, see also [5, 18] for different gradient strategies. In literature, the method of moving asymptotes (MMA) or level
set methods (LSM-s) are typically used to perform gradient-based optimization of flexible multibody systems, see [17] for
the MMA-algorithm and [3] for a review of level set methods. For instance, in [6, 8, 10], MMA-based weakly- and fully-
coupled topology optimization of flexible components in multibody systems are studied. Besides, in [19], a fully-coupled
shape optimization and in [16] a weakly-coupled topology optimization of flexible multibody systems based on level set
methods are proposed, where the design boundaries are described by the zero isosurface of a level set function defined over
the design domain. Nevertheless, little is known about the benefits and drawbacks of weakly- and fully-coupled optimizations
of flexible multibody systems solved by MMA- and level set-based algorithms. To this end, in the current work, the MMA-
algorithm from [17] and a modified level set algorithm from [1, 21] are applied for weakly- and fully-coupled compliance
minimizations of a flexible piston rod in a slider-crank mechanism. The corresponding optimization results and comparisons
shall help interested readers to select suited combinations of the methods in their own studies within an optimization of flexible
multibody systems.

The remainder of this work is organized as follows: In Section 2, the floating frame of reference method is addressed. A
time-continuous adjoint sensitivity analysis for a fully-coupled gradient calculation and an equivalent static load method for
a weakly-coupled gradient calculation are briefly described in Section 3. The application example is introduced in Section 4.
The optimization results are presented in Section 5. Lastly, Section 6 concludes with a summary of this work.

2 Floating frame of reference method

In the floating frame of reference method, the deformation is captured in a body-related reference frame, which in turn
undergoes large rigid body motions. Using a global Ritz approach, the elastic deformation uuuP for an arbitrary point P on the
elastic body can be approximated as

uuuP ≈ ΦΦΦPqqqe, (1)

where the matrix ΦΦΦP gathers the position-dependent global shape functions and qqqe is the vector of time-dependent elastic
coordinates. The global shape functions can, for instance, be obtained by a model order reduction from the underlying
finite element (FE-) model of the corresponding flexible components, see [12]. For an appropriate accuracy in modeling and
analyzing flexible multibody systems, often a finely discretized finite element model of the flexible component is considered,
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which can also be reused within a topology optimization process. An appropriate choice of the global shape functions then
allows for an efficient inclusion of the flexible components in the multibody simulation model and a compact formulation of
the corresponding equations of motion.

3 Fully- and weakly-coupled gradient calculation

In the current work, the integral compliance of flexible bodies over the simulation time interval [t0, t1] is chosen as objective
function. This objective function can be formulated as

ψ =

t1∫

t0

UUU⊤KKKUUU dt. (2)

Thereby, KKK is the global stiffness matrix and UUU the global vector of nodal displacements of the underlying FE-model. For the
gradient calculation, a time-continuous adjoint sensitivity analysis, see [7], as a fully-coupled strategy and the equivalent static
load method as a weakly-coupled gradient strategy, see [9], are applied. These methods are briefly described in the following.

In the time-continuous adjoint sensitivity analysis, the gradient ∇ψ, which describes the derivatives of the objective function
ψ with respect to the design variables xxx ∈ Rn, can be determined by variational calculus, see [2, 7]. In this work, the design
space consists of density-like parameters. These design variables correspond to the material filling of n finite elements. The
sought gradient results from the evaluation of the following integral function

∇ψ =

t1∫

t0

(
TTT x

OF −µµµ⊤TTT x
KR −ννν⊤TTT x

EM

)
dt. (3)

Here, µµµ and ννν are adjoint variables, which follow from the solution of an adjoint system. Moreover, the auxiliary vector
TTT x

OF and the auxiliary matrices TTT x
KR and TTT x

EM include, one after the other, the derivatives of the objective function, kinematic
relation and the equations of motion with respect to the design variables xxx. To calculate these terms, among others, the
derivatives of the global shape functions and of the volume integrals of the system equations with respect to the design
variables are required. The computational effort of these derivative calculations and of the gradient evaluation from Eq. (3)
depends directly on the number n of design variables. Hence, an appropriate reduction of the design variables helps to lower
the required computation time.

In contrast, in the utilized equivalent static load method for a weakly-coupled gradient calculation, the implicit dependen-
cies of the objective function ψ on the design variables are not included. Instead, the dynamic response is replaced by a set of
nesl equivalent static load cases, which lead to the same displacements UUU ′

ℓ at the chosen time points tesl
ℓ with ℓ=1:1 :nesl as

the dynamic response. Here, uniformly distributed time points over the simulation time interval [t0, t1] are taken. Considering
the simplification that the equivalent static loads are constant and design independent, the approximate gradient ∇ψesl with
respect to a design variable xi can in general be written as

∇ψ esl
i =− t1 − t0

nesl

nesl

∑
ℓ=1

(
UUU ′⊤

ℓ

∂KKK
∂xi

UUU ′
ℓ

)
, (4)

see [10] for more details.
To update the design within the MMA-based optimization, the gradient ∇ψ is passed to the MMA-algorithm, whereas in

the considered level set algorithm, the negative gradient ∇̃ψ := −∇ψ is used.

4 Application example

As an application example, a planar flexible slider-crank mechanism is considered, see Fig. 1. Similar examples can be found
in [7, 8, 10, 16, 19]. Here, the mechanism consists of a rigid crank with an effective length of 100mm, a flexible piston rod
with dimensions (400× 40× 10)mm and density ρ0 = 8750kg/m3, as well as a piston with mass m = 0.1kg. The flexible
rod is discretized by 200×20 planar bilinear elements. The interface elements of the flexible rod are assumed as rigid, and its
design domain consists of 198×20 inner elements with a reference Young’s modulus of E0 = 50GPa and a Poisson’s ratio of
ν = 0.3. It should be noticed that the studied slider-crank mechanism is assumed to move horizontally such that the gravity
is not involved. Moreover, the mass and inertia moment of the rigid crank have no influence on the dynamics of the modeled
system. For this reason, these component properties are not specified here.
In the transient analysis, the system motion of the flexible slider-crank mechanism is considered within a time period of T = 2s.
Thereby, the rigid crank starts at t0 = 0s from the rest position with the angle ϕ(0) = 0rad, the angular velocity ϕ̇(0) = 0rad/s,
and is continuously accelerated with a prescribed acceleration ϕ̈(t) until it reaches the angular position ϕ(2) = 12π rad and the
angular velocity ϕ̇(2) = 12π rad/s at t1 = 2s. In Fig. 2, ϕ(t), ϕ̇(t) and ϕ̈(t) are shown.
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It is worth mentioning that all implementations included in this work are carried out using MATLAB, and the corresponding
calculations are performed on a personal computer equipped with a 3.80GHzIntel® Xeon® E3− 1270v6 processor and 64
GB RAM.

x

y
ϕ

rigid crank

mass m
the flexible piston rod
design domain of

rigid interface
elements

Fig. 1: Flexible slider-crank mechanism
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Fig. 2: Crank motion

Both the continuous adjoint sensitivity analysis and the equivalent static load method are tested for the gradient calculation
within optimization processes of the flexible piston rod. As an example, the negative gradients ∇̃ψ and ∇̃ψesl for the com-
pletely filled flexible rod, see Fig. 3, are calculated and shown in Fig. 4. Thereby, each node i on the surface plot corresponds
to the gradient value with respect to the i-th design variable. The larger the negative gradient, the greater is the role of element
i in compliance minimization. On the contrary, the smaller the negative gradient ∇̃ψi, the lower is the contribution of element
i in the studied optimization problem.

It can be seen that the obtained gradients ∇̃ψ and ∇̃ψesl are not similar. The negative gradient ∇̃ψ obtained by the fully-
coupled gradient calculation includes the influence of design variables on the compliance caused by both structural inertia
and elasticity changes. Consequently, in Fig. 4a elements with a negative gradient ∇̃ψ bigger than 0 have a higher stiffness
contribution than costs caused by their inertia, whereas the elements with a negative gradient ∇̃ψ smaller than 0 are rather
likely to increase the compliance. In contrast, the negative gradient ∇̃ψesl from Fig. 4b includes only the dependency of
the compliance on a change of global stiffness matrix KKK. Hence, in this weakly-coupled case, the negative gradient ∇̃ψi of
each element is bigger than 0. This simplification of gradient calculation decreases the quality of optimization results. The
corresponding optimization examples are shown in the following.

y

x
400mm

40mm

Fig. 3: Flexible piston rod with a completely filled design domain
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(a) Negative gradient ∇̃ψ using fully-coupled gradient calculation
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(b) Negative gradient ∇̃ψesl using weakly-coupled gradient calculation

Fig. 4: Negative gradients of the completely filled flexible piston rod over the design domain
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4 of 6 Section 16: Shape Optimization

5 Optimization results

In the current work, the fully-coupled level set-based optimization (example A), the weakly-coupled level set-based optimiza-
tion (example B), the fully-coupled MMA-based optimization (example C) and the weakly-coupled MMA-based optimization
(example D) of the flexible piston rod are performed and compared. It is worth mentioning that in all examples, the underly-
ing FE-model of the flexible piston rod is parametrized by a modified solid isotropic material with penalization (SIMP) law,
see [4]. Hence, a comparison of the results is valid.

In all examples, the volume limit vmax is set to 0.4, and the design is developed within a chosen number nI=100 of
optimization iterations. The level set-based optimizations in the examples A and B start with a completely filled initial design
with a volume fraction v0 = 1, whereas the MMA-based optimization in examples C and D starts from a homogeneous grey
initial design with the volume fraction v0 = vmax. It should be noticed that the chosen initial designs in this work are the most
general cases without any preconditioning. Though, there are no limitations on the choice of other initial designs.

The optimization histories of the mentioned examples are shown in Fig. 5. The greyscale element-wise representation of
the final designs is given in Fig. 6, where the grey elements are those with a material filling between 0 and 1. Besides, the
corresponding problem definitions and optimization results are summarized in Tab. 1.

Among the studied examples, the final designs of the fully-coupled optimizations possess the lowest final compliances,
namely ψend=0.048Nmm (example A) and ψend=0.049Nmm (example C). Compared to these examples, the weakly-
coupled optimizations in examples B and D provide final designs of lower quality. In example B, a final design with a
compliance ψend=0.057Nmm and in example D, a final design of high greyness with ψend=0.073Nmm is reached. More-
over, the development of the volume fraction v in level set-based optimization examples A and B is different from MMA-
based optimization examples C and D, see Fig. 5b. In the examples A and B, an augmented Lagrangian method is used, see
also [1, 21]. This method allows to start with a volume fraction v0=1 far away from the volume limit vmax, and drives the
optimization process towards vmax. In contrast, the utilized MMA in the examples C and D includes a Lagrange-multiplier,
which keeps the volume fraction v in the whole optimization process less than or equal to the volume limit vmax. Despite
different implementations of the volume constraint, the optimization in all 4 examples converges to similar volume fractions.

It is known that the greyness in a level set-based topology optimization is limited to elements intersected by the zero
level set, whereas a standard SIMP optimization normally leads to a higher number of grey elements. This difference can
qualitatively be seen in the final designs in Fig. 6, which speaks in favor of less grey final designs of examples A and B using
the level set algorithm. Besides, for a quantitative comparison, the normalized greyness ḡ can be defined as

ḡ =
1
n

n

∑
i=1

4xi(1− xi). (5)

see also [15]. In Fig. 5c, the greyness histories of the mentioned examples are shown. In the examples A and B, the greyness
is in the beginning equal to 0, then increases slightly with the creation of new boundaries, and reaches moderate final values,
namely ḡend=0.12 in example A and ḡend=0.14 in example B. In contrast, in example C and D, the MMA-based optimization
starts with a greyness close to 1. The greyness then decreases during the optimization process, and reaches ḡend=0.21 in
example C and ḡend=0.47 in example D, which is clearly higher than the greyness of the final designs obtained by the level
set algorithm. It should be noticed that the slow convergence history and the poor final result in example D are due to the
described simplification included in the weakly-coupled gradient calculation and its combination with the MMA algorithm.

Next to the different qualities of the results obtained in the mentioned examples, the corresponding computational efforts
are also significantly different. Compared to the weakly-coupled gradient calculation, the fully-coupled variant is of a higher
complexity. Thereby, among others, the derivatives of the system matrices and, in particular, of the global shape functions
with respect to the design variables are required, whose calculation is CPU consuming. However, level set-based optimization
algorithms give a simple possibility to reduce the computational effort in the fully-coupled gradient calculation. In level
set-based optimizations, the boundaries between solid and void areas are implicitly given by the level set function. Since
the gradient of elements in the void areas is not required to develop the design, they can be excluded from the gradient
calculation in each optimization iteration. In this way, the computational effort can be reduced. The fully-coupled level
set-based topology optimization in example A with the mentioned savings takes 280 min, whereas the standard MMA-based
optimization in example C takes 403 min. On the other hand, the weakly-coupled optimization takes 50 min in example B
and 46 min in example D. It can be argued that the presented fully-coupled optimizations A and C provide results of higher
quality, whereas the weakly-coupled cases B and D are of lower computational effort.

6 Conclusion
In this work, fully- and weakly-coupled topology optimizations of flexible multibody systems are studied. Thereby, the float-
ing frame of reference method is used to model the flexible components. An adjoint sensitivity analysis is utilized for a
fully-coupled gradient calculation, and an equivalent static load method is employed for a weakly-coupled gradient calcula-
tion. These two gradient strategies are combined with both an MMA- and a level set algorithm to test different optimization
procedures of flexible multibody systems. As testing example, a compliance minimization of a flexible piston rod in a planar
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Fig. 5: Optimization histories of demonstration examples A, B, C and D

ψend=0.048Nmm,vend=0.400, ḡend=0.12 ψend=0.049Nmm,vend=0.400, ḡend=0.21

(a) Final design using fully-coupled gradient calculation (c) Final design using fully-coupled gradient calculation

ψend=0.057Nmm,vend=0.400, ḡend=0.14

(b) Final design using weakly-coupled gradient calculation

ψend=0.073Nmm,vend=0.400, ḡend=0.47

(d) Final design using weakly-coupled gradient calculation

and level set method - example A

and level set method - example B

and method of moving asymptotes - example C

and method of moving asymptotes - example D

Fig. 6: Final designs of demonstration examples A, B, C and D

Table 1: Problem definitions and optimization results of demonstration examples A, B, C and D

Example A B C D

Optimization approach LSM LSM MMA MMA
Coupling strategy fully-coupled weakly-coupled fully-coupled weakly-coupled
Width/length ratio
(FE-discretization)

1/10
(20×200)

1/10
(20×200)

1/10
(20×200)

1/10
(20×200)

Volume limit vmax 0.4 0.4 0.4 0.4
Successful iterations ns 100 100 100 100
Final compliance ψend [Nmm] 0.048 0.057 0.049 0.073
Final volume fraction vend 0.400 0.400 0.400 0.400
Final greyness ḡend 0.12 0.14 0.21 0.47
Computation time [min] 280 50 403 46

slider-crank mechanism is used. The optimization results reveal, among others, some benefits of level set-based optimiza-
tions compared to the MMA-based ones. In general, the level set-based optimization results are of lower greyness. The
weakly-coupled level set-based optimization converges faster and reaches a significantly smaller final compliance than in
the MMA-based case. Besides, in the level set-based optimization, grey elements arise only around the boundaries, and
the void elements can be simply excluded from the gradient calculation. This helps to reduce the computational effort of a
CPU-intensive adjoint sensitivity analysis in the fully-coupled optimization case.
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