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Summary

The work at hand deals with fractional powers of non-negative operators, closed linear but

typically discontinuous operators ful�lling a resolvent growth estimate, in quasi-complete

Hausdor� locally convex spaces. In particular, the special case of a Banach space is incor-

porated. Basic properties of such operators in locally convex spaces, among them many

properties known from the Banach space case but also things characteristic for more gen-

eral locally convex spaces such as the stability of the class under formation of inductive and

projective limits, are studied. The proofs for the properties which also could be formulated

in Banach spaces are similar to the proofs there and do not cause greater problems.

Afterwards the ε-product, a concept to describe certain classes of vector-valued functions,

will be introduced and used to formulate what is meant by a functional calculus in this

particular setting. When using a concrete representation of the objects in the studied

algebras, the formulae arising from this approach take their expected form. Two well known

functional calculi, namely the Hille-Phillips as well as the Stieltjes functional calculus, will

be introduced and extended.

The Stieltjes calculus then will be used to introduce and study fractional powers of

non-negative operators. A couple of expected properties known from the Banach space

situation, such as power laws and the possibility of using the Balakrishnan formula, will

be investigated and con�rmed.

As an application of the so far introduced theory, existence and uniqueness of solutions

of the Ca�arelli�Silvestre Problem in locally convex spaces with the above mentioned

properties will be studied. The uniqueness and existence result will be proved under the

slightly more restrictive assumption that the involved operator is actually sectorial which

is in general a strict sub�class of the non�negative operators in locally convex spaces.

Still the achieved result generalises the situation from the Banach space setting to the

framework of locally convex spaces.
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1. Introduction

Fractional powers of closed linear operators in Banach spaces are a classical topic in op-

erator theory. To be more speci�c, it plays a signi�cant role with numerous applications

in the classical theory of ODEs, stochastics, interpolation theory, maximal regularity, and

Cauchy-type initial value problems. The main question of the entire theory may be boiled

down to an essence by asking whether, for a given closed linear operator A in some space

X and a complex number α ∈ C, we can de�ne an operator Aα which we will call the

fractional power of the operator A in such a way that the fractional power inherits prop-

erties of the `base' operator A (one may think of continuity or closedness) and such that

the fractional powers behave as we would expect from the study of the possibly simplest

instance of the here pictured scenario which is considering the Banach space C. So for

example one would expect the power laws AαAβ = Aα+β as well as (Aα)β = Aαβ assuming

the latter makes sense.

Historically, and surely subject to di�erent interpretations, one can say that the research

on this topic actually dates back to the 17th century and the early days of calculus when

mathematicians found laws comparable to power laws hidden in the newly created theory.

It is an interesting question by itself to study possible interpolations between n-folded

applications of di�erentiation and integration apparently �rst raised by L'Hôpital in a letter

to Leibniz in 1695 and subsequently studied by Euler, Lagrange, Laplace, and Fourier.

All the so far mentioned mathematicians contributed directly or indirectly to the above

raised question, though, they did not have a particular application in mind which changed

when Abel used the calculus indirectly to solve a generalised Tautochrone problem. Abel's

solution stimulated further deep research in the �eld carried out by Liouville and Riemann.

The historical roots of the subject also explain the today's term `fractional' as from the

interpolation point of view one naturally �rst considers operators with rational exponents.

At the present time the term is somewhat misleading since even the consideration of

complex exponents found their applications. For many more interesting details on the

history, the reader be adviced to have a look at [55].

At the beginning of the 20th century functional analysis and in particular operator

theory developed and provided the language and the tools for a more abstract study
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of fractional powers but, to the best of the authors knowledge, it took almost 50 more

years till new studies on fractional powers took place. This was not due to a lack of

possibilities. The spectral theory of normal operators provided already a �rst instance of

what is now commonly called a functional calculus, and one could have easily explored

properties of fractional powers for A being a normal operator on a Hilbert space whose

spectrum lies inside a �xed sector of the complex plane not intersecting the negative reals

and with Aα de�ned by means of the spectral theorem. It seems that it was the missing

application for a general theory outside the realm of calculus which rendered the topic

somehow uninteresting. This gap was closed in 1949 by Bochner who studied in [9] the

notion of subordination (a term introduced by the same author in [10]) in stochastics which

provided a �rst alternative to the description of fractional powers via spectral theory. The

underlying theory was actually already abstracted some time before from the stochastic

context to general Banach spaces by Hille in [29] and subsequently extended in [4, 53, 54]

to what now is called the Hille-Phillips calculus. In terms of operator theory one obtains

fractional powers of an operator A when −A is the generator of a bounded C0-semigroup

by plugging in the operator A in the function λ ↦→ e−zλα
and considering the negative

generator of the so obtained new C0-semigroup which is Aα. For a thorough treatment of

subordination and further details on the history including sources, the reader my consult

the book [57, Chap. 13] while more information on the Hille-Phillips calculus are available

in [27].

A. V. Balakrishnan extended the construction of fractional powers in 1960 in [5] to the

wider class of non-negative operators, a term coined by Komatsu in [36] who studied the

topic intensively as well in a series of papers beginning with [34]. He also introduced

interpolation space methods in the study of fractional powers in [35] and connected them

to the real interpolation technique introduced by Lions and Peetre in [41]. The complex

interpolation technique introduced by Calderón ([14]) seems to enter the stage the �rst

time in [60]. The general coincidence of domains of fractional powers for base operators

with the property to have so-called bounded imaginary powers and complex interpolation

spaces was shown in [68].

In the context of Banach spaces a non-negative operator A has the negative reals con-

tained in its resolvent set and ful�lls an additional resolvent estimate on them. In Banach

spaces these operators coincide with sectorial operators as introduced in [25, 33]. An op-

erator is sectorial if an entire sector symmetric around the negative real axis is contained

in the resolvent set and if an estimate on the resolvent operators is available on all proper

subsectors. Sectorial operators in this sense are automatically non-negative, and the con-

verse implication in Banach spaces follows from the Neumann series. They are, however,
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by no means the most general class of operators for which one can de�ne fractional powers.

Indeed, all classes typically used as base for fractional powers share the property that the

negative reals are contained in the operators resolvent sets but weaker resolvent estimates

than those used for sectorial operators su�ce to de�ne fractional powers. For an exam-

ple see [18] where the authors studied operators with polynomial growing resolvents as

well as so-called regularised operators. However, from a functional calculus point of view

the resolvent estimates de�ning sectorial operators feel, at least for the author, to be the

most natural conditions providing a good compromise between applicability, generality,

and richness of results.

Coming back to Balakrishnan's work, in re�exive spaces such as Hilbert spaces secto-

rial operators are automatically densely de�ned. Studying the Balakrishnan construction

carefully it is revealed that using his construction actually means to consider a certain part

of the operator A which is always densely de�ned. Without this assumption a reasonable

spectral mapping theorem cannot be proved and one even fails to obtain A1 = A. Thus,

until 1988 a sensible way to de�ne fractional powers for non-densely de�ned operators was

missing. This gap got closed by Marco, Martinez and Sanz in [42] who provided an at �rst

glance more complicated de�nition which turned out to be a proper generalisation of the

Balakrishnan de�nition including the spectral mapping theorem and the above mentioned

equation A1 = A even for A not being densely de�ned.

From a today's point of view Balakrishnans construction is part of the modern calculus of

sectorial operators as it was introduced in the groundbreaking paper [45]. A very detailed

study of the entire topic is available in [25]. Indeed, it is a very natural approach to de�ne

Aα by trying to plug in the operator A in the function λ ↦→ λα. Other calculi besides

the sectorial calculus can be used to de�ne fractional powers as well. To mention two

examples, one could directly make use of the halfplane calculus, the natural choice for

generators of bounded C0-semigroups which are not analytic ([6]), or de�nes the powers

as generators of subordinated semigroups de�ned by means of the Hille-Phillips calculus,

i.e., make use of Bochner's subordination mentioned before and thus de�nes them using

the calculus indirectly.

We already mentioned that in Banach spaces there is no need to distinguish between

sectorial and non-negative operators. This is not anymore true in more general locally

convex spaces. For this reason the development of a new calculus, refraining from using

the property of sectoriality, became necessary in order to extend the theory to non-negative

operators in locally convex spaces. A �rst version of such a calculus was already contructed

in 1977 by Hirsch ([30]) and extended and used in [15] to generalise the theory to Fréchet

spaces and beyond the realm of sectorial operators. Further simpli�cations and generali-
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sations as well as a quite complete overview of many applications of fractional powers are

contained in the book [44]. However, because of the interest of many people in the Banach

space situation only, the book merely sketches what to do in locally convex spaces and

leaves it to the reader to �ll the details. Moreover, the very systematic and appealing view

on general functional calculi, as applied in [25], did not enter in [44] (for the obvious reason

that the former work was carried out 5 years after [44] was written).

In the beginning we mentioned manifold applications of fractional powers in di�erent

�elds of mathematics. A rather recent one is the description of a generalised Dirichlet-

to-Neumann operator. This application was �rst considered for the special case of the

Laplacian by Ca�arelli and Silvestre in 2007 in the celebrated work [13]. In this work

the viewpoint was converse to what was just said. The authors used the Dirichlet-to-

Neumann operator to describe the fractional power. Later the situation got generalised

to the abstract realm by various others introducing completely new (in fact functional

calculus) techniques, see [3, 23, 48, 47, 49, 63]. As it �nally turned out, the Dirichlet-to-

Neumann operator is very much equivalent to the fractional power.

Based on this short summary and overview of the research �eld, the thesis at hand is

structured as follows. In Chapter 2 we will collect basic notions of locally convex vector

spaces, introduce the main class of operators we are going to study (namely non-negative

operators), and prove some properties for them. The following Chapter 3 will be devoted

to the study of the functional calculi in locally convex spaces. We will introduce the notion

of ε-products and use it to establish the Hille-Phillips as well as the Stieltjes calculus. The

latter will be used in Chapter 4 to de�ne fractional powers and study their properties.

Afterwards, the equivalence of the `real' powers with the indirect description as generators

of holomorphic semigroups stemming from subordination will be shown. The �nal Chapter

5 then deals with the Ca�arelli�Silvestre Extension Problem and its solution.
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2. Basics

In this �rst chapter we shall de�ne the basic structures which will be considered in the

dissertation in its full generality, and we will prove the �rst elementary properties. The

structure of the chapter is motivated by [44] where (among many other books) the corre-

sponding properties for sectorial operators in Banach spaces are proven and where aspects

of the situation in locally convex spaces are discussed. From now on X shall denote a

locally convex vector space (LCS) over the �eld C unless otherwise speci�ed. A system of

continuous seminorms ∥·∥p generating the topology ofX will be denoted by PX . Every such

system will, w.l.o.g., be assumed to be directed which means that for every ∥·∥p , ∥·∥q ∈ PX

we can �nd ∥·∥r ∈ PX and C > 0 such that max{∥·∥p , ∥·∥q} ≤ C ∥·∥r. All LCS in the

thesis shall always assumed to be Hausdor�. In terms of seminorms the Hausdor� property

may be characterised by

(∀ ∥·∥p ∈ PX : ∥x∥p = 0) ⇒ x = 0.

By U we shall denote the set of all 0-neighborhoods.

A set A ⊆ X is said to be convex if for all x, y ∈ A, t ∈ [0, 1] we also have tx+(1−t)y ∈ A

and it is balanced if x ∈ A implies rx ∈ A for all r ∈ C with |r| ≤ 1. A balanced, convex

set is called absolutely convex . Equivalently, one can characterise absolute convexity by

the fact that x, y ∈ A, α, β ∈ C, |α|+ |β| ≤ 1 implies αx+ βy ∈ A. Every LCS X admits

a basis of 0-neighbourhoods which are absolutely convex.

Also recall that a set B ⊆ X is called bounded if for all U ∈ U there is c ∈ C such

that B ⊆ cU . De�ne the ball of radius r > 0 around x ∈ X w.r.t. the seminorm ∥·∥p by

Bp(x, r) := {x ∈ X | ∥x∥p < r}. Then it is already su�cient for a set to be bounded if

∀ ∥·∥p ∈ PX ∃r > 0 : B ⊆ Bp(0, r).

Furthermore, one can rephrase boundedness in terms of seminorms and gets that a set

B ⊆ X is bounded if and only if

∀ ∥·∥p ∈ PX : sup
x∈B

∥x∥p <∞.
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An LCS is said to be quasi-complete if every bounded Cauchy net is convergent in X. From

now on we also want to assume that X is quasi-complete. Other additional assumptions

about X will be introduced at the points where they are needed. For two LCS X and Y we

shall denote by C(X, Y ) the set of all closed linear operators A de�ned on some subspace

D(A) ⊆ X to Y . In case X = Y we brie�y write C(X). By L(X, Y ) we denote the set of

all continuous linear operators from X to Y which we assume to be de�ned on the whole

of X. One should have in mind that every continuous linear operator is locally bounded ,

i.e., maps bounded sets into bounded sets but the converse may be wrong unless X has

the property to be bornological, see [56, Chap. II, Prop. 8.3]. As in the case for closed

operators, we write L(X) instead of L(X,X). For an overview and more information on

LCS the reader may consult [50, 56].

A family (Aα)α∈A in L(X) is said to be equicontinuous if

∀ ∥·∥p ∈ PX ∃C > 0, ∥·∥q ∈ PX ∀x ∈ X : sup
α∈A

∥Aαx∥p ≤ C ∥x∥q .

Similar to the case of a Banach space we shall de�ne the resolvent set of a linear operator

A on X to be ρ(A) := {λ ∈ C | (λ− A)−1 ∈ L(X)}, and we will call σ(A) := C \ ρ(A) the
spectrum of the operator A. We are now going to introduce the basic class of operators

which we will study.

De�nition 2.0.1. Let A ∈ C(X). The operator A is called non-negative if (−∞, 0) ⊆ ρ(A)

and if the family (︁
λ(λ+ A)−1

)︁
λ>0

is equicontinuous which means that

∀ ∥·∥p ∈ PX ∃M > 0, ∥·∥q ∈ PX ∀x ∈ X : sup
λ>0

⃦⃦
λ(λ+ A)−1x

⃦⃦
p
≤M ∥x∥q .

We denote by M(X) the set of all non-negative operators on an LCS X.

The here introduced notion of non-negativity is taken from [44] and generalises the

common concepts, as de�ned for instance in [5], for Banach spaces. Occasionally authors

also include further assumptions such as dense domain, injectivity, or dense range. This

shall not be included in our de�nition and will explicitly be stated when needed. Let us

have a look at examples and non-examples. Before, let us agree that for z ∈ C\(−∞, 0] the

symbol arg(z) ∈ (−π, π) denotes the unique number such that z = |z| ei arg(z) and denote

for ω ∈ [0, π) the closed sector of angle ω by Sω := {z ∈ C \ (−∞, 0] | |arg(z)| ≤ ω} ∪ {0}.
Furthermore, the reader may recall that an operator semigroup is a family (e−zA)z∈Sω
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in L(X), ω ∈ [0, π
2
], such that e−0A = 1X , 1X being the identity, and ∀z, w ∈ Sω :

e−zAe−wA = e−(z+w)A. From this property it follows that the single operators of the family

commute with each other. The semigroup is called strongly continuous or a C0-semigroup

if ∀x ∈ X : limz→0, z∈Sω e
−zAx = x. Having these de�nitions in mind, let us have a look on

known examples.

Example 2.0.2.

(a) Let Ω be a Hausdor� locally compact space with Radon measure µ. For p ∈ [1,∞]

set X := Lp
loc(Ω), and choose f ∈ L0(Ω) to de�ne A : D(A) → X via Ag := fg with

domain D(A) := {g ∈ X | fg ∈ X}. Similar to the case of Lp
loc(Ω) being replaced

with Lp(Ω), one shows that A is a closed operator, and A ∈ L(X) if and only if

f ∈ L∞
loc(Ω). If f /∈ L∞

loc(Ω), then A is densely de�ned if and only if p ∈ [1,∞).

Moreover, it is always true that σ(A) = Ress(f). Finally, A ∈ M(X) if and only if

for every compact set K ⊆ Ω there is a number ωK ∈ [0, π) with the property that

Ress(f · 1K) ⊆ SωK
.

(b) Let A be a normal operator in a Hilbert space X. Then A is non-negative if and only

if there is ω ∈ [0, π) with the property that σ(A) ⊆ Sω. This is proven in [44, Thm.

1.3.5].

(c) Let X be an LCS and −A the generator of an equicontinuous C0-semigroup. Then

A is non-negative. This follows from an extension of the Hille�Yosida Theorem to

LCS, see [69, Chap. IX, Sect. 7].

(d) Let X be a Banach space, and let −A be the generator of a C0-semigroup with growth

bound ω0 ∈ R. Let ω > ω0. Then A + ω is non-negative. This follows from the

classical Hille�Yosida Theorem for Banach spaces ([20, Sect, II, Thm. 3.8]).

(e) An operator which will often cross our path is the (negative) Laplacian −∆ de�ned

on various spaces. Many of its realisations (sometimes involving a small shift) are

actually generators of equicontinuous semigroups and, hence, are non-negative. So

for example, the negative Laplacian de�ned on H1
0 (Ω), Ω ⊆ Rn open (Dirichlet-

Laplacian) or its Neumann equivalent are such realisations. One may also consider

other Lp-spaces (which will lead to geometric constraints on Ω, see [67, Thm. 3.8])

or spaces of continuous functions. As for distributional realisations, one can say that

−∆ + ε, ε > 0, is non-negative on the Schwartz space S (Rn) of rapidly decreasing

smooth functions but just −∆ is not though, see [44, Rem. 5.6.2].
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Equicontinuity of the family of resolvent operators implies strong continuity and even

better di�erentiability of the family as the following proposition shows.

Proposition 2.0.3. Let A ∈ M(X). Then

∀x ∈ X :
(︁
(0,∞) ∋ λ ↦→ (λ+ A)−1 x

)︁
∈ C∞(︁(0,∞);X

)︁

Proof. By the resolvent identity it follows that for every ∥·∥p ∈ PX and λ, µ > 0 there is

C > 0 and ∥·∥q ∈ PX such that

⃦⃦
(λ+ A)−1 x− (µ+ A)−1 x

⃦⃦
p
= |λ− µ|

⃦⃦
(µ+ A)−1 (λ+ A)−1 x

⃦⃦
p
≤ C

|λ− µ|
λµ

∥x∥q .

Hence, λ ↦→ (λ+ A)−1 x is even locally Lipschitz continuous. The continuity in turn

implies, again by the resolvent identity, di�erentiability since for λ > 0, h ∈ R such that

λ+ h > 0 there is C > 0 with

⃦⃦
(λ+ h+ A)−1 x− (λ+ A)−1 x+ h (λ+ A)−2 x

⃦⃦
p

≤ C |h|
λ

⃦⃦
(λ+ h+ A)−1 x− (λ+ A)−1 x

⃦⃦
q
.

Continuity of the derivative is a consequence of the geometric sum formula which states

that for a, b ∈ C, n ∈ N it holds that

(an − bn) = (a− b)
n−1∑︂
k=0

akbn−1−k.

Applied to the �rst derivative this gives, again for some C > 0, for instance

⃦⃦
(λ+ A)−2x− (µ+ A)−2x

⃦⃦
p

=
⃦⃦(︁

(λ+ A)−1 + (µ+ A)−1
)︁(︁
(λ+ A)−1 − (µ+ A)−1

)︁
x
⃦⃦
p

≤C
λ+ µ

λµ

⃦⃦
(λ+ A)−1x− (µ+ A)−1x

⃦⃦
q

and similar for higher derivates. Arguing inductively, one �nds

dn

dλn
(λ+ A)−1 x = (−1)nn! (λ+ A)−(n+1) x

and the claim is proven.

8



Let X be a Banach space and A ∈ C(X) such that ρ(A) ̸= ∅. In this situation ρ(A) is

open in C and the mapping ρ(A) ∋ λ→ (λ−A)−1 ∈ L(X) is holomorphic even w.r.t. the

operator topology. This is not necessarily true in LCS as the following example shows.

Example 2.0.4. We consider the Fréchet space X := {f ∈ C∞(︁[0, 1])︁ | ∀n ∈ N0 :

f (n)(0) = 0} with its usual topology induced by seminorms

∥f∥n := max
0≤k≤n

sup
x∈[0,1]

⃓⃓
f (k)(x)

⃓⃓
(n ∈ N0).

Consider the operator A given by

(Af) (x) :=

x∫︂
0

f(t)dt.

This is a continuous operator with continuous inverse given by the derivative. Both oper-

ators have resolvent set C and the resolvent of A−1 is given by (λ ∈ C, g ∈ X)

(︂(︁
λ− A−1

)︁−1
g
)︂
(x) = −eλx

x∫︂
0

e−λtg(t)dt.

Now let λ > 0 and note that

(λ− A)−1 = −1

λ

(︃
1

λ
− A−1

)︃−1

A−1.

Choose x ∈ (0, 1] and g ∈ X de�ned by g(t) := e−
1
t , t > 0, g(0) := 0. For this particular g

we have g′ ≥ 0 on [0, 1] and for every [a, b] ⊂ (0, 1) there is c > 0 such that g′(t) ≥ c for

t ∈ [a, b]. So

λ
(︂(︁
λ− A−1

)︁−1
g
)︂
(x) = −λeλx

x∫︂
0

e−λtg(t)dt = g(x)− eλx
x∫︂

0

e−λtg′(t)dt

≤ g(x)− min
t∈[x2 ,x]

g′(t)eλx
x∫︂

x
2

e−λtdt

= g(x) + min
t∈[x2 ,x]

g′(t)
1− eλ

x
2

λ
→ −∞
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as λ→ ∞. Hence, if we choose f := Ag with g as above we conclude that

lim
λ→0+

(λ− A)−1f = lim
λ→0+

−1

λ

(︃
1

λ
− A−1

)︃−1

g

does not even exists pointwise for x ∈ (0, 1].

Remark 2.0.5. Let A ∈ M(X). Note that because of A(λ+A)−1 = 1− λ(λ+A)−1 also

the family
(︁
A(λ+ A)−1

)︁
λ>0

is equicontinuous.

Proposition 2.0.6. Let A ∈ C(X) and such that (−∞, 0) ⊆ ρ(A). Then A ∈ M(X) and

0 ∈ ρ(A) if and only if the family
(︁
(λ + ε)(λ + A)−1

)︁
λ>0

is equicontinuous for some, and

hence all, ε > 0.

Proof. Assume A ∈ M(X) and 0 ∈ ρ(A). We only have to show that
(︁
(λ + A)−1

)︁
λ>0

is

equicontinuous in order to establish the �rst part of the equivalence. This follows from

Remark 2.0.5 and the continuity of A−1 since for a given seminorm ∥·∥p ∈ PX we have

∃C,D > 0, ∥·∥q , ∥·∥r ∈ PX ∀x ∈ X, λ > 0 :⃦⃦
(λ+ A)−1x

⃦⃦
p
=
⃦⃦
AA−1(λ+ A)−1x

⃦⃦
p
=
⃦⃦
A(λ+ A)−1A−1x

⃦⃦
p
≤ C

⃦⃦
A−1x

⃦⃦
q
≤ CD ∥x∥r .

So
(︁
(λ+ A)−1

)︁
λ>0

is equicontinuous.

Conversely, let
(︁
(λ+ ε)(λ+ A)−1

)︁
λ>0

be equicontinuous. From

(λ+ A)−1 =
1

λ+ ε
(λ+ ε)(λ+ A)−1,

it follows that
(︁
(λ+A)−1

)︁
λ>0

is equicontinuous. Consider its closure in L(X) with respect

to the topology of pointwise convergence. By [56, Chap. III, Prop. 4.3] this closure is

again equicontinuous and since X is quasi-complete it is even complete by [56, Chap. III,

Prop. 4.4]. By the resolvent identity and equicontinuity the net
(︁
(λ+A)−1

)︁
λ>0

is a Cauchy

net as λ→ 0+ and hence it is convergent. Using the closedness of A, one �nds

∀x ∈ X : lim
λ→0+

(λ+ A)−1x = A−1x.

So 0 ∈ ρ(A). What is left, namely A ∈ M(X), follows directly from the equicontinuity of(︁
(λ+ ε)(λ+ A)−1

)︁
λ>0

and
(︁
(λ+ A)−1

)︁
λ>0

since

λ(λ+ A)−1 = (λ+ ε)(λ+ A)−1 − ε(λ+ A)−1.

Remark 2.0.7. A system B ⊆ 2X of bounded sets is called bornology if it covers X and if
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it is stable under inclusion and �nite unions. Every such bornology gives rise to a locally

convex topology on L(X). Namely, for A ∈ L(X) and B ∈ B we can de�ne a seminorm

by

∥A∥B,p := sup
x∈B

∥Ax∥p

where ∥·∥p is a continuous seminorm on X. The supremum is always �nite since by

continuity of A the set A(B) ⊆ X is bounded. In the following LB(X) will denote L(X)

equipped with the topology induced by B. The topology of pointwise convergence is the

coarsest possible choice. The corresponding bornology is the bornology of �nite subsets of

X. In the above proof every �ner topology induced by a bornology could have been used.

We denote by β the strong topology on X ′, i.e., the topology of uniform convergence on

the bounded sets of X. The resulting LCS shall be denoted by X ′
β and is called the strong

dual of X.

Lemma 2.0.8. Let A ∈ M(X).

1. If A is injective, one has A−1 ∈ M(X).

2. Let A be densely de�ned and A′ : D(A′) → X ′
β. Then A

′ ∈ M(X ′
β).

Proof.

1. The �rst part follows from the identity

λ
(︁
λ+ A−1

)︁−1
= A

(︃
1

λ
+ A

)︃−1

which one has to combine with Remark 2.0.5.

2. Since A is densely de�ned, one can de�ne the operator A′. Let now B ⊂ X bounded

be given. By equicontinuity it holds that

B̃ :=
⋃︂

λ∈(0,∞)

λ (λ+ A)−1 (B)

is bounded. This can be seen as follows. Let V ∈ U be given. By equicontinuity we

can choose U ∈ U such that ⋃︂
λ∈(0,∞)

λ (λ+ A)−1 (U) ⊆ V,

11



see [56, Chap. III, 4.1]. For this U there is c ∈ C with B ⊆ cU . It follows that

B̃ ⊂ cV . Now one can estimate for f ∈ X ′

sup
x∈B

⃓⃓⃓
⟨λ (λ+ A′)

−1
f, x⟩

⃓⃓⃓
= sup

x∈B

⃓⃓
⟨f, λ (λ+ A)−1 x⟩

⃓⃓
≤ sup

y∈B̃
|⟨f, y⟩| .

This proves the claim.

We continue with a number of standard approximation results.

Lemma 2.0.9. Let A ∈ M(X) and x ∈ X. Then

1. x ∈ D(A) ⇔ ∀k ∈ N : lim
λ→∞

λk(λ+A)−kx = x ⇔ ∀k ∈ N : lim
λ→∞

Ak(λ+A)−kx = 0.

In particular, ∀k ∈ N : D(A) = D(Ak).

2. x ∈ R(A) ⇔ ∀k ∈ N : lim
λ→0+

λk(λ+A)−kx = 0 ⇔ ∀k ∈ N : lim
λ→0+

Ak(λ+A)−kx = x.

In particular, ∀k ∈ N : R(A) = R(Ak).

3. ∀k, n ∈ N : D(A) ∩R(A) = D(Ak) ∩R(An).

Proof.

1. Let x ∈ D(A). The geometric sum formula yields

x− λk(λ+ A)−kx =
k−1∑︂
l=0

λl(λ+ A)−l
(︁
x− λ(λ+ A)−1x

)︁
.

Choose ∥·∥p ∈ PX and note that for every l ∈ N the family
(︁
λl(λ + A)−l

)︁
λ>0

is

equicontinuous to estimate

⃦⃦
x− λk(λ+ A)−kx

⃦⃦
p
≤

k−1∑︂
l=0

Cl

⃦⃦
x− λ(λ+ A)−1x

⃦⃦
ql
.

Hence, we can concentrate on the expression x − λ(λ + A)−1x. Assume for the

beginning even x ∈ D(A). Then

⃦⃦
x− λ(λ+ A)−1x

⃦⃦
p
≤
C ∥Ax∥q

λ
→ 0

as λ→ ∞. The result follows for all x ∈ D(A) by density since we can choose a net

12



(xα) in D(A), xα → x and estimate

∥λ(λ+ A)x− x∥p
≤
⃦⃦
λ(λ+ A)−1(x− xα)

⃦⃦
p
+
⃦⃦
λ(λ+ A)−1xα − xα

⃦⃦
p
+ ∥xα − x∥p

≤C ∥xα − x∥q +
⃦⃦
λ(λ+ A)−1xα − xα

⃦⃦
p
+ ∥xα − x∥p

where we used again the equicontinuity of
(︁
λ(λ+ A)−1

)︁
λ>0

.

Suppose now

∀k ∈ N : lim
λ→∞

λk(λ+ A)−kx = x.

The second implication follows from the binomial theorem since

Ak(λ+ A)−kx =
k∑︂

l=0

(︃
k

l

)︃
(−1)lλl(λ+ A)−lx→

k∑︂
l=0

(︃
k

l

)︃
(−1)lx = 0.

For the last step let

∀k ∈ N : lim
λ→∞

Ak(λ+ A)−kx = 0

and argue as before to get

λk(λ+ A)−kx =
k∑︂

l=0

(︃
k

l

)︃
(−1)lAl(λ+ A)−lx→ x,

i.e.,

D(Ak) ∋ λk(λ+ A)−kx→ x.

Hence, x ∈ D(A).

As a byproduct we even get D(Ak) = D(A).

2. The proof of the second part is completely analogous to the �rst part and will be

omitted. Note however, that similar as before R(Ak) = R(A) holds.

3. From the �rst and the second part it follows that

D(Ak) ∩R(An) ⊆ D(Ak) ∩R(An) = D(A) ∩R(A)

which shows the �rst inclusion.

For the other inclusion let x ∈ D(A) ∩ R(A), λ > 0, and set xλ := An(λ +
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A)−n
(︁
1
λ

)︁k (︁ 1
λ
+ A

)︁−k
x. Then xλ ∈ D(Ak) ∩R(An) ⊆ D(Ak) ∩R(An) and

∥xλ − x∥p ≤

⃦⃦⃦⃦
⃦An(λ+ A)−n

(︄(︃
1

λ

)︃k (︃
1

λ
+ A

)︃−k

x− x

)︄⃦⃦⃦⃦
⃦
p

+
⃦⃦
An(λ+ A)−nx− x

⃦⃦
p

≤C

⃦⃦⃦⃦
⃦
(︃
1

λ

)︃k (︃
1

λ
+ A

)︃−k

x− x

⃦⃦⃦⃦
⃦
q

+
⃦⃦
An(λ+ A)−nx− x

⃦⃦
p

→ 0 as λ→ 0+.

The presented approximation results lead to a couple of interesting corollaries.

Corollary 2.0.10. Let A ∈ M(X). Then we have that

1. N (A) ∩R(A) = {0}. Consequently, R(A) = X ⇒ N (A) = {0}.

2. if D(A) is equipped with the subspace topology, then A ∈ L(D(A)) ⇒ D(A) = X.

3. if D(A) ⊊ X, then for all n ∈ N R(An) ̸⊂ D(A), and if R(A) ⊊ X, then n ∈ N
D(An) ̸⊂ R(A).

4. ∀k ∈ N : N (A) = N (Ak).

Proof.

1. Let x ∈ N (A) ∩R(A). Then

x = lim
λ→0+

A(λ+ A)−1x = 0.

2. Let x ∈ X. Then there are constants M,C > 0 such that

⃦⃦
A(λ+ A)−1x

⃦⃦
p
≤ C

⃦⃦
(λ+ A)−1x

⃦⃦
q
≤ C ·M ∥x∥r

λ
→ 0 as λ→ ∞.

Hence, x ∈ D(A) by Lemma 2.0.9. Furthermore, since A is closed, we also have

D(A) = D(A). So by arbitraryness of x we get D(A) = X.

3. For the �rst claim choose x /∈ D(A), λ > 0 and n ∈ N. Then

R(An) ∋ An(λ+ A)−nx = x+
n∑︂

k=1

(︃
n

k

)︃
(−1)kλk(λ+ A)−kx /∈ D(A).
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Similarly for the second part choose x /∈ R(A) and λ, n as above and derive analo-

gously

D(An) ∋ λn(λ+ A)−nx = x+
n∑︂

k=1

(︃
n

k

)︃
(−1)kAk(λ+ A)−kx /∈ R(A).

4. The inclusion N (A) ⊆ N (Ak) is clear. Conversely, let x ∈ N (Ak). For λ > 0 we

conclude

0 = (λ+ A)−1Akx→ Ak−1x as λ→ 0+.

Arguing inductively yields the claim.

More things can be proven by strengthening the assumptions on the space X. For this

let again β denote the strong topology on X ′ and denote the strong dual by X ′
β. We

de�ne the bidual X ′′ to be the dual space of X ′
β, i.e., X

′′ := (X ′
β)

′. An LCS X is called

semi-re�exive if X ′′ ≃ X, i.e., X ′′ is linearly isomorphic to X. Moreover, one may equip

X ′′ with the topology of uniform convergence on the bounded sets of X ′
β (by analogy to

what has been said we may denote the result by X ′′
β), call it strong bidual, and say that X

is re�exive if X ′′
β ≃ X, i.e., the spaces are even topologically isomorphic. For semi-re�exive

spaces we can improve on the �rst part of Corollary 2.0.10.

Corollary 2.0.11. If X is semi-re�exive and A ∈ M(X), it follows that D(A) = X and

X = N (A)⊕R(A). In particular, we obtain R(A) = X ⇔ N (A) = {0}.

Proof. From semi-re�exivity, it follows that every bounded set is relatively compact w.r.t.

the weak topology σ(X,X ′) [56, Chap. IV, Thm. 5.5], i.e., bounded nets contain weakly

convergent subnets. Let x ∈ X. Consider the bounded net given by
(︁
λ(λ + A)−1x

)︁
λ>0

in

D(A) directed towards ∞. Choose a weakly convergent subnet
(︁
λα(λα + A)−1x

)︁
α∈A and

denote its weak limit by y. Then also the net
(︁
A(λα + A)−1x

)︁
α∈A converges weakly. The

net
(︁
(λ + A)−1x

)︁
λ>0

, and therefore also its subnet
(︁
(λα + A)−1x

)︁
α∈A, converges to 0 in

X. In particular, it converges weakly to 0. The operator A is closed and therefore also

weakly closed. We conclude that the subnet
(︁
A(λα + A)−1x

)︁
α∈A converges weakly to 0

which implies that
(︁
λα(λα + A)−1x

)︁
α∈A converges weakly towards x. So x is in the weak

closure of D(A) which coincides with the closure in the given locally convex topology of X

since D(A) is convex, see also ([31, Sect. 8.2, Prop. 4]).

For the second part of the statement we proceed similarly. Use again semi-re�exivity

and choose for given x ∈ X one (of possibly many) weak accumulation points of the net(︁
A(λ + A)−1x

)︁
λ>0

which, in contrast to before, shall be directed towards 0. Call the
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accumulation point y and set z := x− y. Then x = y + z with y ∈ R(A). Furthermore,

A(1+A)−1z = A(1+A)−1x−A(1+A)−1y = A(1+A)−1x−lim
α
A(λα+A)

−1A(1+A)−1x = 0

by Lemma 2.0.9. So z ∈ N (A(1 + A)−1) = N (A). So far we found one possible decom-

position of the arbitrary element x in the desired manner. Uniqueness follows now from

N (A) ∩R(A) = {0} (Corollary 2.0.10).

Another possibility to state more is to employ the open mapping theorem. In order to

prove it in an LCS X the notation of a web and an inductive limit is required. A web

W in an LCS X is a mapping W :
⋃︁∞

k=1N
k → 2X such that R(W ) is contained in the

absolutely convex sets and

∞⋃︂
l=1

W (l) = X as well as ∀k ∈ N, n1, . . . , nk ∈ N :
∞⋃︂
l=1

W (n1, . . . , nk, l) = W (n1, . . . , nk).

Furthermore, one requires a rather mild completeness property which says

∀(nk)k∈N in N∃(λk)k∈N in (0,∞)∀(xk)k∈N, xk ∈ W (n1, . . . , nk) :
∞∑︂
k=1

λkxk converges.

An LCS X admitting a web is said to be a webbed space. In order to understand the last

statement a bit better recall that a general topological space Ω is a Baire space if every

intersection of countable many open dense subsets is again dense in Ω. Baire's category

theorem states that among others completely metrisable spaces are Baire spaces.

One can show that precisely the Fréchet spaces are the LCS which are webbed spaces

and Baire spaces at the same time ([31, Sect. 5.4, Thm. 4]).

A second notion is still needed to formulate the open mapping theorem in a very general

context. For this let A be a directed set, (Xα)α∈A a family of LCS and (lβα)α≤β∈A a

family of linear continuous maps: lβα : Xα → Xβ with the property that lαα = 1Xα and

lγβ ◦ lβα = lγα.

De�ne an equivalence relation (xα, α) ∼ (xβ, β) :⇔ ∃γ ≥ α, β : lγα(xα) = lγβ(xβ).

Now de�ne X := {[(xα, α)] | xα ∈ Xα, α ∈ A}. This set becomes a vector space by setting

∀λ, µ ∈ C, [(xα, α)], [(xβ, β)] ∈ X : λ[(xα, α)] + µ[(xβ, β)] := [(λlγα(xα) + µlγβ(xβ), γ)],

for some γ ≥ α, β. Linear maps from all Xα to X are given by Lα : Xα → X, Lα(xα) :=

[(xα, α)]. A locally convex topology onX may then be induced by de�ning that a seminorm

∥·∥ : X → R is continuous if and only if the seminorms ∥·∥ ◦ Lα : Xα → R are continuous
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for every α ∈ A. Note that no non-trivial seminorm on X at all has to be continuous

in which case we interpret X as equipped with the indiscrete topology. This topology

is locally convex but lacks the Hausdor� property. This also can happen in more general

situations. We shall always assume the resulting topology on X to be a Hausdor� topology

and refer in this case to indα∈A Xα := X as the inductive limit of the so-called inductive

spectrum (Xα)α∈A.

Example 2.0.12.

(a) Let n ∈ N and consider for k ∈ N the spaces Xk := C∞
0

(︁
B(0, k)

)︁
of smooth functions

on B(0, k) for which all derivates allow for continuous continuation on the boundary

∂B(0, k) and which all vanish there. Here B(x, r) ⊆ Rn denotes the open ball with

centre x ∈ Rn and radius r > 0. These spaces become Fréchet spaces when being

equipped with seminorms of the form

∥f∥l := max
|α|≤l

sup
x∈B(0,k)

|(Dαf)(x)| , (l ∈ N0).

For m, k ∈ N,m ≥ k, de�ne lmk : Xk → Xm to be the embedding of Xk in Xm.

The so constructed inductive spectrum is an example of a so-called countable, strict,

regular (see [8] for de�nitions and details) embedding spectrum. The inductive limit

is given by

D(Rn) = {f ∈ C∞(Rn) | supp(f) is compact}.

(b) Let again n ∈ N and consider for k ∈ N the space Xk de�ned by

Xk := {f ∈ C∞(Rn) | ∀l ∈ N0, λ ∈
(︁
0,

1

k

)︁
: ∥f∥l,λ := max

|α|≤l
sup
x∈Rn

⃓⃓
(Dαf)(x)eλ∥x∥

⃓⃓
<∞}.

These spaces become also Fréchet spaces when using the seminorms ∥·∥l, l ∈ N0.

The inductive limit X will later be used and also characterised in terms of Fourier

transforms of the functions f .

(c) Let ω ∈ (0, π), k0 ∈ N be such that ω + 1
k0
< π and de�ne for k ∈ N, k ≥ k0 the

numbers ωk := ω + 1
k
. Consider the spaces

Xk := {f ∈ H∞(S̊ωk
) | ∀α ∈ (−ωk, ωk) :

∞∫︂
0

⃓⃓
f(seiα)

⃓⃓ ds
s
<∞}
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where H∞(S̊ωk
) is the set of holomorphic, bounded functions de�ned on the open

sector S̊ωk
of opening angle ωk. As before one can turn the single Xk into Fréchet

spaces. The inductive limit plays an important role in the functional calculus of

sectorial operators.

Remark 2.0.13. Similarly as in Example 2.0.12 (a) one can construct for an open set

Ω ⊆ Rn the space D(Ω) as an inductive limit of a countable, strict, regular embedding

spectrum.

Using all the tools we introduced, we formulate the following corollary.

Corollary 2.0.14. Let X be the inductive limit of a sequence of Fréchet spaces (a so-

called LF-space) and A ∈ M(X). Then A admits a continuous inverse if and only if it is

surjective.

Proof. If A admits a continuous inverse de�ned on all of X, it is clearly surjective. So let A

be surjective. By [31, Sect. 5.2, Coro. 4] every LF-space carries a web, i.e., it is a webbed

space. Since it is at the same time the inductive limit of a family of Baire spaces the open

mapping theorem holds by [31, Sect. 5.5, Thm. 2]. By surjectivity we conclude from

Corollary 2.0.10 that A is also injective. The continuous invertibility follows now since

A is bijective and the open mapping theorem directly implies that every linear bijection

admits a continuous inverse.

Let us come back to the possibility to construct new spaces as `limits' of given spaces.

While the category of Banach spaces is not closed under the formation of inductive and,

their dual concept, projective limits, the class of LCS is (except for the already mentioned

problem that inductive limits in general may not be Hausdor�). Operators on the building

blocks ful�lling certain compatibility assumptions allow for a lift to the limit. Naturally

one may ask in which situations the lift of a family of non-negative operators results in a

non-negative operator on the limit space.

Proposition 2.0.15. Let (Xα)α∈A be an inductive spectrum, and denote its inductive limit

by X. Furthermore, assume for every α ∈ A an operator Aα ∈ M(Xα) be given such that

the following compatibility assumptions hold:

∀β ≥ α ∈ A : lβα (D(Aα)) ⊆ D(Aβ) and lβαAα = Aβlβα.
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Then

D(A) := {x ∈ X | ∃α ∈ A, xα ∈ D(Aα) : x = [(xα, α)]}

Ax = A[(xα, α)] := [(Aαxα, α)]

is a well-de�ned linear operator on X which is again non-negative. If all Aα are densely

de�ned, so is A in X.

Proof. Let us �rst show that A is a well-de�ned operator. For this let xα ∈ D(Aα) and

xβ ∈ D(Aβ) be such that (xα, α) ∼ (xβ, β). Then there is γ ≥ α, β with lγαxα = lγβxβ. By

our compatibility assumption we have lγαxα, lγβxβ ∈ D(Aγ), and

lγαAαxα = Aγlγαxα = Aγlγβxβ = lγβAβxβ.

We conclude that A is well-de�ned and even (Aαxα, α) ∼ (Aβxβ, β).

By the de�nition of the vector space structure on X linearity follows.

It remains to show A ∈ M(X). For the resolvent set of A we shall show the more general

fact ⋂︂
α∈A

ρ(Aα) ⊆ ρ(A).

For this let λ ∈
⋂︁

α∈A ρ(Aα) and consider the equation

(λ− A)[(xα, α)] = [(yβ, β)]. (2.0.1)

Analogously as above one can see that

Bλ[(xα, α)] := [((λ− Aα)
−1xα, α)]

de�nes a linear operator on the whole of X. Now a direct calculation veri�es that the

unique solution to (2.0.1) is given by [(xα, α)] = Bλ[(yβ, β)], i.e., λ− A is bijective.

In order to see its continuity note that a general linear mapping B from any inductive

limit X into any LCS Y is continuous if and only if for α ∈ A the mappings B ◦ Lα are

continuous. Apply this to our situation by choosing Y := X and note that

Bλ ◦ Lα = Lα ◦ (λ− Aα)
−1

which is continuous as composition of continuous maps. In particular, since all Aα are

non-negative, we have (−∞, 0) ⊆ ρ(A).
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It remains to show the equicontinuity of the family
(︁
λ(λ + A)−1

)︁
λ>0

. As a preparation

note that a basis of UX (0-neighborhoods inX) is given by all absolutely convex sets U ⊆ X

such that for all α ∈ A it holds that L−1
α (U) ∈ UXα , see [8]. So let U ∈ UX be given and

assume it to be absolutely convex which can be done w.l.o.g. De�ne Uα := L−1
α (U) ∈ UXα .

Use now Aα ∈ M(Xα) and choose for every Uα a neighborhood Vα such that⋃︂
λ>0

λ(λ+ Aα)
−1 (Vα) ⊆ Uα.

Set V := acx
(︁⋃︁

α∈A Lα (Vα)
)︁
. Here acx (U) denotes the absolutely convex hull of U , i.e.,

the smallest absolutely convex set which contains U . Let β ∈ A be arbitrary. Then

Vβ ⊆ L−1
β

(︁
Lβ(Vβ)

)︁
⊆ L−1

β (V ) .

This shows that V ∈ UX . Let �nally λ > 0. Then

λ(λ+ A)−1(V ) = acx
⋃︂
α∈A

Lα λ(λ+ Aα)
−1 (Vα)⏞ ⏟⏟ ⏞

⊆Uα

⊆ U

shows the claimed equicontinuity.

For the last part let x = Lαxα be given. Since Aα is densely de�ned one can choose a

net (xακ) in D(Aα) such that limκ xακ = xα. By continuity of Lα it follows that xκ :=

Lαxακ → Lαxα = x which �nishes the proof.

Remark 2.0.16. In the proof we actually showed a generalisation of the mentioned con-

tinuity criterion. Namely, let (Xα)α∈A be an inductive spectrum with limit X, Y another

LCS and (Aκ)κ∈K a family of linear continuous mappings from X to Y . Then this family

is equicontinuous if and only if all the families (AκLα)κ∈K are equicontinuous.

Example 2.0.17.

(a) The negative Laplacian −∆, nor any shift −∆+ ε (ε > 0) of it, is not non-negative

on D(Rn). The problem can already be located when considering the building blocks

C∞
0

(︁
B(0, k)

)︁
. Suppose the equation (−∆ + λ)f = g had for every λ > 0 and every

g ∈ C∞
0

(︁
B(0, k)

)︁
a unique solution f ∈ C∞

0

(︁
B(0, k)

)︁
. Taking Fourier transform on

both sides, this would imply that on the one hand

(Ff)(z) = 1

(z1)2 + · · ·+ (zn)2 + λ
(Fg)(z),

(︁
z = (z1, . . . , zn) ∈ Cn

)︁
while on the other hand Ff has to be entire (analytic on the whole of Cn) by the
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assumption on the compact support of f . From the above formula however, one can

see that Ff will in general just be analytic on the tubular domain Cn
∥Im∥<

√
λ
:= {z =

(z1, . . . , zn) ∈ Cn | ∥Im z∥2 :=
∑︁n

k=1(Im zk)2 < λ}.

(b) The problem which arises when using the testfunction space D(Rn) can be overcome

by using instead the spaces

Xk = {f ∈ C∞(Rn) | ∀l ∈ N0, λ ∈
(︁
0,

1

k

)︁
: ∥f∥l,λ := max

|α|≤l
sup
x∈Rn

⃓⃓
(Dαf)(x)eλ∥x∥

⃓⃓
<∞}

introduced in Example 2.0.12 (b). Analogously to the classical Paley�Wiener Theo-

rem for functions (see [69, Chap. VI, Sect. 4]) one can show that for f ∈ Xk it holds

that Ff ∈ H(Cn
∥Im∥< 1

k

) and for all N ∈ N0, λ ∈
(︁
0, 1

k

)︁
there is CN,λ > 0 such that

|(Ff)(z)| ≤ CN,λ(1 +
⃓⃓
z1
⃓⃓
+ · · ·+ |zn|)−N (λ− ∥Im z∥)−n

holds for all z ∈ Cn
∥Im∥<λ while conversely every function g ∈ H(Cn

∥Im∥< 1
k

) with the

above growth property is a Fourier transform of some f ∈ Xk. Choosing now ε > 0

one can see by arguing as above that Xk is invariant under (−∆+ ε+λ)−1 for k > 1
ε

and all λ > 0. By Proposition 2.0.15 the operator −∆ + ε is non-negative on the

inductive limit for every ε > 0.

As mentioned earlier the algebraic (and to a certain extent also topological) dual concept

of an inductive limit is a projective limit . For this let again be given a directed set A, a

family (Xα)α∈A of LCS, and continuous linear maps (πβα)α≤β∈A such that πβα : Xβ → Xα,

παα = 1|Xα and πβα◦πγβ = πγα. One de�nes X := {(xα)α∈A | xα ∈ Xα ∧ ∀β ≥ α : πβαxβ =

xα}. The space X is a subspace of the cartesian product Πα∈AXα and shall be equipped

with the subspace topology, i.e., the topology of pointwise convergence. More explicitly, a

system of continuous seminorms de�ning the topology is given by

∥(xα)∥p :=
n∑︂

i=1

∥xαi
∥pi

where ∥·∥pi are continuous seminorms in the single spaces Xαi
. So the continuous semi-

norms on X are �nite sums of continuous seminorms from the single Xα. Linear maps

from X to all Xα are given by Pα : X → Xα, Pα

(︁
(xα)

)︁
:= xα. The space projα∈AXα := X

is called projective limit of the projective spectrum (Xα)α∈A.
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Example 2.0.18.

(a) Let 1 ≤ p ≤ ∞ and de�ne for m, k ∈ N, m ≥ k the space Xk := Lp
(︁
B(0, k)

)︁
and

πmk : Xm → Xk by πmkf := f |Xk
. This de�nes a projective spectrum and the limit

is X = Lp
loc(R

n) with its usual topology.

(b) For n, k ∈ N consider Xk := Ck(Rn) and let πmk be the inclusion map from Xm to

Xk. The projective limit of this spectrum is X = C∞(Rn).

(c) Take A := N2
0 and order as usual via (m1, k1) ≥ (m2, k2) :⇔ m1 ≥ m2 ∧ k1 ≥ k2.

Consider for (m, k) ∈ N2
0 the space

X(m,k) := {f ∈ Ck(Rn) | ∀α ∈ Nn
0 , |α| ≤ k : sup

x∈Rn

(1 + ∥x∥)m |(Dαf)(x)| <∞}.

This de�nes again a projective spectrum with limit X = S (Rn).

An analogous statement to Proposition 2.0.15 could be proven for projective limits.

Proposition 2.0.19. Let (Xα)α∈A be a projective spectrum and denote its projective limit

by X. Furthermore, assume a family (Aα)α∈A of non-negative operators given on every

Xα such that the following compatibility assumptions hold:

∀β ≥ α ∈ A : πβα (D(Aβ)) ⊆ D(Aα) and πβαAβ = Aαπβα.

Then

D(A) := {x ∈ X | ∀α ∈ A : xα ∈ D(Aα)}, Ax = A(xα) := (Aαxα)

is a well-de�ned linear operator on X which is again non-negative. If all Aα are densely

de�ned, so is A in X.

Proof. To begin with we need to show that again Ax ∈ X. For this let x ∈ D(A), β ≥ α

and xβ ∈ D(Aβ). Then πβαxβ = xα ∈ D(Aα) and

πβαAβxβ = Aαπβαxβ = Aαxα

which shows Ax ∈ X. Furthermore, for λ ∈
⋂︁

α∈A ρ(Aα), x ∈ D(A) and β ≥ α we conclude

from

πβα(λ− Aβ)xβ = (λ− Aα)πβαxβ

that for all y ∈ X

(λ− Aα)
−1πβαyβ = πβα(λ− Aβ)

−1yβ.
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So as expected
⋂︁

α∈A ρ(Aα) ⊆ ρ(A) and

(λ− A)−1y =
(︁
(λ− Aα)

−1yα
)︁
.

The non-negativity of A follows from

⃦⃦
λ(λ+ A)−1x

⃦⃦
p
=

k∑︂
i=1

⃦⃦
λ(λ+ Aαi

)−1xαi

⃦⃦
pi⏞ ⏟⏟ ⏞

≤Mi∥xαi∥qi

≤M ∥x∥q

where M = max{M1, . . . ,Mk}.
Finally, let x = (xα) ∈ X be given. Choose for every xα a net (xακα)κα∈Kα in D(Aα)

being convergent towards xα and set K := Πα∈AKα as well as xκ := (xακα). Direct this

set in the usual way by de�ning κ ≥ σ :⇔ ∀α ∈ A : κα ≥ σα and note that this implies

limκ xκ = x.

Example 2.0.20. Let us come back to the space S (Rn). In Example 2.0.18 (c) we al-

ready saw that this space can be considered as a projective limit. In order to apply Propo-

sition 2.0.19 we will need another system though. For k ∈ N0 and α ∈ Nn
0 , |α| ≤ k,

consider the closed operators Qα and Dα where (Qαf)(x) := xαf(x) with maximal domain

in L2(Rn). Set

Xk :=
⋂︂

α∈Nn
0 ,

|α|≤k

D(Dα) ∩ D(Qα) = {f ∈ Hk(Rn) | Ff ∈ Hk(Rn)}

These spaces also form a projective spectrum by using the natural embeddings between them

and its limit is also S (Rn). Furthermore, applying the same Fourier type arguments one

can see that −∆+ ε is non-negative on every Xk. Hence, by Proposition 2.0.19 −∆+ ε is

non-negative on S (Rn).

Note that by dualisation every inductive spectrum (Xα, lβα) gives rise to a projective

spectrum (X ′
α, πβα) with πβα := l′βα where l′βα : X ′

β → X ′
α denotes the dual mapping. This

relation also holds in the other direction. It is always true that(︃
ind
α∈A

Xα

)︃′

= proj
α∈A

X ′
α (just algebraically, , see [22, �26, Satz 1.2]).

One can show that the pairing is given by

⟨︁
(x′β), [(xα, α)]

⟩︁
= ⟨x′α, xα⟩
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which is well de�ned. Note also that both constructions are purely algebraic and do not

require any topology on the building blocks unless one wishes to construct a topology on

the limit space. If further for a projective spectrum it holds that Pα(X) is dense in Xα

(one says that the projective spectrum is reduced and this can w.l.o.g. always be assumed,

[31, Sect. 2.6, Prop. 2]), then one also has(︃
proj
α∈A

Xα

)︃′

= ind
α∈A

X ′
α (just algebraically).

More interesting, however, is the question whether the stated algebraic isomorphisms are

also topological isomorphisms. Here one has the following result:

Lemma 2.0.21. Let (Xα)α∈A be a regular inductive spectrum. Then(︃
ind
α∈A

Xα

)︃′

β

= proj
α∈A

(Xα)
′
β

in the sense of an isomorphism between LCS.

For a proof see [22, �26, Satz 2.1].

This statement may be combined with Lemma 2.0.8 to obtain the following relation

between Propositions 2.0.15 and 2.0.19.

Theorem 2.0.22. Let (Xα)α∈A be a regular inductive spectrum and denote its inductive

limit by X. Furthermore, assume a family (Aα)α∈A of non-negative densely de�ned oper-

ators given on every Xα as in Proposition 2.0.15. De�ne A as in this proposition. Then

X ′
β = projα∈A (Xα)

′
β, (A

′ : X ′
β → X ′

β) ∈ M(X ′
β) and A

′ is given by

D(A′) = {x′ = (x′α) ∈ X ′
β | ∀α ∈ A : x′α ∈ D(A′

α)}, A′(x′α) = (A′
αx

′
α).

Moreover,

∀γ ≥ α ∈ A : l′γα
(︁
D(A′

γ)
)︁
⊆ D(A′

α) and l′γαA
′
γ = A′

αl
′
γα.

That means A′ is the operator which one can construct from the operators A′
α ∈ M

(︁
(Xα)

′
β

)︁
as it happened in Proposition 2.0.19.

Proof. The �rst part of the statement ist just Lemma 2.0.21.

The part about the non-negativity of A′ on X ′
β follows from Lemma 2.0.8.

For the compatibility properties let γ ≥ α and x′α = l′γαx
′
γ ∈ l′γα

(︁
D(A′

γ)
)︁
. We need to

show that x′α ∈ D(A′
α). Let xα ∈ D(Aα) and calculate

⟨x′α, Aαxα⟩ = ⟨x′γ, lγαAαxα⟩ = ⟨x′γ, Aγlγαxα⟩ = ⟨l′γαA′
γx

′
γ, xα⟩.
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We conclude that x′α ∈ D(A′
α) and A

′
αx

′
α = A′

αl
′
γαx

′
γ = l′γαA

′
γx

′
γ.

It remains to show the special form ofA′ which follows from the form ofA. Let x′ ∈ D(A′)

and x ∈ D(A). Choose α ∈ A such that xα ∈ D(Aα) and x = [(xα, α)]. Then

⟨A′x′, x⟩ = ⟨A′(x′γ), [(xα, α)]⟩ = ⟨
(︁
A′(x′γ)

)︁
α
, xα⟩ = ⟨x′α, Aαxα⟩.

Hence, x′α ∈ D(A′
α) and

(︁
A′(x′γ)

)︁
α
= A′

αx
′
α for this particular α. Now let γ ∈ A be

arbitrary and choose δ ≥ α, γ. It holds that xδ := lδαxα ∈ D(Aδ) and repeating the

already presented argument gives x′δ ∈ D(A′
δ). But now x′γ = l′δγx

′
δ ∈ D(A′

γ) by the

already established compatibility. This shows

D(A′) ⊆ {x′ = (x′α) ∈ X ′
β | ∀α ∈ A : x′α ∈ D(A′

α)}.

Conversely, let x′ = (x′γ) be such that x′γ ∈ D(A′
γ) for all γ ∈ A. From

∀α ∈ A : ⟨(A′
γx

′
γ), [(xα, α)]⟩ = ⟨A′

αx
′
α, xα⟩

we conclude that

X ∋ x = [(xα, α)] ↦→ ⟨(A′
γx

′
γ), [(xα, α)]⟩ ∈ X ′,

in particular when being restricted to D(A) where it is equal to D(A) ∋ x ↦→ ⟨x′, Ax⟩.
Hence x′ ∈ D(A′) and the proof is �nished.

Example 2.0.23. In Example 2.0.17 (b) we learnt that −∆ + ε is non-negative on the

inductive limit X of the spaces

Xk := {f ∈ C∞(Rn) | ∀α ∈ Nn
0 : sup

x∈Rn

|(Dαf)(x)e
∥x∥
k | <∞}

for any ε > 0. The considered spectrum is regular by [8, Thm. 3] since the mappings

lmk : Xm → Xk are embeddings. By Proposition 2.0.22, −∆′ + ε is non-negative on the

strong dual X ′
β and can be obtained from the non-negative operators −∆′ + ε restricted to

the building blocks (Xk)
′
β.

We �nish this chapter by a standard proposition. For a closed subspace Y ⊆ X and

A ∈ C(X) we denote by AY the part of A in Y which is the operator A with domain

D(AY ) := {x ∈ Y ∩ D(A) | Ax ∈ Y }.

If A ∈ M(X), one can show that AY is non-negative if Y is invariant under all resolvent
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operators (λ + A)−1, λ > 0. For reduction purposes it is of interest to study the part of

A ∈ M(X) in D := D(A), R := R(A) and G := D(A) ∩R(A).

Lemma 2.0.24. Let A ∈ M(X). The operators AD, AR and AG are all non-negative in

the respective spaces. Furthermore,

1. AD is densely de�ned,

2. AR has dense range,

3. AG is densely de�ned with dense range.

Proof. Let λ > 0. The spaces D(A) andR(A) are invariant under (λ+A)−1. By continuity

of the resolvent this invariance carries over to the closures which means that D and R are

invariant. The same holds for G as being the intersection of D and R. From the non�

negativity of A in X we can conclude now that all parts of A are non�negative in the

spaces D, R, and G. The statements about the density of the domain and range follow

now as before by using Lemma 2.0.9 together with the approximations λ(λ + A)−1x → x

as λ → ∞ if x ∈ D (density of the domain) and A(λ + A)−1x → x as λ → 0+ if x ∈ R

(density of the range).

Example 2.0.25.

(a) We would like to demonstrate Lemma 2.0.24 by a standard application. Assume X

to be a semi-re�exive LCS and A ∈ M(X). By Corollary 2.0.11 we know that A is

densely de�ned. Hence A = AD and AR = AG. Additionally, X = N (A)⊕R(A). So

every x ∈ D(A) may be decomposed in x = y+z with y ∈ N (A) and z ∈ R(A)∩D(A).

Hence Ax = ADx = AGz and so in case of semi-re�exive spaces it is always enough

to study AG instead of A.

(b) Consider −∆ on X := C∞
b (Rn) of which Y := C∞

0 (Rn) is a proper subspace. The

subspace Y is invariant under the resolvents ((−∆+λ)−1)λ>0 which can be seen when

considering the semigroup generated by −(−∆) which is given through

(e∆tf)(x) :=

⎧⎨⎩f t = 0,

kt ∗ f t > 0.

where k : (0,∞)×Rn → R,

k(t, x) := kt(x) :=
1

(4πt)n/2
e−

∥x∥2
(4t) (t > 0, x ∈ Rn)
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is the Gauÿ-Weierstraÿ kernel. Restricted to Y , the operator −∆ is additonally

injective.

For later use, we shall also introduce the subclass of sectorial operators. Considering

De�nition 2.0.1 of non-negative operators, one can see that the more common sectoriality

can be generalised in the same fashion to LCS.

De�nition 2.0.26. Let A ∈ C(X). The operator A is called sectorial if there is ϕ ∈ (0, π)

such that C \ Sϕ ⊆ ρ(A) and if for every σ ∈ (ϕ, π) the family

(︁
λ(λ− A)−1

)︁
λ∈C\Sσ

is equicontinuous. Let ω be the in�mum of all angles ϕ such that A is sectorial. Then ω

is called angle of sectoriality of the sectorial operator A. We denote by Sω(X) the set of

all sectorial operators with angle of sectoriality ω and set S(X) :=
⋃︁

ω∈[0,π) Sω(X).

One has S(X) ⊆ M(X) while equality holds for example in Banach spaces, see [44,

Prop. 1.2.1]. In general LCS one has S(X) ⊊ M(X) though. See [44, Ex. 1.4.3 and Ex.

1.4.4] for two examples in Fréchet spaces. All the so far produced results for non-negative

operators also hold for the class of sectorial operators with almost identical proofs. The

following two chapters will only deal with non-negative operators. However, the reader will

encounter sectorial operators again in the last chapter where sectoriality will be essential

for the proof of uniqueness of the Ca�arelli-Silvestre Problem.
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3. Functional calculus in locally

convex spaces

The third chapter shall be devoted to the development of what we shall refer to as functional

calculus. Since the goal of this chapter will be a way to de�ne what we mean by the

fractional power Aα of a given linear operator A, this calculus should include the function

λ ↦→ λα. Seeing the vast number of appearances of the term `functioncal calculus' (notably

also in the title of this third chapter), one would assume perfect agreement on what a

calculus actually is. Most surprisingly this does not seem to be the case. We shall follow

[25] and also [27] for the more abstract point of view and include some minor modi�cations.

As preparation we will denote in this chapter by A a locally convex algebra. We remind

the reader that this means that A is a LCS for which the multiplication A × A → A is

continuous and that this property may be characterised by

∀ ∥·∥p ∈ PA ∃ ∥·∥q ∈ PA ∀a, b ∈ A : ∥ab∥p ≤ ∥a∥q ∥b∥q .

De�nition 3.0.1. A continuous functional calculus is a triple (X,A ,Φ) where X is a

LCS, A is a unital locally convex algebra, and Φ : A → LB(X) is a continuous algebra

homomorphism where LB(X) is equipped with some topology induced by the bornology

B, cf. Remark 2.0.7.

The here given de�nition of a calculus di�ers just slightly from the more general one

given in [27] which reduces to the here given de�nition for calculi having their values in

the continuous linear operators.

Example 3.0.2.

(a) Let everything be as in Example 2.0.2 (a), i.e., let Ω be a Hausdor� locally compact

space with a Radon measure µ, X = Lp
loc(Ω) for some p ∈ [1,∞), and f ∈ L0(Ω).

De�ne Λ := Ress(f), equip this set with the σ-algebra B(Λ), and suppose a measure

ν is given on B(Λ) with the property that |µ|f ≪ ν. Set A := L∞(Λ,B(Λ), ν).

This is a Banach algebra. In particular, it is locally convex. Furthermore, de�ne the
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mapping Φ : A → L(X) by Φ(g)h := (g ◦ f)h (h ∈ X). The absolute continuity

of |µ|f w.r.t. ν ensures that Φ is well de�ned. Moreover, the mapping Φ is also a

homomorphism. Every operator Φ(g) is continuous since for all compacta K ⊆ Ω

∥Φ(g)h∥K =

⎛⎝∫︂
K

|g(f(x))h(x)|p |µ| (dx)

⎞⎠ 1
p

≤ C ∥h∥K (h ∈ X)

where C := ess supy∈Λ |g(y)|.

(b) We consider A :=Mb

(︁
[0,∞)

)︁
with convolution as multiplication and total variation

norm. This set is a Banach algebra. Assume X to be a Banach space and −A ∈ C(X)

being the generator of a C0-semigroup (e−At)t≥0. De�ne the mapping Φ : A → L(X)

by

Φ(µ)x :=

∫︂
[0,∞)

e−Atxµ(dt)

which is a continuous homomorphism. The so de�ned calculus is called Hille�Phillips

calculus and was apparently �rst developed in [29, Chap. XV].

(c) Let us consider again the inductive limit from Example 2.0.12 (c) and introduce the

notation E(Sω) for it. Choose A := E(Sω). Let again X be a Banach space and

A ∈ Sω(X) a sectorial operator. Now de�ne the mapping Φ via

Φ(f) :=
1

2πi

∫︂
γ

f(z)(z − A)−1dz

where, for some ε > 0, the contour of integration γ is chosen to be the boundary of

a slightly larger sector Sω+ε which is still in the domain of f , see Figure 3.0.1.

The so constructed calculus is an extension of the Dunford-Riesz calculus [19] and

the here presented version goes back to [45].

The last two examples are prototypical. In both examples, it is already known how to set

up a calculus for a special class of functions (like the exponential function or the inverse

function) and more functions are derived by means of integral mixtures of the known

objects. If this procedure is performed for numbers λ ∈ C instead of operators A, one

typically speaks of kernel de�nitions of the transforms of distributions. The appearance of

the latter term may be explained by the fact that distributions usually refer to some kind

of linear form de�ned on rather small LCS and the connections to measures is the fact that
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Figure 3.0.1.: Path of integration

those form in many cases subspaces of the space of all distributions. To summarise, one

might ask whether an extension of the algebras appearing in the Examples 3.0.2 (b) and

(c) is possible. It is indeed doable by using so-called ε-products which will be introduced

and studied in the next section.

3.1. ε-products

The ε-product was introduced and studied independently in [24] and [59] with minor

di�erences, see [32]. We will adopt the de�nition of Schwartz. To anticipate the main

result, ε-products can be seen as rather natural constructions generalising injective tensor

products. Their main use will be a very elegant de�nition of vector-valued functions.

More details can be found in [58, Lec. 4] as well as [32, 59] where the very good last two

sources unfortunately require knowledge of the German and French language. For the next

de�nition, we will denote by κ the topology of uniform convergence on absolutely convex

compact sets in a given LCS X.

De�nition 3.1.1. For two LCS X and Y we de�ne the ε-product XεY to be the space

Lec (Y
′
κ, X) of continuous linear mappings from Y ′

κ to X where Y ′
κ is equipped with the

topology κ, and the considered space Lec (Y
′
κ;X) is itself topologised by using the topology

of uniform convergence on equicontinuous subsets of Y ′.

In the following we will need for a subset U ⊆ Y the notion of a so-called polar U◦ :=

{y′ ∈ Y ′ | ∀y ∈ U : |⟨y′, y⟩| ≤ 1} ⊆ Y ′. The same notation will be used for V ⊆ Y ′ but

w.r.t. the duality pairing (Y, Y ′) which means V ◦ := {y ∈ Y | ∀y′ ∈ V : |⟨y′, y⟩| ≤ 1}.
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For a subset E ⊆ Y ′ equicontinuity simply means that there is ∥·∥q ∈ PY and s > 0 such

that E ⊂ Bq(0, s)
◦. Hence, every ∥·∥p ∈ PX , ∥·∥q ∈ PY induces a continuous seminorm

∥·∥r ∈ PXεY via

∀u ∈ XεY : ∥u∥r := sup{∥⟨y′, u⟩∥p | y
′ ∈ Bq(0, 1)

◦}

where we wrote ⟨y′, u⟩ for the application of the linear operator u ∈ XεY on the element

y′ ∈ Y ′ for reasons which will become clear in what follows.

Remark 3.1.2. It is not obvious but the ε-product is symmetric in the sense that XεY

is isomorphic to Y εX by transposition, see [32, Satz 10.3]. We shall freely change between

these two interpretations and even write XεY = Y εX in the sense of this isomorphism. At

�rst glance this identi�cation will seem to be confusing but it is actually very convenient

and intuitive.

Example 3.1.3.

(a) Let X and Y be two Banach spaces. A subset B ⊆ Y ′ is equicontinuous if and only

if it is norm-bounded in Y ′. A norm-bounded subset B of Y ′ is also compact in the

w∗-topology, i.e., the topology of pointwise convergence in Y ′. This is even true for

the topology of uniform convergence on precompact sets, see [31, Chap. 8.5, Thm

1]. In the special here considered example, precompact sets are relatively compact

and hence there is no di�erence between uniform convergence on precompact sets

and uniform convergence on compact sets. Putting all together, B is also compact

in Y ′
κ. Choosing now any u ∈ XεY , we conclude that u(B) is compact in X which

shows XεY ⊂ K(Y ′, X), the set of compact operators from Y ′ equipped with norm

topology to X, cf. [32, p. 234]. One can actually do even better. It holds that

K(Y,X) = Y ′εX ([32, Satz 10.4]). One inclusion follows from the already noted

relation Y ′εX = XεY ′ ⊆ K(Y ′′, X) by restriction while, on the other hand, every

u ∈ K(Y,X) gives rise to u′ ∈ K(X ′, Y ′) for which one can show u′ ∈ Y ′εX by

making use of the compactness of u. But also the �rst observation can be improved

to XεY = {u ∈ K(Y ′, X) | u ∈ L(Y ′
σ, Xσ)} ([32, p. 258]). Here Y ′

σ and Xσ is short

for Y ′ equipped with the topology σ(Y ′, Y ) and X equipped with σ(X,X ′), respectively.

(b) Let Y be a quasi-complete LCS, and let Ω be any locally compact space. Consider

the LCS C(Ω;Y ) of continuous functions de�ned on Ω with values in Y equipped

with the topology of uniform convergence on compact subsets in Ω and set X :=

C(Ω) to be its `scalar' version. Every f ∈ C(Ω;Y ) gives rise to an element, again

denoted by f , in XεY by de�ning ⟨y′, f⟩(·) := ⟨y′, f(·)⟩ ∈ X where we used again
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the suggestive notation ⟨y′, f⟩ for the application of f on y′. From this point of view

one has C(Ω;Y ) ⊆ XεY and in fact this mapping is even injective, continuous with

continuous inverse de�ned on its range, i.e., it is an embedding. In the concrete

example one can moreover prove that the embedding is onto and therefore it is an

isomorphism ([32, Satz 10.2]).

Remark 3.1.4.

1. The reason for choosing the topology κ over the topology of convergence on precom-

pact sets is the desired duality (Y ′
κ)

′ = Y by the Mackey�Arens theorem ([31, Chap.

8.5, Thm. 5]). On the other hand, in the above example the mapping f ∈ XεY may

fail to be continuous for general LCS Y . For quasi-complete spaces, and those are

the only spaces we consider, both topologies coincide and thus the question does not

appear.

2. The question for which LCS X and spaces of functions F(Ω) de�ned on some set Ω

it still holds that F(Ω;X) = F(Ω)εX was intensively studied in [38].

3. We shall also demonstrate the above mentioned symmetry of the ε-product. For

f ∈ C(Ω;Y ) = C(Ω)εY = Y εC(Ω) one can interpret ⟨y′, f⟩ as application of the

linear operator f on the element y′ yielding a function in C(Ω) (cf. �rst equality)

or one can interpret this as a composition of linear operators yielding an element in(︁
C(Ω)′κ

)︁′
= C(Ω) by the Mackey�Arens theorem which corresponds to the second

equality.

The concept of integration of vector-valued functions can be generalised by considering

the so-called ε-product of operators. Before we come to the de�nition, it should be pointed

out that for a continuous linear operator A ∈ L(X, Y ) the dual operator A′ is continuous

from Y ′
κ to X ′

κ.

De�nition 3.1.5. Let X1 and X2 as well as Y1 and Y2 be four LCS and assume continuous

linear operators A ∈ L(X1, X2) and B ∈ L(Y1, Y2) to be given. We de�ne the ε-product

AεB ∈ L(X1εY1, X2εY2) to be the linear continuous operator given by

X1εY1 ∋ u ↦→ AuB′ ∈ X2εY2

where Y ′
1 and Y

′
2 are equipped with the topology κ of uniform convergence on compacts in

the LCS Y1 and Y2, respectively.
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We will not need the general de�nition of an ε-product of two operators but a rather

special case of it. Namely, let F(Ω) be any locally convex space of functions de�ned on

some set Ω and let µ be a continuous functional on F(Ω). Every such functional gives rise

to a mapping, we will also denote it by µ, from F(Ω)εX to X given by µε1X where we

used CεX = Lec(X
′
κ,C) = Xec = X.

Example 3.1.6. Let µ ∈ Mb

(︁
[0,∞)

)︁
= C0

(︁
[0,∞)

)︁′
. For a Banach space X consider

the space C0

(︁
[0,∞);X

)︁
equipped with its usual topology of uniform convergence on [0,∞).

Then C0

(︁
[0,∞);X

)︁
is also a Banach space, it holds that C0

(︁
[0,∞);X

)︁
= C0

(︁
[0,∞)

)︁
εX

([7, Chap. 2, 4. Thm]), and the map induced by µ is simply

C0

(︁
[0,∞);X

)︁
∋ f ↦→

∫︂
[0,∞)

f(t)µ(dt).

Let us collect some elementary properties which will turn out to be useful. To begin

with, we need a tiny generalisation of [37, �34, (3)].

Lemma 3.1.7. Let X and Y be two LCS, and let A : D(A) → Y be a densely de�ned

linear operator with domain D(A) ⊆ X. Then A is closable if and only if A′ : D(A′) → X ′

is densely de�ned in Y ′ w.r.t. the weak topology σ(Y ′, Y ). Moreover one has A = (A′)′.

Proof. The proof is essentially the same as for closed operators in Hilbert spaces and their

adjoints with orthogonality being replaced by an application of the Hahn�Banach theorem.

So assume that A is closable and, by contradiction, that D(A′) is not dense. Then there is

y ∈ D(A′)◦\{0}. By closability of A considered as a subset inX×Y , we can �nd an element

x′ ⊕ y′ ∈ X ′ ⊕ Y ′ = (X × Y )′ which vanishes on A and such that ⟨x′ ⊕ y′, (0, y)⟩ = 1. But

∀x ∈ D(A) : 0 = ⟨x′ ⊕ y′, (x,Ax)⟩ = ⟨x′, x⟩ + ⟨y′, Ax⟩ means y′ ∈ D(A′) and A′y′ = −x′.
This contradicts ⟨y′, y⟩ = ⟨x′ ⊕ y′, (0, y)⟩ = 1 and shows the claimed density of D(A′).

Conversely, if D(A′) is dense, we may de�ne A′′ := (A′)′ : (X ′
σ)

′ = X → (Y ′
σ)

′ = Y where

we used the Mackey�Arens theorem. We shall show A′′ = A. One checks that A′′ extends

A. Furthermore, A′′ is weakly closed as it is a dual operator and, moreover, it is a subspace

of X×Y . Hence, it is convex. This implies that A′′ is closed in X×Y which gives A ⊆ A′′.

Let us �nally show A′′ ⊆ A◦◦ = A where the equality used the Bipolar theorem [31,

Sect. 8.2, Thm. 2]. For this de�ne J : X × Y → Y × X by J(x, y) := (−y, x) and

K : Y ×X → X×Y byK(y, x) := (x,−y). The dual mapping to J is given by J ′(y′⊕x′) =
x′ ⊕ (−y′). Then (x, y) ∈ A′′ implies J(x, y) ∈ (A′)◦ which means A′′ ⊆ K

(︁
(A′)◦

)︁
since

KJ = 1X×Y . For what remains, one checks J ′(A′) = A◦ as well as JK = 1Y×X and, using

this, K
(︁
(A′)◦

)︁
⊆
(︁
J ′(A′)

)︁◦
= A◦◦.
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Lemma 3.1.8. Let F(Ω) be any locally convex space of functions de�ned on some set Ω.

Furthermore, let X and Y be two general LCS, A ∈ C(X, Y ) and µ ∈ F(Ω)′. Let f ∈
F(Ω)εX = XεF(Ω) taking values in D(A) such that Af ∈ F(Ω)εY . Then µε1Xf ∈ D(A)

and Aµε1Xf = µε1YAf .

Proof. De�ne D := D(A) which is a closed subspace of X. The operator A gives rise to an

element, denoted with the same symbol, A ∈ C(D, Y ) which is densely de�ned and thus

has a dual operator A′ : D(A′) → D′ where D(A′) is a subspace of Y ′. Choose y′ ∈ D(A′).

Then

⟨y′, µε1YAf⟩ =
⟨︁
µ, ⟨y′, Af⟩

⟩︁
=
⟨︁
y′, ⟨µ,Af⟩

⟩︁
=
⟨︁
1X′A′y′, ⟨µ, f⟩

⟩︁
= ⟨A′y′, µε1Xf⟩

where we used the de�nition of the ε-product of operators for the �rst equality, the identi-

�cation Af ∈ F(Ω)εY = Y εF(Ω) for the second one, transposed A′ and added an identity,

and �nally reversed the de�nition of the ε-product for the last equality sign. We conclude

µε1Xf ∈ D(A′′) = D(A) and Aµε1Xf = A′′µε1Xf = µε1YAf by Lemma 3.1.7. The proof

is �nished.

Example 3.1.9. Let again be µ ∈Mb

(︁
[0,∞)

)︁
, X a Banach space, and f ∈ C0

(︁
[0,∞);X

)︁
.

Assume further that there is A ∈ C(X, Y ), where Y is another Banach space, such that

∀t ∈ [0,∞) : f(t) ∈ D(A) and Af ∈ C0

(︁
[0,∞);Y

)︁
. Then

A

∫︂
[0,∞)

f(t)µ(dt) =

∫︂
[0,∞)

Af(t)µ(dt)

holds which is usually called Hille's theorem.

Corollary 3.1.10. Let F(Ω) be again any locally convex space of functions de�ned on

some set Ω, f ∈ F(Ω)εX, and x′ ∈ X ′. Then

⟨x′, µε1Xf⟩ =
⟨︁
µ, ⟨x′, f⟩

⟩︁
.

Example 3.1.11. Let X be a LCS and f ∈ C
(︁
Ω;X

)︁
where Ω is a locally compact space.

Moreover, let µ ∈M(Ω) be a compactly supported measure. Finally, let ∥·∥p ∈ PX . In this

situation one has

⃦⃦∫︂
Ω

f(t)µ(dt)
⃦⃦
p
=
⃓⃓⟨︁
x′,

∫︂
Ω

f(t)µ(dt)
⟩︁⃓⃓

≤ C

∫︂
Ω

∥f(t)∥q |µ| (dt)

where x′ ∈ X ′ was chosen suitably, C > 0 is a constant and ∥·∥q is another continuous
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seminorm.

3.2. Hille�Phillips�Schwartz calculus

The last example showed how the Hille�Phillips calculus �ts in the here presented more

general framework. We are now going to extend the constructions towards continuous

functionals on C∞
0

(︁
[0,∞)

)︁
= {f ∈ C∞(︁(0,∞)

)︁
| ∀n ∈ N0 : f (n) ∈ C0

(︁
[0,∞)

)︁
} which we

are going to equip with the usual family of seminorms given by suprema taken over the

hal�ine [0,∞) and the order k ∈ N0 of di�erentiability up to a certain maximal order n.

That means for n ∈ N0, the continuous seminorms are of the form

∥f∥n := max
0≤k≤n

sup
t∈[0,∞)

⃓⃓
f (k)(t)

⃓⃓
.

This turnes C∞
0

(︁
[0,∞)

)︁
into a Fréchet space.

Lemma 3.2.1. Let D be the ordinary derivative on C∞
0

(︁
[0,∞)

)︁
, i.e., Df := f ′. Then D is

a continuous linear operator on C∞
0

(︁
[0,∞)

)︁
. For given measures µ0, . . . , µn ∈Mb

(︁
[0,∞)

)︁
,

the linear form µ :=
∑︁n

k=0(D
k)′µk is continuous on C∞

0

(︁
[0,∞)

)︁
. Conversely, every µ ∈

C∞
0

(︁
[0,∞)

)︁′
is of this form.

Proof. For the �rst statement it is enough to consider the already mentioned system of

seminorms. One �nds ∥Df∥n ≤ ∥f∥n+1 which shows the continuity of D.

To see that µ, de�ned above, is continuous we directly calculate

|⟨µ, f⟩| =

⃓⃓⃓⃓
⃓⟨︁

n∑︂
k=0

(Dk)′µk, f
⟩︁⃓⃓⃓⃓⃓ ≤

n∑︂
k=0

∫︂
[0,∞)

⃓⃓
f (k)(t)

⃓⃓
|µk| (dt) ≤

n∑︂
k=0

∥µk∥ · ∥f∥n . (3.2.1)

For the �nal assertion consider for n ∈ N0 the Banach space Cn
0

(︁
[0,∞)

)︁
:= {f ∈

Cn
(︁
(0,∞)

)︁
| ∀k ∈ {0, . . . , n} : f (k) ∈ C0

(︁
[0,∞)

)︁
}. One naturally can consider this

Banach space as a closed subspace of C0

(︁
[0,∞);Cn+1

)︁
=
∏︁n

k=0C0

(︁
[0,∞)

)︁
, namely U :=

{g = (g0, . . . , gn) ∈ C0

(︁
[0,∞);Cn+1

)︁
| ∀k ∈ {0, . . . , n} : gk = g

(k)
0 }. Therefore, every con-

tinuous functional on U can be extended to a continuous functional on ⊕n
k=0Mb

(︁
[0,∞)

)︁
,

the dual space of C0

(︁
[0,∞);Cn+1

)︁
. More explicitly, for every µ ∈ Cn

0

(︁
[0,∞)

)︁′
we can �nd

measures µ0, . . . , µn such that

∀f ∈ Cn
0

(︁
[0,∞)

)︁
: ⟨µ, f⟩ =

n∑︂
k=0

∫︂
[0,∞)

f (k)(t)µk(dt).
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Since C∞
0

(︁
[0,∞)

)︁
is the reduced projective limit of the spaces Cn

0

(︁
[0,∞)

)︁
, its dual is the

inductive limit of the dual spaces ([31, Sect. 8.8, Prop. 7]).

Remark 3.2.2. As indicated by the above proof, one may wonder whether one can use

the norm ⃓⃓⃓⃓ n∑︂
k=0

(Dk)′µk

⃓⃓⃓⃓
:=

n∑︂
k=0

∥µk∥

on Cn
0

(︁
[0,∞)

)︁′
. It is stronger than the usual Banach space norm of Cn

0

(︁
[0,∞)

)︁′
what can

be seen by inspecting again Inequality (3.2.1) for arbitrary f ∈ Cn
0

(︁
[0,∞)

)︁
. Also, it is the

restriction of the norm ⃓⃓⃓⃓ n∑︂
k=0

µk

⃓⃓⃓⃓
:=

n∑︂
k=0

∥µk∥

de�ned on ⊕n
k=0Mb

(︁
[0,∞)

)︁
to the subspace Cn

0

(︁
[0,∞)

)︁′
. Hence, equivalence of the norms

follows now as usual from the bounded inverse theorem and we could use this alternative

norm as well. We shall also do this in what follows since it will prove to be of advantage

when we will consider Mb

(︁
[0,∞)

)︁
as an algebra and not just as a vector space.

For s ≥ 0 let us denote by τs the shift operator on C∞
0

(︁
[0,∞)

)︁
which maps f(·) ↦→ f(·+s).

Lemma 3.2.3. Let f ∈ C∞
0

(︁
[0,∞)

)︁
, µ ∈Mb

(︁
[0,∞)

)︁
, s ≥ 0, and l ∈ N0. Then

τsf ∈ C∞
0

(︁
[0,∞)

)︁
and

(︁
[0,∞) ∋ s ↦→ ⟨(Dl)′µ, τsf⟩

)︁
∈ C∞

0

(︁
[0,∞)

)︁
.

Proof. We have (τsf)(t) = f(s + t). Therefore, τsf is again in�nitely often continuously

di�erentiable and, for n ∈ N0, one gets D
nτsf = τsD

nf which establishes the �rst part of

the claim. For the second part consider the function g : [0,∞) → C de�ned by

s ↦→ g(s) :=

∫︂
[0,∞)

f (l)(s+ t)µ(dt).

Note that g =
(︁
s ↦→ ⟨(Dl)′µ, τsf⟩

)︁
. By standard theorems concerning continuity and

di�erentiability of parameter integrals, we have that g ∈ C∞(︁[0,∞)
)︁
. Let again n ∈ N0

be a given natural number or 0. If µ = 0, it follows that g = 0 and the statement is

established. So let µ ̸= 0. In order to show that Dng is in C0

(︁
[0,∞)

)︁
in this case, for given

ε > 0, let s0 ≥ 0 be such that
⃓⃓
f (l+n)(t)

⃓⃓
< ε

|µ|([0,∞))
for t ≥ s0. Then

∀s ≥ s0 :
⃓⃓
g(n)(s)

⃓⃓
≤
∫︂

[0,∞)

⃓⃓
f (l+n)(s+ t)

⃓⃓
|µ| (dt) ≤ ε

|µ|
(︁
[0,∞)

)︁ · |µ| (︁[0,∞)
)︁
= ε
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which �nishes the proof.

Let f ∈ C0

(︁
[0,∞)

)︁
. For two measures µ, ν ∈ Mb

(︁
[0,∞)

)︁
, one commonly de�nes the

convolution µ ∗ ν ∈Mb

(︁
[0,∞)

)︁
to be the measure µ ∗ ν ∈Mb

(︁
[0,∞)

)︁
given by

⟨µ ∗ ν, f⟩ =
⟨︁
µ, s ↦→ ⟨ν, τsf⟩

⟩︁
=

∫︂
[0,∞)

∫︂
[0,∞)

f(s+ t)µ(dt)ν(ds).

Let n ∈ N0 and assume now f ∈ C∞
0

(︁
[0,∞)

)︁
. The observation ⟨(Dn)′(µ ∗ ν), f⟩ =⟨︁

µ, s ↦→ ⟨(Dn)′ν, f⟩
⟩︁
suggests the following extension of the convolution to the dual space

of C∞
0

(︁
[0,∞)

)︁
.

De�nition 3.2.4. Let f ∈ C∞
0

(︁
[0,∞)

)︁
, µ, ν ∈Mb

(︁
[0,∞)

)︁
, and n, m ∈ N0. We de�ne the

convolution between the functionals (Dn)′µ, (Dm)′ν ∈ C∞
0

(︁
[0,∞)

)︁′
to be the functional

(Dn)′µ ∗ (Dm)′ν ∈ C∞
0

(︁
[0,∞)

)︁′
given by

⟨(Dn)′µ ∗ (Dm)′ν, f⟩ :=
⟨︁
(Dn)′µ, s ↦→ ⟨(Dm)′ν, τsf⟩

⟩︁
and extend this on the whole dual space of C∞

0

(︁
[0,∞)

)︁
by linearity w.r.t. the representation

given in Lemma 3.2.1. By this we mean(︄
n∑︂

k=0

(Dk)′µk

)︄
∗

(︄
m∑︂
l=0

(Dl)′νl

)︄
=

n∑︂
k=0

m∑︂
l=0

(Dk)′µk ∗ (Dl)′νl.

The so-de�ned convolution shows the expected behaviour whenD is applied to a product.

Lemma 3.2.5. Let µ, ν ∈ C∞
0

(︁
[0,∞)

)︁′
, f ∈ C∞

0

(︁
[0,∞)

)︁
, and l ∈ N0. Then,

1. ∀s ∈ [0,∞) : ⟨(Dl)′µ, τsf⟩ = Dl
(︁
s ↦→ ⟨µ, τsf⟩

)︁
.

2. (Dl)′(µ ∗ ν) = µ ∗ (Dl)′ν = (Dl)′µ ∗ ν.

Proof.

1. By Lemma 3.2.1, µ has a representation µ =
∑︁n

k=0(D
k)′µk. We calculate

⟨(Dl)′µ, τsf⟩ =
n∑︂

k=0

∫︂
[0,∞)

dl

dsl
f (k)(s+ t)µk(dt)

=
dl

dsl

n∑︂
k=0

∫︂
[0,∞)

f (k)(s+ t)µk(dt)

= Dl⟨µ, τsf⟩
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which works since we are allowed to exchange di�erentiation and integration.

2. Using part 1, we calculate again

⟨(Dl)′(µ ∗ ν), f⟩ =
⟨︁
µ, s ↦→ ⟨(Dl)′ν, τsf⟩

⟩︁
= ⟨µ ∗ (Dl)′ν, f⟩ =

⟨︁
µ, s ↦→ Dl⟨ν, τsf⟩

⟩︁
= ⟨(Dl)′µ ∗ ν, f⟩

which shows the desired result.

The next result is a general one which will tell us that C∞
0

(︁
[0,∞)

)︁′
is a locally convex

algebra when equipped with ∗.

Lemma 3.2.6. Let (Xn)n∈N be an inductive spectrum with inductive limit indn∈N Xn =: X

and assume that there is a bilinear, continuous mapping ∗ : Xn × Xk → Xn+k. This

mapping can be extended to a bilinear, continuous mapping, again denoted by ∗, from

X ×X to X given by (Lnxn, Lkxk) ↦→ Ln+k(xn ∗ xk). This additional structure makes X

a locally convex algebra which is also graded, i.e., Ln(Xn) ∗ Lk(Xk) ⊆ Ln+k(Xn+k).

Proof. By assumption the extended mapping ∗ is still bilinear and the grading also directly

follows from the properties of the original ∗. It remains to show its continuity. For this

let W ∈ UX be absolutely convex. We need to �nd U , V ∈ UX such that U ∗ V ⊆ W .

Choose l, m ∈ N. It holds that Wl,m := L−1
l+m(W ) ∈ UXl+m

. By continuity of the original

mapping ∗, there are 0-neighborhoods Ul ∈ UXl
and Vm ∈ UXk

with Ul ∗Vm ⊆ Wl,m. De�ne

U := acx
⋃︁

l Ll(Ul) and V := acx
⋃︁

m Lm(Vm). In the proof of Proposition 2.0.15 it was

shown that U and V are 0-neighbourhoods. We calculate

U ∗ V ⊆ acx
⋃︂
n,k

Ln(Un) ∗ Lk(Vk)⏞ ⏟⏟ ⏞
⊆Ln+k(Wn,k)⊆W

⊆ W.

Corollary 3.2.7. The space C∞
0

(︁
[0,∞)

)︁′
equipped with ∗ given by convolution is a locally

convex, graded algebra.

Proof. This is an application of Lemma 3.2.6. For the necessary calculation concerning

the continuity of ∗ also pay attention to Remark 3.2.2.
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We now construct a functional calculus from this algebra. Before, note that every

measure µ ∈ Mb

(︁
[0,∞)

)︁
extends naturally to a functional on the space Cb

(︁
[0,∞)

)︁
. Here

however, one faces the problem that Cb

(︁
[0,∞);X

)︁
with its standard Banach space topology

cannot be considered as ε-product. The problem essentially is that for f ∈ Cb

(︁
[0,∞);X

)︁
the orbit {f(t) | t ∈ [0,∞)} is not necessarily relatively compact in contrast to the case

f ∈ C0

(︁
[0,∞);X

)︁
. The following example illustrates this.

Example 3.2.8. Let H be an in�nite dimensional, separable Hilbert space with ONB

(en)n∈N. Choose f ∈ Cc

(︁
(0, 1)

)︁
, f ̸= 0 such that 0 ≤ f ≤ 1. Extend this function to R

by setting it 0 outside of (0, 1) and for n ∈ N de�ne shifted versions fn : [0,∞) → R,

fn(t) := f(t− n), (t ≥ 0). Finally de�ne

g : [0,∞) → H, g(t) :=
∞∑︂
n=1

fn(t)en.

It holds that g ∈ Cb

(︁
[0,∞);H

)︁
but it is not contained in Cb

(︁
[0,∞)

)︁
εH. To see this,

assume by contradiction that this would be the case. It holds that en → 0 in
(︁
H, σ(H,H ′)

)︁
.

Actually even en → 0 in (H, κ). However,

sup
t≥0

|(en|g(t)| = ∥f∥ > 0

and hence

sup
t≥0

|(en|g(t)| ↛ 0 as n→ ∞

which contradicts our assumption.

A possible way out is coarsening the Banach space topology towards a so-called mixed

topology as it was introduced in [66].

De�nition 3.2.9. Let h ∈ C0

(︁
[0,∞)

)︁
. For f ∈ Cb

(︁
[0,∞)

)︁
, de�ne the seminorm ∥f∥h :=

sups∈[0,∞) |h(s)f(s)|. We de�ne the mixed topology on Cb

(︁
[0,∞)

)︁
to be the locally convex

topology generated by all such seminorms.

Remark 3.2.10.

1. Mixed topologies got their name because they are indeed `mixtures' of topologies. In

the above case, our mixed topology is generated from the standard norm topology of

Cb

(︁
[0,∞)

)︁
in combination with the topology of uniform convergence on compacts,

the so-called compact-open topology.
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2. One main �eld in which mixed topologies are used is the theory of so-called bi-

continuous semigroups, see for example [21, 40].

3. The characterisation used in De�nition 3.2.9 is not obvious from the original de�ni-

tion used in [66] and can be found in [16, Proposition 3]. Especially in the context

of Cb, the mixed topology is often referred to as strict topology.

If equipped with the mixed topology, the space Cb

(︁
[0,∞);X

)︁
is an ε-product. Moreover,

if X = C, its dual space is actually given by Mb

(︁
[0,∞)

)︁
([12, Thm. 2]). These considera-

tions also transfer to the projective limit C∞
b

(︁
[0,∞);X

)︁
, C∞

b

(︁
[0,∞)

)︁
and its dual space.

All this follows from [38, Thm. 14 (iii)]. Note that the assumption of quasi-completeness

of X is essential in order to apply the mentioned theorem. It in turn implies the so-called

convex compactness property which is needed. From now on we shall always consider

Cb

(︁
[0,∞)

)︁
(and similarly Cn

b

(︁
[0,∞)

)︁
as well as C∞

b

(︁
[0,∞)

)︁
) as equipped with its mixed

topology.

De�nition 3.2.11. Let X be a LCS and A ∈ L(X) such that −A generates an equi-

bounded C0-semigroup
(︁
e−At

)︁
t≥0

. Set A := C∞
b

(︁
[0,∞)

)︁′
and identify the element µ ∈

A := C∞
b

(︁
[0,∞)

)︁′
with µε1X : C∞

b

(︁
[0,∞)

)︁
εX = C∞

b

(︁
[0,∞);X

)︁
→ X. We de�ne, for

µ =
∑︁n

k=0(D
k)′µk and x ∈ X, the mapping Φ : A → L(X) by

Φ(µ)x := ⟨µ, t ↦→ e−Atx⟩ =
n∑︂

k=0

(−A)k
∫︂

[0,∞)

e−Atxµk(dt).

Finally, we equip L(X) with a topology, also denoted by β which, by comparison with

the situation for dual spaces, also shall be called strong topology and whose seminorms are

given by

∥T∥B,p := sup
x∈B

∥Tx∥p

where B ⊂ X is any bounded set and ∥·∥p ∈ PX . The resulting LCS will be denoted by

L(X)β.

Proposition 3.2.12. Let X be an LCS and A ∈ L(X) such that −A generates an equicon-

tinuous C0-semigroup
(︁
e−At

)︁
t≥0

. Then the triple (X,A ,Φ) de�nes a continuous functional

calculus.

Proof. Let µ, ν ∈ C∞
b

(︁
[0,∞)

)︁′
be functionals with representations µ =

∑︁n
k=0(D

k)′µk and

ν =
∑︁m

l=0(D
l)′νl, respectively. Furthermore, let x ∈ X and α, β ∈ C. W.l.o.g. we may
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assume n ≥ m and introduce νm+1 = · · · = νn := 0. Then

Φ(αµ+ βν)x =
n∑︂

k=0

(−A)k
∫︂

[0,∞)

e−Atx (αµk + βνk)(dt)

= α
n∑︂

k=0

(−A)k
∫︂

[0,∞)

e−Atxµk(dt) + β

m∑︂
l=0

(−A)l
∫︂

[0,∞)

e−Atx νl(dt)

= αΦ(µ)x+ βΦ(ν)x

shows linearity while the multiplicativity follows from

Φ(µ ∗ ν)x =
n∑︂

k=0

m∑︂
l=0

(−A)k(−A)l
∫︂

[0,∞)

e−Atxµk ∗ νl(dt)

=
n∑︂

k=0

(−A)k
∫︂

[0,∞)

e−At

m∑︂
l=0

(−A)l
∫︂

[0,∞)

e−Asx νl(ds)µk(dt) = Φ(µ)Φ(ν)x.

As for the continuity, we use the same criterion which we applied by now several times and

check that the mapping Φ is already continuous from Cn
b

(︁
[0,∞)

)︁′
to L(X)β. This follows

from

∥Φ(µ)x∥p ≤M ∥x∥q
n∑︂

k=0

∥µk∥ .

One can now take the supremum over all x ∈ B where B ⊆ X is a given bounded subset

and the continuity follows.

The continuous calculus from Proposition 3.2.12 shall be called Hille�Phillips�Schwartz

calculus.

The situation changes dramatically when we consider the more generic situation of A

being a closed but discontinuous operator such that −A generates an equicontinuous C0-

semigroup. In this situation the calculus restricted to Cb

(︁
[0,∞)

)︁′
will still be continuous

but we cannot give sense to Φ(µ) if µ /∈ Cb

(︁
[0,∞)

)︁′
. However, note that there is always

m ∈ N0 such that the given de�nition can be used to de�ne an operator Φ(µ) on D(Am).

Lemma 3.2.13. Let µ ∈ C∞
b

(︁
[0,∞)

)︁′
with representation µ =

∑︁n
k=0(D

k)′µk, m ∈ N0,

m ≥ n. Then the operator Φ(µ) : D(Am) → X, de�ned by

Φ(µ)x := ⟨µ, t ↦→ e−Atx⟩ =
n∑︂

k=0

(−A)k
∫︂

[0,∞)

e−Atxµk(dt)
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is closable.

Proof. Take a net (xα) in D(Am) convergent towards 0 such that (Φ(µ)xα) converges to

y ∈ X. By continuity of the resolvent this implies

(1 + A)−my = lim
α
(1 + A)−mΦ(µ)xα = lim

α

n∑︂
k=0

(−A)k(1 + A)−m

∫︂
[0,∞)

e−Atxα µk(dt) = 0.

Hence, y = 0. This �nishes the proof.

At �rst glance the extension of the calculus by a closure procedure seems to be a nice

workaround but the following result should be taken into account.

Proposition 3.2.14. It holds that

∀µ ∈ Cn
b

(︁
[0,∞)

)︁′ ⊆ C∞
b

(︁
[0,∞)

)︁′
, m ≥ n : µ ∗ 1

(m−1)!
tm−1e−tdt ∈ Cb

(︁
[0,∞)

)︁′
and as a consequence

Φ(µ)(1 + A)−m = Φ(µ)(1 + A)−m = Φ(µ ∗ 1
(m−1)!

tm−1e−tdt) ∈ L(X).

Moreover, (1 + A)mΦ(µ)(1 + A)−m is a closed operator extending Φ(µ), i.e.,

∀µ ∈ Cn
b

(︁
[0,∞)

)︁′ ⊆ C∞
b

(︁
[0,∞)

)︁′
, m ≥ n : Φ(µ) ⊆ (1 + A)mΦ(µ)(1 + A)−m.

If in addition we have that D(A) = X, we even get

∀µ ∈ Cn
b

(︁
[0,∞)

)︁′ ⊆ C∞
b

(︁
[0,∞)

)︁′
, m ≥ n : Φ(µ) = (1 + A)mΦ(µ)(1 + A)−m.

Proof. To begin with let f ∈ Ck
0

(︁
(0,∞)

)︁
such that f (l) ∈ L1

(︁
(0,∞)

)︁
for l ∈ {0, . . . , k}.

Then we have (Dl)′
(︁
fdt
)︁
= (−1)lf (l)dt which follows from integration by parts. Having

this in mind, one can apply Lemma 3.2.5 which yields

µ ∗ 1

(m− 1)!
tm−1e−tdt =

n∑︂
k=0

µk ∗ (−1)kDk 1

(m− 1)!
tm−1e−tdt

=
n∑︂

k=0

k∑︂
l=0

µk ∗ (−1)l
(︃
k

l

)︃
1

(m− 1− l)!
tm−1−le−tdt

which is a �nite measure since it is the sum of convolutions of measures.
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The �rst claimed equality is based on Laplace transform. It holds that

(λ+ A)−1x =

∫︂ ∞

0

e−λte−Atx dt

and di�erentiating w.r.t. the variable λ yields

(λ+ A)−mx =
1

(m− 1)!

∫︂ ∞

0

tm−1e−λte−Atx dt.

Hence,

Φ(µ)(1 + A)−mx =
n∑︂

k=0

∫︂
[0,∞)

e−At 1

(m− 1)!

∫︂ ∞

0

sm−1e−se−Asx ds (Dk)′µk(dt)

= Φ(µ ∗ 1
(m−1)!

tm−1e−tdt)x.

Since µ ∗ 1
(m−1)!

tm−1e−tdt ∈ Cb

(︁
[0,∞)

)︁′
, we conclude that we indeed have Φ(µ)(1+A)−m =

Φ(µ ∗ 1
(m−1)!

tm−1e−tdt) ∈ L(X). Hence, the operator (1 + A)mΦ(µ)(1 + A)−m is closed

as composition of a continuous and a closed operator. Let now x ∈ D(Φ(µ)) for some

µ ∈ Cn
b

(︁
[0,∞)

)︁′ ⊆ C∞
b

(︁
[0,∞)

)︁′
and choose m ∈ N0, m ≥ n. We calculate

Φ(µ)x = (1 + A)m(1 + A)−m lim
α

Φ(µ)xα = (1 + A)mΦ(µ)(1 + A)−mx

where the second equality used the continuity of (1+A)−m and Lemma 3.1.8 applied to the

continuous operator (1 + A)−m. To establish equality in case of A being densely de�ned,

we shall make use of Lemma 2.0.9. Applying it we get

(1 + A)mΦ(µ)(1 + A)−mx = lim
λ→∞

λm(λ+ A)−m(1 + A)mΦ(µ)(1 + A)−mx

= lim
λ→∞

Φ(µ)λm(λ+ A)−mx

= Φ(µ)x

where the last equality took into account the fact that we have λm(λ + A)−mx → x as

λ → ∞. The latter made use of the dense domain because otherwise it could not be

guaranteed. The proof is �nished

From now on we shall simply write Φ(µ) for the operator (1 + A)mΦ(µ)(1 + A)−m

where µ ∈ Cn
b

(︁
[0,∞)

)︁′ ⊆ C∞
b

(︁
[0,∞)

)︁′
and m ∈ N0, m ≥ n. Besides the fact that this

is operator has formally a bigger domain compared to Φ(µ), there is another fact which

suggests that the expression (1 + A)mΦ(µ)(1 + A)−m is a somehow `better' extension of
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Φ to C∞
b

(︁
[0,∞)

)︁′
than µ ↦→ Φ(µ). One may also want to generalise the homomorphism

property included in De�nition 3.0.1. We already sense that any extension will take values

in the closed but typically discontinuous operators. Due to domain issues, a generalisation

of the homomorphism property is not to be expected. We have the following though.

Proposition 3.2.15. Let Φ be the mapping from above. Then it holds that

1. ∀α, β ∈ C, µ, ν ∈ C∞
b

(︁
[0,∞)

)︁′
: αΦ(µ) + βΦ(ν) ⊆ Φ(αµ+ βν).

2. ∀µ ∈ Cb

(︁
[0,∞)

)︁′
, m ∈ N0 : Φ(µ)A

m ⊆ AmΦ(µ).

3. ∀µ, ν ∈ C∞
b

(︁
[0,∞)

)︁′
: Φ(µ)Φ(ν) ⊆ Φ(µ ∗ ν) and
D(Φ(µ)Φ(ν)) = D(Φ(ν)) ∩ D(Φ(µ ∗ ν)).

Proof.

1. Let x ∈ D(Φ(µ)) ∩ D(Φ(ν)). Choose m ∈ N su�ciently large. Then

αΦ(µ)x+ βΦ(ν)x = α(1 + A)mΦ(µ)(1 + A)−mx+ β(1 + A)mΦ(ν)(1 + A)−mx

= (1 + A)mΦ(αµ+ βν)(1 + A)−mx

= Φ(αµ+ βν)x.

2. By the closedness of Am and Hille's theorem, we have for x ∈ D(Am)

Φ(µ)Amx =

∫︂
[0,∞)

e−AtAmxµ(dt) = Am

∫︂
[0,∞)

e−Atxµ(dt) = AmΦ(µ)x.

3. Let x ∈ D(Φ(µ)Φ(ν)) and choose m,n ∈ N su�ciently large. Then

Φ(µ)Φ(ν)x = (1 + A)m Φ(µ)(1 + A)−m⏞ ⏟⏟ ⏞
∈L(X)

(1 + A)nΦ(ν)(1 + A)−nx

= (1 + A)m+nΦ(µ ∗ ν)(1 + A)−m−nx

= Φ(µ ∗ ν)x.

The above calculation also shows the inclusionD(Φ(µ)Φ(ν)) ⊆ D(Φ(ν))∩D(Φ(µ∗ν)).
Conversely, assuming x ∈ D(Φ(ν)) ∩D(Φ(µ ∗ ν)) allows one to go through the same

calculation backwards which establishes equality of the domains.
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Remark 3.2.16.

1. The characterisation in Proposition 3.2.15 is used in [27] to de�ne an unbounded

functional calculus.

2. The used procedure to extend a given bounded calculus algebraically is introduced in

a very general manner in [17, De�nition 3.4] and re�ned in [26]. Following the termi-

nology used in [26], one may say that every µ ∈ C∞
b

(︁
[0,∞)

)︁′
is anchored (a notation

which will be explained in more detail later on) by the measure 1
(m−1)!

tm−1e−tdt ∈
Mb

(︁
[0,∞)

)︁
for su�ciently large m ∈ N.

The above studied calculus was already considered in [52], [58], and [65] by using ap-

proximations. The equivalence of the approaches is contained in the next proposition.

Proposition 3.2.17. Let µ ∈ C∞
b

(︁
[0,∞)

)︁′
considered as a functional on the subspace of all

functions in D(R) whose support is contained in [0,∞) (a so-called summable distribution,

D′
L1

(︁
[0,∞)

)︁
denotes their set in the Schwartz terminology), (φk) a sequence in D(R) whose

supports are contained in [0,∞) and which is convergent to δ0 in D′(R) w.r.t. the weak

topology, i.e., ∀n ∈ N0, ψ ∈ D(R) : limk→∞⟨(−1)nφ
(n)
k dt, ψ⟩ = ψ(n)(0), and x ∈ D(Φ(µ)).

Then

lim
k→∞

Φ(µ ∗ φkdt)x = Φ(µ)x.

Proof. First, note that every ψ ∈ D(R) gives rise to a function ψ ∈ C∞
b

(︁
[0,∞)

)︁
by simply

restricting to [0,∞). Second, by the support assumption on the φk one can consider the

measures φkdt as functionals on C
∞
b

(︁
[0,∞)

)︁′
which is in correspondence with the above

mentioned restriction procedure in the sense that

⟨φkdt, ψ⟩D′(R) = ⟨φkdt, ψ⟩C∞
b ([0,∞))′ .

Third, the measures φkdt are, by smoothness of the functions φk, smoothing for all µ ∈
C∞

b

(︁
[0,∞)

)︁′
which means that φkdt ∗ µ ∈ Cb

(︁
[0,∞)

)︁′
. Finally, assume µ =

∑︁n
l=0(D

l)′µl
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and choose m ∈ N, m ≥ n. Now one can calculate

Φ(µ)x = (1 + A)m
n∑︂

l=0

∫︂
[0,∞)

(−A)le−As(1 + A)−mxµl(ds)

= (1 + A)m
n∑︂

l=0

∫︂
[0,∞)

(−A)l lim
k→∞

∞∫︂
0

e−A(s+t)(1 + A)−mxφk(t)dt µl(ds)

= (1 + A)m lim
k→∞

∫︂
[0,∞)

e−As(1 + A)−mx
(︁
µ ∗ φkdt

)︁
(ds)

= lim
k→∞

Φ(µ ∗ φkdt)x.

The Laplace transform L : Cb

(︁
[0,∞)

)︁′ → H(CRe>0), µ ↦→ (λ ↦→
∫︁
[0,∞)

e−λt µ(dt)) is an

injective mapping, and its image is called Laplace�Stieltjes algebra and shall be denoted

by LS(CRe>0). This is a subalgebra of the locally convex algebra H(CRe>0). We could

also interpret the Hille�Phillips calculus as a mapping de�ned on LS(CRe>0) and in this

situation one may de�ne for Lµ = f ∈ LS(CRe>0) the notation f(A) := Φ(f) = Φ(µ)

which also comes much closer to the interpretation of the calculus being the process of

plugging in an operator A into a function f . From this point of view, the above presented

extension may be seen as an extension of Φ from LS(CRe>0) to an algebra of the form

{g ∈ H(CRe>0) | ∃f0, . . . , fn ∈ LS(CRe>0)∀λ ∈ CRe>0 : g(λ) =
∑︁n

k=0(−λ)kfk(λ)}.

Proposition 3.2.18. The mapping

L : C∞
b

(︁
[0,∞)

)︁′ → H(CRe>0), µ ↦→ (λ ↦→ ⟨µ, t ↦→ e−λt⟩)

is injective.

Proof. It is possible to de�ne the Laplace transform L in a very general manner on all such

distributions µ ∈ S (R)′ which are supported in [0,∞). Let us roughly sketch the details.

One de�nes Lµ ∈ H(CRe>0) by

(Lµ)(λ) := ⟨µ, t ↦→ e−λtϕ(t)⟩

where ϕ ∈ C∞(R), ϕ(t) = 1 for t ∈ [0,∞) and ϕ(t) = 0 for t ∈ (−∞,−ε) for some ε > 0,

cf. [64, Chap. 8.2] for the details. Basically ϕ ensures that t ↦→ e−λtϕ(t) ∈ S (R) and one

can show further that the de�nition is independent of the concrete choice of ϕ. One now

46



checks that C∞
b

(︁
[0,∞)

)︁′ ⊆ S (R)′ and the support condition is also met. So the mapping

L under consideration is a restriction of L de�ned on S (R)′ and the latter is already

injective by [64, Thm. 8.2].

Restricting the operator A under consideration further, the above mentioned more gen-

eral de�nition of L on Schwartz distributions S (R)′ supported in [0,∞) or even on Laplace-

transformable distributions in D(R)′ with the same exponential growth bound (they form

a convolution algebra by [64, Chap. 8.3]) can be used to extend the calculus further. To

be more concrete, every µ ∈ S (R)′ is of the form

µ =
n∑︂

k=0

(Dk)′µk

with measures µ0 to µn each of them such that we can �nd a natural number lk ∈ N with

the property ∫︂
R

1

1 + |t|lk
|µk| (dt) <∞

(a consequence of S (R) being the projective limit of the spectrum discussed in Exam-

ple 2.0.18 (c)). For a generator −A of an equibounded semigroup and any ε > 0, we

can consider the operator −(A + ε) generating an exponentially stable semigroup. For

generators of such exponentially stable semigroups the calculus extends to the algebra of

elements in S (R)′ supported in [0,∞) in an obvious way. The same considerations are

true for Laplace-transformable distributions in D(R)′ by considering −(A + c) for some

c > 0 su�ciently large.

The just discussed extension is not necessarily the largest possible extension. In or-

der to explain the so-called maximal extension, let us quickly explain the concept of an

anchor set already touched in Remark 3.2.16. We say that a function f ∈ H(CRe>0) is

anchored in LS(CRe>0) if there is a subset M ⊆ LS(CRe>0), called an anchor set, such that⋂︁
g∈M N (Φ(g)) = {0} and gf ∈ LS(CRe>0) for all g ∈M . The set of all anchored elements

forms a superalgebra of LS(CRe>0) on which the calculus Φ may be extended by means of

(x, y) ∈ Φext(f) ⇔ ∀g ∈M : Φ(gf)x = Φ(g)y.

This extension is the maximal possible extension of the calculus Φ. For more details on

the matter, please see [26]. We will come back to this extension when studying the next

calculus.
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3.3. Stieltjes functional calculus

In this section we want to apply the so far introduced general framework to another

functional calculus. We start by sketching the basic idea. Consider again the algebra

E(Sω) but now for the `extreme' case ω = π. To be more precise, consider the algebra of

functions f ∈ H∞(︁C \ (−∞, 0]
)︁
with the additional property that for all −t ∈ (−∞, 0)

the limits f(−t− i0) := limz→−t, Im z<0 f(z) and f(−t+ i0) := limz→−t, Im z>0 f(z) exist and

that the di�erence t ↦→ f(−t + i0) − f(−t − i0) is in L1
(︁
(0,∞), t−1dt

)︁
. Furthermore, let

us demand that limR→∞ f(Reit) = 0 for all t ∈ (−π, π). A standard example for such a

function would be λ ↦→ e−λγ
where 0 < γ < 1

2
. An argument using a keyhole contour (see

Figure 3.3.1) in combination with dominated convergence shows that

Re

Im

Θ → π− r
→
0+

R
→
∞

λ

Figure 3.3.1.: Key hole contour for integration

∀λ ∈ C \ (−∞, 0] : f(λ) =
1

2πi

∞∫︂
0

f(−t− i0)− f(−t+ i0)

t+ λ
dt.
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Based on this formula one may try to set up a functional calculus by means of the

equation

f(A)x =
1

2πi

∞∫︂
0

(︁
f(−t− i0)− f(−t+ i0)

)︁
(t+ A)−1x dt

or, having the methods in mind we already saw, by the more general approach

Φ(µ)x =

∫︂
(0,∞)

(t+ A)−1xµ(dt)

where µ is a measure such that t ↦→ t−1 is integrable. This integral transform is called a

Stieltjes transform which was introduced by Stieltjes in [62] for the purpose of solving the

Stieltjes moment problem ([57, Cmt. 2.5]).

We are now going to mimic the ideas already presented and will develop an even larger

functional calculus. Such a Stieltjes functional calculus was apparently studied for the �rst

time by Hirsch in [30]. There the author already introduced the right counterpart for the

shift operator and the spaces of continuously di�erentiable functions we used before and

therefore laid the foundation for a `Stieltjes�convolution' explicitly studied in [61]. Further

contributions to the calculus came from [43] (see also [44]) where it was used in view of

its applicability to fractional powers) and from [28] where it already got a quite advanced

appearance.

By now we already noted that the orbits of t ↦→ (t + A)−1 is what is going to replace

the orbits of t ↦→ e−At. This has advantages and disadvantages. As for the advantages, we

already learnt in Proposition 2.0.3 that the orbits of the resolvent operators are smooth

while for the orbits of a generic C0-semigroup we can in general not hope for any better

than continuity unless the smoothness of the considered element x is increased, i.e., we

have additional information such as x ∈ D(Am) for some m ∈ N. However, the singularity
at t = 0 becomes stronger by one order every time we di�erentiate and we therefore need

to take this into account by introducing new spaces being the counterparts to the spaces

Cn
b

(︁
[0,∞)

)︁
and their projective limit C∞

b

(︁
[0,∞)

)︁
.

De�nition 3.3.1. For n ∈ N0 we de�ne

Sn := {f ∈ Cn
(︁
(0,∞)

)︁
| ∀k ∈ {0, . . . , n} : s ↦→ sk+1f (k)(s) ∈ Cb

(︁
(0,∞)

)︁
}

to be the space of weighted Cn-functions. Analogously, we de�ne their projective limit S∞

and we write Sn(X) and S∞(X), respectively, if the functions under consideration take

values in an LCS X.
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The spaces Sn replace the spaces Cn
b

(︁
[0,∞)

)︁
from before. If X is an LCS and x ∈ X,

a natural example of a function in S∞(X) is t ↦→ (t + A)−1x for A ∈ M(X). The space

S1 already appeared in [30] where one also can �nd the suitable replacement for τs from

before.

But �rst let us talk about the topology on S := S0. For this simply note that S ∋ f ↦→(︁
s ↦→ sf(s)

)︁
∈ Cb

(︁
(0,∞)

)︁
is an isomorphism and that for Cb

(︁
(0,∞)

)︁
, as for all spaces

of bounded continuous functions on locally compact spaces, a mixed topology is available,

see [16, Proposition 3].

De�nition 3.3.2. Let h ∈ C0

(︁
(0,∞)

)︁
. For f ∈ S de�ne the continuous seminorm ∥f∥h :=

sups∈(0,∞) |h(s)sf(s)|. We de�ne the mixed topology on S to be the locally convex topology

generated by all such seminorms.

Remark 3.3.3.

1. With the help of the above isomorphism and its dual isomorphism one also charac-

terises S ′ as the space of all measures µ ∈ M
(︁
(0,∞)

)︁
of the form µ = sν for some

ν ∈Mb

(︁
(0,∞)

)︁
. That means

S ′ = {µ ∈M
(︁
(0,∞)

)︁
|
∫︂

(0,∞)

1

s
|µ| (ds) <∞}.

As before, we equip this space with its natural Banach space topology and de�ne

∥µ∥S′ :=
∫︁
(0,∞)

1
s
|µ| (ds).

2. At this point we already deviate from the strategy from before. Analogously to the

situation we already encountered, we should have introduced spaces {f ∈ C
(︁
(0,∞)

)︁
|

s ↦→ sf(s) ∈ C0

(︁
(0,∞)

)︁
}. However, typically the orbits generated by the resolvents

are not in such a space which is why, at this point, we would have to consider S

with its mixed topology to overcome the problem that this space, equipped with its

standard Banach space topology, cannot be represented as ε-product.

3. The projective limit S∞ gets now its continuous seminorms in an obvious manner.

To wit, let n ∈ N0 and h = (h0, . . . , hn) ∈ C0

(︁
(0,∞);Cn+1

)︁
. Then a continuous

seminorm is given by the expression

∥f∥n,h := max
0≤k≤n

sup
s∈(0,∞)

sk+1
⃓⃓
hk(s)f

(k)(s)
⃓⃓
.

The next lemma is of auxiliary character and will help to prove a result analogously to

Lemma 3.2.1. It is actually a part of the proof of [12, Thm. 2] and can be found for the
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more general setting of a locally compact topological space there. It will be added for the

readers convenience.

Lemma 3.3.4. Let µ ∈ Mb

(︁
(0,∞)

)︁
. Then there is h ∈ C0

(︁
(0,∞)

)︁
such that 0 < h ≤ 1,

1
h
is integrable w.r.t. the measure µ, and

∥µ∥ ≤
∫︂

(0,∞)

1

h(s)
|µ| (ds) ≤ 4 ∥µ∥ .

Moreover, we have ∀ 0 < s ≤ u ≤ t : h(t)h(s) ≤ h(u).

Proof. The statement is clear if µ = 0. So w.l.o.g. we may assume µ ̸= 0. Let (Kn)n∈N0 be

de�ned by K0 := ∅ and Kn := [ 1
n
, n]. Then Kn ⊊ Kn+1 ⊊ (0,∞) which means that (Kn)

is a strictly increasing sequence of compacts such that
⋃︁∞

n=1Kn = (0,∞). De�ne further

the sequence (an)n∈N by an := |µ| (Kn \Kn−1). Then M := ∥µ∥ =
∑︁∞

n=1 an. Assume that

the measure µ has compact support. It follows that the sequence (an) has only �nitely

many elements di�erent from 0 in this case. In this situation one can choose h = 1 on

supp(µ) and extend it to a function h ∈ C0

(︁
(0,∞)

)︁
subject to the above restrictions. If

supp(µ) is not compact, one is able to choose a strictly increasing sequence (nk) in N0 such

that n0 = 0 and

∀k ∈ N :
M

2k
≤

nk∑︂
m=nk−1+1

am ≤ M

2k−1
.

De�ne now a sequence (bn) in (0,∞) by bn := 1
k
if n ∈ {nk−1 + 1, . . . , nk}. This sequence

has the properties that for all n ∈ N one has bn ≤ 1, limn→∞ bn = 0 and
∑︁∞

n=1
an
bn

≤ 4M .

The latter follows from

∞∑︂
n=1

an
bn

=
∞∑︂
k=1

nk∑︂
m=nk−1+1

k · am ≤M

∞∑︂
k=1

k

2k
= 4M.

For n ∈ N de�ne now

hn(s) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 s ∈ Kn

n+ 1− s s ∈ (n, n+ 1]

n(n+ 1)
(︁
s− 1

n+1

)︁
s ∈ [ 1

n+1
, 1
n
)

0 otherwise.

For the so constructed functions one has hn ∈ C0

(︁
(0,∞)

)︁
, hn = 1 on Kn, 0 ≤ hn ≤ 1

on Kn+1 \ Kn, and hn = 0 otherwise. Moreover, 1 ≤ t ≤ s implies hn(s) ≤ hn(t) and
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s ≤ t ≤ 1 implies also hn(s) ≤ hn(t). De�ne cn := bn − bn+1. Note that (cn) is summable

with
∑︁∞

n=k cn = bk. Finally set h :=
∑︁∞

n=1 cnhn. Since all functions hn are bounded by

1, the above series is convergent uniformly on (0,∞), and since also the sequence (bn) is

bounded by 1 so is the function h. Furthermore, for s ∈ Kn \ Kn−1 and n ≥ 2 we have

bn ≤ h(s) = cn−1hn−1(s) + bn ≤ bn−1. This proves h ∈ C0

(︁
(0,∞)

)︁
and it further shows

∥µ∥ =

∫︂
(0,∞)

|µ| (ds) ≤
∫︂

(0,∞)

1

h(s)
|µ| (ds) ≤

∞∑︂
n=1

∫︂
Kn\Kn−1

1

bn
|µ| (ds) ≤ 4M = 4 ∥µ∥ .

For the last part let 0 < s ≤ u ≤ t. Assume �rst u ≤ 1. Then h(u) ≥ h(s) ≥ h(s)h(t) since

h(t) ≤ 1. For the other case we have h(u) ≥ h(t) ≥ h(t)h(s) and the claim is proven.

The space S∞ is not invariant under di�erentiation. One can use weighted derivatives

though.

De�nition 3.3.5. De�ne for n ∈ N0 the operator En : S∞ ∋ f ↦→ Enf := (s ↦→ snf (n)(s)).

From the product rule one concludes for n, k ∈ N0

EnEk =

min{n,k}∑︂
l=0

l!

(︃
n

l

)︃(︃
k

l

)︃
En+k−l.

In particular, EnEk = EkEn.

Completely analogously to Lemma 3.2.1 one proves the following result.

Lemma 3.3.6. The operators En are continuous on S∞. For given measures µ0, . . . , µn ∈
S ′ the linear form µ :=

∑︁n
k=0E

′
kµk is continuous on S∞. Conversely, every µ ∈ (S∞)′ is

of this form.

Proof. Let m ∈ N0, h = (h0, . . . , hm) ∈ C0

(︁
(0,∞);Cm+1

)︁
and n ∈ N0. For f ∈ S∞

consider the seminorm ∥·∥m,h and the operator En. The claimed continuity of En follows

from

∥Enf∥m,h = max
0≤k≤m

sup
s∈(0,∞)

|shk(s)(EkEnf)(s)|

≤ max
0≤k≤m

min{k,n}∑︂
l=0

l!

(︃
n

l

)︃(︃
k

l

)︃
sup

s∈(0,∞)

|shk(s)(En+k−lf)(s)|⏞ ⏟⏟ ⏞
≤∥f∥n+m,(h̃,h)
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for some h̃ ∈ C0

(︁
(0,∞);Cn

)︁
. The functional µ is continuous since

|⟨µ, f⟩| =

⃓⃓⃓⃓
⃓⟨︁

n∑︂
k=0

E ′
kµk, f

⟩︁⃓⃓⃓⃓⃓ ≤
n∑︂

k=0

|⟨µk, Ekf⟩| ≤
n∑︂

k=0

∫︂
(0,∞)

sk+1
⃓⃓
f (k)(t)

⃓⃓ 1
s
|µk| (dt)

≤ ∥f∥n,h ·
n∑︂

k=0

∫︂
(0,∞)

1

shk(s)
|µk| (ds)

≤ ∥f∥n,h · 2
n∑︂

k=0

∥µk∥S′

where we have chosen h = (h0, . . . , hn) ∈ C0

(︁
(0,∞);Cn+1

)︁
accordingly to Lemma 3.3.4.

The fact that all continuous functionals are of this form follows by a similar argument

as already presented in the proof of Lemma 3.2.1.

We continue with the already announced generalisation of the shift operator τs.

De�nition 3.3.7. Let s > 0. We de�ne the operator δs on S
∞, f ↦→ δsf by (δsf)(t) :=

−
∫︁ 1

0
f ′(xs+ (1− x)t)dx.

Lemma 3.3.8. Let f ∈ S∞, µ ∈ S ′, s > 0, and n ∈ N0. Then

δsf ∈ S∞ and (0,∞) ∋ s ↦→ ⟨E ′
nµ, δsf⟩ ∈ S∞.

Proof. Let t > 0. By di�erentiation under the integral sign one has δsf ∈ C∞(︁(0,∞)
)︁
and

(δsf)
(n)(t) = −

1∫︂
0

(1− x)nf (n+1)
(︁
xs+ (1− x)t

)︁
dx.

With the same argument one can also see that s ↦→ (δsf)(t) ∈ C∞(︁(0,∞)
)︁
. Let k ∈ N0
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and set ∥f∥n+k+1 := sups>0

⃓⃓
sn+k+2f (n+k+1)(s)

⃓⃓
. We calculate

⃓⃓⃓⃓(︂ ∂n+k

∂sk∂tn
δsf
)︂
(t)

⃓⃓⃓⃓
≤∥f∥n+k+1

1∫︂
0

xk(1− x)n

(xs+ (1− x)t)n+k+2
dx

= ∥f∥n+k+1

∂n+k

∂sk∂tn
(−1)k+n

(k + n+ 1)!

1∫︂
0

1

(xs+ (1− x)t)2
dx

= ∥f∥n+k+1

∂n+k

∂sk∂tn
(−1)k+n

(k + n+ 1)!

1

st

= ∥f∥n+k+1

k! · n!
(k + n+ 1)!

· 1

sk+1 · tn+1
.

Choosing k = 0 one sees δsf ∈ S∞. That is the �rst part of the claim.

As for the second part, the same argument as above together with the representation

⟨E ′
nµ, δsf⟩ = −

∫︂
(0,∞)

tn
1∫︂

0

(1− x)nf (n+1)(xs+ (1− x)t)dxµ(dt)

yields di�erentiability of s ↦→ ⟨E ′
nµ, δsf⟩ and we �nally estimate

⃓⃓⃓⃓
sk+1 dk

dsk
⟨E ′

nµ, δsf⟩
⃓⃓⃓⃓
≤∥f∥n+k+1

∫︂
(0,∞)

sk+1tn
1∫︂

0

(1− x)nxk

(xs+ (1− x)t)n+k+2
dx |µ| (dt)

≤ k! · n!
(n+ k + 1)!

∥f∥n+k+1 · ∥µ∥S′

which completes the entire proof.

Remark 3.3.9.

1. A short calculation reveals

(δsf)(t) =

⎧⎨⎩−f(s)−f(t)
s−t

, s ̸= t

−f ′(t), s = t.

This is also the de�nition used in [30].

2. Let a ≥ 0 and f ∈ S be de�ned by f(t) := 1
a+t

. The de�nition of δs is inspired by

the identity (δsf)(t) = f(s) · f(t) which is the analog to τs applied to t ↦→ e−at.

Lemma 3.3.8 is the key to render the following de�nition meaningful.
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De�nition 3.3.10. Let f ∈ S∞, µ, ν ∈ S ′, and n, m ∈ N0. We de�ne the Stieltjes

convolution of the measures µ and ν by

⟨µ ∗ ν, f⟩ :=
⟨︁
µ, s ↦→ ⟨ν, δsf⟩

⟩︁
or, more generally,

⟨E ′
nµ ∗ E ′

mν, f⟩ :=
⟨︁
E ′

nµ, s ↦→ ⟨E ′
mν, δsf⟩

⟩︁
and extend again to the whole of (S∞)′ by linearity. So,(︄

n∑︂
k=0

E ′
kµk

)︄
∗

(︄
m∑︂
l=0

E ′
lνl

)︄
=

n∑︂
k=0

m∑︂
l=0

E ′
kµk ∗ E ′

lνl.

A short calculation, for simplicity just performed for one summand of the above sum,

yields

⟨E ′
kµk ∗ E ′

lνl, f⟩ = −
∫︂

(0,∞)

∫︂
(0,∞)

sktl
1∫︂

0

xk(1− x)lf (k+l+1)(xs+ (1− x)t)dxµk(ds)νl(dt).

By the substitution y := 1−x in the inner integral, one sees that E ′
kµk ∗E ′

lνl = E ′
lνl∗E ′

kµk.

Modifying the proof of Lemma 3.2.6 slightly yields the tiny but useful generalisation.

Lemma 3.3.11. Let (Xn)n∈N be an inductive spectrum with inductive limit indn∈N Xn =:

X and assume that there is a bilinear, continuous mapping ∗ : Xn × Xk → Xr with

r ≥ n+k. This mapping can be extended to a bilinear, continuous mapping, again denoted

by ∗, from X × X to X given by (Lnxn, Lkxk) ↦→ Lr(xn ∗ xk). This additional structure

makes X a locally convex algebra.

Remark 3.3.12. Compared to the situation from before, the grading of the resulting limit

is lost. Or one may say it holds in a certain generalised sense. The author is not aware of

other appearances of such a generalised grading in other contexts.

Lemma 3.3.13. Let µ =
∑︁n

k=0E
′
kµk ∈ (Sn)′ ⊆ (S∞)′ and ν =

∑︁m
l=0E

′
lνl ∈ (Sm)′ ⊆ (S∞)′

with measures µ0, . . . , µn, ν0, . . . , νm ∈ S ′. Then µ ∗ ν ∈ (Sn+m+1)′ and the mapping ∗ :

(Sn)′ × (Sm)′ → (Sn+m+1)′ is continuous. Consequently, (S∞)′ is a locally convex algebra.

Proof. Let f ∈ S∞. Choose for the measures µ0, . . . , µn a function h1 ∈ C0

(︁
(0,∞);Cn+1

)︁
accordingly to Lemma 3.3.4 and similar for ν0, . . . , νm a function h2 ∈ C0

(︁
(0,∞);Cm+1

)︁
.

Use these functions to de�ne functions hk+l+1 := (h1)k∨(h2)l, 0 ≤ k ≤ n, 0 ≤ l ≤ m where

(h1)k∨(h2)l denotes the maximum of the two functions. It holds that hk+l+1 ∈ C0

(︁
(0,∞)

)︁
,
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0 < hk+l+1 ≤ 1 and hk+l+1(u) ≥ hk+l+1(s)hk+l+1(t) for all 0 < s ≤ u ≤ t, 0 ≤ k ≤ n,

and 0 ≤ l ≤ m. Finally set h := (h0, h1, . . . , hn+m+1) where h0 ∈ C0

(︁
(0,∞)

)︁
is actually

arbitrary and estimate

|⟨µ ∗ ν, f⟩|

≤
n∑︂

k=0

m∑︂
l=0

∫︂
(0,∞)

∫︂
(0,∞)

sktl
1∫︂

0

xk(1− x)l
⃓⃓
f (k+l+1)

(︁
xs+ (1− x)t

)︁⃓⃓
dx |νl| (dt) |µk| (ds)

≤∥f∥n+m+1,h

n∑︂
k=0

m∑︂
l=0

∫︂
(0,∞)

∫︂
(0,∞)

1∫︂
0

sktlxk(1− x)ldx |νl| (dt) |µk| (ds)(︁
xs+ (1− x)t

)︁k+l+2
hk+l+1

(︁
xs+ (1− x)t

)︁
≤∥f∥n+m+1,h

n∑︂
k=0

m∑︂
l=0

∫︂
(0,∞)

∫︂
(0,∞)

k! · l!
(k + l + 1)!

|νl| (dt) |µk| (ds)
shk+l+1(s) · thk+l+1(t)

≤∥f∥n+m+1,h

n∑︂
k=0

m∑︂
l=0

∫︂
(0,∞)

∫︂
(0,∞)

k! · l!
(k + l + 1)!

|νl| (dt) |µk| (ds)
s(h2)l(s) · t(h1)k(t)

≤4n! ·m! ∥f∥n+m+1,h

n∑︂
k=0

∥µk∥S′

m∑︂
l=0

∥νl∥S′

which shows the result.

Remark 3.3.14. Alternatively, we could also have considered the space ˜︂S∞ := {f ∈
C∞(︁(0,∞)

)︁
| ∀k ∈ N : s ↦→ sk+1f (k)(s) ∈ C0

(︁
(0,∞)

}︁
equipped with the locally con-

vex topology induced by the Banach space topology of {f ∈ C
(︁
(0,∞)

)︁
| s ↦→ sf(s) ∈

C0

(︁
(0,∞)

}︁
. The space ˜︂S∞ has the same continuous functionals as S∞ by the general

theory of mixed topologies.

De�nition 3.3.15. Let X be a LCS and A ∈ M(X). Set A := (S∞)′ and identify

the element µ =
∑︁n

k=0E
′
kµk ∈ A with µε1X : S∞εX = S∞(X) → X. We de�ne

Φ : A → L(X) by

Φ(µ)x := ⟨µ, t ↦→ (t+ A)−1x⟩ =
n∑︂

k=0

(−1)kk!

∫︂
(0,∞)

tk(t+ A)−k−1xµk(dt) (x ∈ X).

Finally, we equip again L(X) with the strong topology β, cf. De�nition 3.2.11.

Proposition 3.3.16. For a LCS X and A ∈ M(X), the triple (X,A ,Φ) de�nes a bounded

functional calculus.
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Proof. The proof will be almost the same as the one for Proposition 3.2.12. Let µ, ν ∈
(S∞)′ with representations µ =

∑︁n
k=0E

′
kµk and ν =

∑︁m
l=0E

′
lνl, respectively. Furthermore,

let x ∈ X and α, β ∈ C. W.l.o.g. we may again assume n ≥ m and de�ne νm+1 = · · · =
νn := 0. Then

Φ(αµ+ βν)x =
n∑︂

k=0

n∑︂
k=0

∫︂
(0,∞)

tk(t+ A)−k−1x (αµk + βνk)(dt)

= α

n∑︂
k=0

∫︂
(0,∞)

tk(t+ A)−k−1xµk(dt) + β
m∑︂
l=0

∫︂
(0,∞)

tk(t+ A)−k−1x νl(dt)

= αΦ(µ)x+ βΦ(ν)x

again implies linearity while the multiplicativity follows this time from

Φ(µ ∗ ν)x =
n∑︂

k=0

m∑︂
l=0

⟨︁
µk, s ↦→ sk

dk

dsk
(s+ A)−1⟨νl, t ↦→ tl

dl

dtl
(t+ A)−1x⟩

⟩︁
=

n∑︂
k=0

(−1)kk!

∫︂
(0,∞)

sk(s+ A)−1−k ·
m∑︂
l=0

(−1)ll!

∫︂
(0,∞)

tl(t+ A)−1−lx νl(dt)µk(ds)

= Φ(µ)Φ(ν)x.

For the continuity we use again the criterion as before and check that Φ is already contin-

uous from (Sn)′ to L(X)β. This is true since for every ∥·∥p ∈ PX , by the equicontinuity of(︁
t(t+ A)−1

)︁
t>0

, we �nd ∥·∥q ∈ PX and M > 0 such that

∥Φ(µ)x∥p ≤ n!M ∥x∥q
n∑︂

k=0

∥µk∥S′ . (3.3.1)

The proof is �nished.

Remark 3.3.17. One can combine the polynomial factors coming from the operators En

and combine them with the corresponding measures. Then one can also write

Φ(µ)x =
n∑︂

k=0

(−1)kk!

∫︂
(0,∞)

(A+ t)−k−1xµk(dt)

with measures µ0, . . . , µn such that
∫︁
(0,∞)

t−k−1 |µk| (dt) < ∞. This is the calculus as it

was derived in [28].

In contrast to before, where it was quite clear in which direction one has to extend the
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calculus, the so far introduced Stieltjes calculus is generically bounded and no link towards

the smoothness of the considered element x ∈ X seems to appear. But for A ∈ C(X)\L(X)

one surely does not expect the operator `Aα', an object we �nally aim to de�ne, to be a

continuous operator. In order to include it, we change now our perspective and identify

the algebra (S∞)′ with its image

S := {f ∈ H
(︁
C \ (−∞, 0]

)︁
| ∃µ ∈ (S∞)′ : f = Φ(µ)}

which is a subalgebra of H
(︁
C \ (−∞, 0]

)︁
called the Stieltjes algebra which is indeed an

algebra since Proposition 3.3.16 shows that the considered mapping is linear and multi-

plicative. In order to justify such an identi�cation, we need to establish the injectivity of

the mapping

S : (S∞)′ → H
(︁
C \ (−∞, 0]

)︁
, µ ↦→ (λ ↦→ ⟨µ, t ↦→ 1

λ+t
⟩).

Proposition 3.3.18. The mapping

S : (S∞)′ → H
(︁
C \ (−∞, 0]

)︁
, µ ↦→ (λ ↦→ ⟨µ, t ↦→ 1

λ+t
⟩)

is injective.

Proof. Let µ ∈ (S∞)′ be such that (λ ↦→ ⟨µ, t ↦→ 1
λ+t

⟩) = 0. We need to show that µ = 0.

We will make use of what we already know about the Laplace transform (see the proof of

Proposition 3.2.18). One can consider µ as above as an element in S (R)′ which admits

a Laplace transform. The Laplace transform is again in S (R)′ (extend to (−∞, 0] by 0)

since for f ∈ S (R) one has

⃓⃓⃓⃓
⃓⃓

∞∫︂
0

(Lµ)(λ)f(λ)dλ

⃓⃓⃓⃓
⃓⃓ =
⃓⃓⃓⃓
⃓⃓⃓ n∑︂
k=0

∞∫︂
0

∫︂
(0,∞)

(−1)kλkske−λsµk(ds)f(λ)dλ

⃓⃓⃓⃓
⃓⃓⃓

=

⃓⃓⃓⃓
⃓⃓⃓ n∑︂
k=0

∞∫︂
0

∫︂
(0,∞)

dk

dλk
e−λsµk(ds)λ

kf(λ)dλ

⃓⃓⃓⃓
⃓⃓⃓

≤ max
0≤k≤n

sup
λ∈R

⃓⃓⃓⃓
dk

dλk
λkf(λ)

⃓⃓⃓⃓ n∑︂
k=0

∫︂
(0,∞)

∞∫︂
0

e−λsdλ |µk| (ds)

≤ max
0≤k≤n

sup
λ∈R

⃓⃓⃓⃓
dk

dλk
λkf(λ)

⃓⃓⃓⃓ n∑︂
k=0

∥µk∥S′ .
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Furthermore, it is supported on [0,∞). Taking Laplace transform of the Laplace transform

of µ gives

(L2µ)(λ) =

∞∫︂
0

(Lµ)(s)e−λsds =

∞∫︂
0

⟨µ, t ↦→ e−st⟩e−λsds

= ⟨µ,
∞∫︂
0

e−s(t+λ)ds⟩ = ⟨µ, t ↦→ 1

λ+ t
⟩

= (Sµ)(λ) = 0

Since the Laplace transform is injective, we conclude µ = 0.

Functions like λ ↦→ λα for α ∈ CRe>0 and λ ↦→ (λ + t)−α for α ∈ C and t > 0 are

not contained in the Stieltjes algebra S but in the next chapter we will see that they

are anchored, and therefore they are accessible by the maximal extension of the so far

constructed calculus.
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4. Fractional Powers of Linear

Operators

In this chapter we �nally de�ne Aα for a non-negative operator A and α ∈ CRe>0. The

entire chapter and its content is this time inspired by [44, Chap. 4] where a well-working

functional calculus (not perfectly in the sense of our de�nition but this is only a small

drawback) for locally convex spaces is established.

4.1. Fractional powers of non-negative operators

Let us begin by studying some special functions contained in the Stieltjes algebra.

Lemma 4.1.1. Let γ ∈ (0, 1
2
), 0 ≤ ϕ < (1

2
− γ)π, z ∈ Sϕ \ {0}, λ ∈ C \ (−∞, 0], and

α ∈ CRe>−1. Then we have

1. λαe−zλγ
= 1

π

∞∫︁
0

tαe−ztγ cos(γπ) sin
(︁
ztγ sin(γπ)− απ

)︁
1

t+λ
dt,

2. 0 = 1
π

∞∫︁
0

tαe−ztγ cos(γπ) sin
(︁
ztγ sin(γπ)− απ

)︁
dt.

Proof. The proof of both equalities is essentially nothing but the strategy already explained

at the beginning of Section 3.3 and will be omitted.

For later use, we shall also study measures of the above kind in the special case α = 0.

Lemma 4.1.2. Let γ ∈ (0, 1
2
), 0 ≤ ϕ < (1

2
− γ)π and z ∈ Sϕ \ {0}. Then

µz :=
1

π
e−ztγ cos(γπ) sin

(︁
ztγ sin(γπ)

)︁
dt ∈ S ′ ⊂ (S∞)′.

Moreover, for every 0 ≤ ϕ < (1
2
− γ)π there is C > 0 such that supz∈Sϕ

∥µz∥S′ ≤ C.
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Proof. The �rst part is just Lemma 4.1.1 for the special case α = 0. For the uniform

boundedness, we start with a tiny observation. Assume that Im z ≥ 0. Then

⃓⃓
eizt

γ sin(γπ) − e−iztγ sin(γπ)
⃓⃓
≤
⃓⃓
e−iztγ sin(γπ)

⃓⃓
·
⃓⃓ t∫︂
0

d

ds
e2izs

γ sin(γπ)ds
⃓⃓

≤ eIm z·tγ sin(γπ) · 2 |z| sin(γπ)tγ

holds. Using this we calculate for all z ∈ Sϕ with Im z ≥ 0

∥µz∥S′ =
1

2π

∞∫︂
0

e−Re z·tγ cos(γπ)
⃓⃓
eizt

γ sin(γπ) − e−iztγ sin(γπ)
⃓⃓ 1
t
dt

≤ 1

π

∞∫︂
0

e−Re z·tγ cos(γπ)eIm z·tγ sin(γπ) · |z| sin(γπ)tγ−1dt.

Furthermore, we have that

Im z · sin(γπ) = Re z · tan
(︁
arg(z)

)︁
cos
(︁
(1
2
− γ)π

)︁
≤ Re z · sin(ϕ) ·

cos
(︁
(1
2
− γ)π)

)︁
cos(ϕ)⏞ ⏟⏟ ⏞
=:ε<1

≤ Re z · ε · cos(γπ)

and therefore

∥µz∥S′ ≤
1

π

∞∫︂
0

e−(1−ε)Re z·tγ cos(γπ) · |z| sin(γπ)tγ−1dt

≤ 1

π

∞∫︂
0

e−(1−ε)Re z·tγ cos(γπ) · Re z · cos(γπ)
cos(ϕ)

tan(γπ)tγ−1dt

=
tan(γπ)

γπ · cos(ϕ)

∞∫︂
0

e−(1−ε)sds

=
tan(γπ)

γπ · cos(ϕ) · (1− ε)
(4.1.1)

which establishes the claim for all z ∈ Sϕ with Im z ≥ 0. The reasoning for Im z < 0 is

similar.
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Remark 4.1.3. Since γ > 0, we can send λ→ 0 in a proper subsector of C \ (−∞, 0] and

get with Lemma 4.1.1
∫︁
(0,∞)

1
t
µz(dt) = 1.

De�nition 4.1.4. Let X be a LCS and A ∈ M(X). Moreover, let γ ∈ (0, 1
2
), 0 ≤ ϕ <

(1
2
− γ)π, and z ∈ Sϕ. De�ne the linear operator

X ∋ x ↦→ e−zAγ

x := Φ(µz)x =
1

π

∞∫︂
0

e−ztγ cos(γπ) sin
(︁
ztγ sin(γπ)

)︁
(t+ A)−1x dt (4.1.2)

where µz is the measure from Lemma 4.1.2 and Φ is the Stieltjes calculus given in De�ni-

tion 3.3.15.

Remark 4.1.5. The used notation already suggests that the generator of the semigroup

will be the fractional power −Aγ. This result will be established to some extend in Sec-

tion 4.2 once we introduced fractional powers. However, the de�nition of the fractional

power will use the semigroup which is why it got introduced here. Alternatively, we could

approach fractional powers via their resolvents which can be de�ned within the Stieltjes

calculus. The author felt it to be more comfortable though to use the regularisation via

semigroups.

The next proposition collects some basic properties of the family (e−zAγ
)z∈Sϕ

. Before, let

us generalise the notion of a holomorphic, also called analytic, semigroup. We shall call a

semigroup (e−zA)z∈Sω holomorphic if the mapping Sω̊ ∋ z ↦→ e−zA ∈ L(X)β is holomorphic.

Furthermore, let us introduce the space D(A∞) :=
⋂︁

k∈ND(Ak).

Proposition 4.1.6. Let γ ∈ (0, 1
2
) and 0 ≤ ϕ < (1

2
− γ)π. The family (e−zAγ

)z∈Sϕ
has the

following properties:

1. The family (e−zAγ
)z∈Sϕ

is an equicontinuous semigroup of linear operators.

2. The semigroup is holomorphic.

3. The semigroup is smoothing, i.e., ∀z ∈ Sϕ \ {0} : R(e−zAγ
) ⊆ D(A∞).

4. The semigroup leaves D := D(A) invariant and it is a holomorphic C0-semigroup of

angle ϕ if restricted to it.

Proof.

1. The semigroup property follows from elementary algebra which yields for z, w ∈ Sϕ

e−zAγ

e−wAγ

= Φ(a ↦→ e−zaγ )Φ(a ↦→ e−waγ ) = Φ(a ↦→ e−(z+w)aγ ) = e−(z+w)Aγ

.
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It is equicontinuous on every sector of Sϕ with 0 ≤ ϕ < (1
2
−γ)π because of Inequality

(3.3.1) together with Lemma 4.1.2.

2. Di�erentiating the density z ↦→ 1
π
e−ztγ cos(γπ) sin

(︁
ztγ sin(γπ)

)︁
w.r.t. the variable z ∈

Sϕ̊ gives

d

dz

1

π
e−ztγ cos(γπ) sin

(︁
ztγ sin(γπ)

)︁
=

−1

π
e−ztγ cos(γπ) sin

(︁
ztγ sin(γπ)

)︁
tγ cos(γπ)

+
1

π
e−ztγ cos(γπ) cos

(︁
ztγ sin(γπ)

)︁
tγ sin(γπ)

and one checks that both summands, considered as densities for the Lebesgue mea-

sure, give rise to measures in S ′. Hence, by standard theorems on di�erentiating

under the integral sign, we get

d

dz
e−zAγ

x =

∫︂
(0,∞)

−1

π
e−ztγ cos(γπ) sin

(︁
ztγ sin(γπ)

)︁
tγ cos(γπ)(t+ A)−1x dt

+

∫︂
(0,∞)

1

π
e−ztγ cos(γπ) cos

(︁
ztγ sin(γπ)

)︁
tγ sin(γπ)(t+ A)−1x dt

3. First note that if n ∈ N0 and x ∈ D(An) one has e−zAγ
x ∈ D(An+1) and, if n ∈ N,

Ae−zAγ
x = e−zAγ

Ax. This follows from Lemma 3.1.8. That is, every application of

the semigroup increases the smoothness of the considered element by lifting it from

D(An) to D(An+1). But now we can simply use the semigroup law and get for any

z ∈ Sϕ \ {0}, x ∈ X, and n ∈ N

e−zAγ

x =
(︁
e−

z
n
Aγ)︁n

x ∈ D(An).

By arbitraryness of n ∈ N we conclude e−zAγ
x ∈ D(A∞).

4. By part 3 the semigroup maps even into D(A∞) ⊆ D. It remains to show the strong

continuity. We copy and adapt the strategy from [44, Thm. 5.5.1] and combine it

with our estimates from the proof of Lemma 4.1.2. So let ∥·∥p ∈ PX and x ∈ D.

There is C > 0 and ∥·∥q ∈ PX such that

⃦⃦
e−zAγ

x− e−zx
⃦⃦
p

≤C
π

∞∫︂
0

e−Re z·tγ ·cos(γπ)

⃓⃓
sin
(︁
ztγ sin(γπ)

)︁⃓⃓
t

· t
⃦⃦
(t+ A)−1x− (t+ 1)−1x

⃦⃦
q⏞ ⏟⏟ ⏞

=:H(t)

dt.
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Since x ∈ D, one can tell that limt→∞H(t) = 0, cf. Lemma 2.0.9. Now we use the

same trick as in [44, Thm. 5.5.1] and combine it with our estimate (4.1.1). That is,

we choose any s > 0 and use that there are M, ε > 0 and yet another ∥·∥r ∈ PX such

that

⃦⃦
e−zAγ

x− e−zx
⃦⃦
p
≤ C

γπ
sup
t>s

H(t) · tan(γπ)

cos(ϕ) · (1− ε)

+
C

γπ
(M + 1) ∥x∥r ·

tan(γπ)

cos(ϕ) · (1− ε)
·
(︁
1− e−(1−ε)Re z·sγ ·cos(γπ))︁ .

Choosing s > 0 su�enctly large, the �rst term becomes arbitrary small while the

second term converges to 0 as z → 0 in Sϕ for �xed s > 0. This shows the claim.

Remark 4.1.7. With some e�ort further properties, also already concerning fractional

powers, could be proved at this point. We refrain from doing so at this stage since later

on a uni�ed de�nition for Aα, α ∈ CRe>0, will be given and used to prove properties.

Let us deduce two corollaries.

Corollary 4.1.8. It even holds that D = D(A∞).

Corollary 4.1.9. The operator e−zAγ
is injective.

Proof. Let z ∈ C, z ̸= 0, |arg(z)| < (1
2
− γ)π, and x ∈ N (e−zAγ

). By standard results on

semigroups, we have

∀n ∈ N0 :
dn

dzn
e−zAγ

x = (−Aγ)ne−zAγ

x = 0.

Since the domain of the function z ↦→ e−zAγ
x is connected, it must be constantly 0. We

�nish our conclusions by

(1 + A)−1x = lim
z→0, z∈Sϕ

e−zAγ

(1 + A)−1x = 0

which means x = 0 as was to be shown.

We �nally arrived at the point to de�ne fractional powers. Before, let us agree on the

suggestive notation ezA
γ
=
(︁
e−zAγ)︁−1

for the inverse of the semigroup operators. Further-

more, let us relax the existing notation to Φ(λ ↦→ f(λ)) =: f(A) and identify f with f(λ)

for certain functions such as powers and the exponential. For example, this agreement

would imply e−zAγ
= (e−zλγ

)(A). The variable λ will always designate the position of the

operator which we plug in the function.
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Lemma 4.1.10. Let α ∈ CRe>0 be �xed and consider for γ ∈ (0, 1
2
), 0 ≤ ϕ < (1

2
− γ)π and

z ∈ Sϕ \ {0} the operators

Bγ,z := ezA
γ

(λαe−zλγ

)(A)

where we used Lemma 4.1.1 for the de�nition of the term (λαe−zλγ
)(A). Then

∀γ, δ ∈ (0, 1
2
), 0 ≤ ϕ < min{(1

2
− γ)π, (1

2
− δ)π}, z, w ∈ Sϕ \ {0} : Bγ,z = Bδ,w

Proof. Let us show one inclusion. The other one follows in the same manner. So let

x ∈ D(Bγ,z). By de�nition this means

e−zAγ

Bγ,zx = (λαe−zλγ

)(A)x

which in turn implies

e−zAγ

e−wAδ

Bγ,zx = e−wAδ

e−zAγ

Bγ,zx

= e−wAδ

(λαe−zλγ

)(A)x

= (λαe−zλγ

e−wλδ

)(A)x

= e−zAγ

(λαe−wλδ

)(A)x.

Hence,

e−wAδ

Bγ,zx = (λαe−wλδ

)(A)x.

But the last equality tells us

x ∈ D(Bδ,w) and Bδ,wx = Bγ,zx,

i.e., Bγ,z ⊆ Bδ,w.

Based on the last lemma we can give the following de�nition.

De�nition 4.1.11. Let X be a LCS, A ∈ M(X) and α ∈ CRe>0. We de�ne the fractional

power Aα of the operator A to be the closed operator

Aα := ezA
γ(︁
λαe−zλγ)︁

(A)

where γ ∈ (0, 1
2
), 0 ≤ ϕ < (1

2
− γ)π, and z ∈ Sϕ \ {0} are arbitrary.

The reader should note that the given de�nition implies

∀x ∈ D(Aα) : e−zAγ

Aαx =
(︁
λαe−zλγ)︁

(A)x.
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Remark 4.1.12. To the best of the authors knowledge nobody yet tried using the semi-

groups of the fractional powers as regularisers. This choice is motivated by a need but also

by an advantage. As for the need, one simply cannot use resolvents (at least those of the

original operator A) because they have too strong singularities on the negative real axis.

When altering the paths of integration, these singularities will prevent us from �nding

convergent integral expressions. On the bright side, the exponential regularisers drop of

faster than polynomials which is why they allow to anchor even more functions.

We will now introduce another integral representation which is a small generalisation of

the one originally used by Balakrishnan in [5] to introduce fractional powers of non-negative

operators, also cf. [44, Prop. 3.1.3].

Proposition 4.1.13. Let α ∈ CRe>0 and n ∈ N such that n > Reα. Moreover, let

x ∈ D(An). Then x ∈ D(Aα) and the Balakrishnan formula holds which reads

Aαx =
Γ(n)

Γ(α)Γ(n− α)

∞∫︂
0

tα−1An(t+ A)−nx dt. (4.1.3)

Proof. As before, choose γ ∈ (0, 1
2
) and 0 ≤ ϕ < (1

2
− γ)π, and consider z ∈ Sϕ \ {0}. Let

ε > 0. Then z + ε ∈ Sϕ \ {0} and, using Lemma 4.1.1, dominated convergence yields

∀x ∈ X : lim
ε→0+

(︁
λαe−(z+ε)λγ)︁

(A)x =
(︁
λαe−zλγ)︁

(A)x.

Another thing which follows from the representation in Lemma 4.1.1 is that the mapping

α ↦→
(︁
λαe−zλγ)︁

(A)x is holomorphic in the open right halfplane CRe>0.

A calculation gives

(︁
λαe−(z+ε)λγ)︁

(A)x = e−zAγ(︁
λαe−ελγ)︁

(A)x

= e−zAγ · 1
π

∞∫︂
0

tαe−εtγ cos(γπ) sin
(︁
εtγ sin(γπ)− απ

)︁
(t+ A)−1x dt

=
1

π

∞∫︂
0

tαe−εtγ cos(γπ) sin
(︁
εtγ sin(γπ)− απ

)︁
(t+ A)−1e−zAγ

x dt.

Assume now for the moment even n − 1 < Reα < n. Under this hypothesis a repeated
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application of Lemma 4.1.1 gives us

(︁
λαe−(z+ε)λγ)︁

(A)x =
1

π

∞∫︂
0

tα−1e−εtγ cos(γπ) sin
(︁
εtγ sin(γπ)− απ

)︁
t(t+ A)−1e−zAγ

x dt

=
1

π

∞∫︂
0

tα−1e−εtγ cos(γπ) sin
(︁
εtγ sin(γπ)− απ

)︁
e−zAγ

(x− A(t+ A)−1x) dt

=
−1

π

∞∫︂
0

tα−1e−εtγ cos(γπ) sin
(︁
εtγ sin(γπ)− απ

)︁
A(t+ A)−1e−zAγ

x dt

=
(−1)n

π

∞∫︂
0

tα−ne−εtγ cos(γπ) sin
(︁
εtγ sin(γπ)− απ

)︁
(t+ A)−1Ane−zAγ

x dt.

We now may send ε→ 0+ and conclude

(︁
λαe−zλγ)︁

(A)x =
(−1)n−1 sin(απ)

π

∞∫︂
0

tα−n(t+ A)−1Ane−zAγ

x dt.

Note that existence of the appearing integral in the last line follows from A ∈ M(X) and

the assumption on Reα. In order to verify this, the integral needs to split at any number

R > 0 and both integrals can then be discussed separately, also cf. [44, Def. 3.1.1]. The

argument will be discussed in the next proposition anyway and shall not be our major

concern at this point. To �nish the proof of the proposition, note that integration by parts

is possible and repeating this process again n− 1 times gives

(︁
λαe−zλγ)︁

(A)x =
(n− 1)!(−1)n−1 sin(απ)

π(α− n+ 1)(α− n+ 2) . . . (α− 1)

∞∫︂
0

tα−1(t+ A)−nAne−zAγ

x dt

=
Γ(n)

Γ(α)Γ(n− α)

∞∫︂
0

tα−1(t+ A)−nAne−zAγ

x dt. (4.1.4)

Note that we used Euler's formula of complements

sin(απ)

π
=

1

Γ(α)Γ(1− α)

([1, 5.5.1]) for the prefactors. The expression on the right-hand side of Equation (4.1.4),

considered as a function of α, is holomorphic on the entire strip C0<Re<n and it coincides

with the left-hand side for n − 1 < Reα < n. Hence, the assumption n − 1 < Reα < n
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can be dropped and the proposition is established.

As a direct application of the last proposition we get e−zAγ
x ∈ D(Aα) and

Aαe−zAγ

x = ezA
γ(︁
λαe−zλγ)︁

(A)e−zAγ

x =
(︁
λαe−zλγ)︁

(A)x.

In particular Aαe−zAγ ∈ L(X).

The next proposition is commonly called Moment Inequality and can be used to see,

among other things of interest, that the integral representation given by the Balakrish-

nan formula de�nes a closable operator. It also reminds one of the connections between

the theory of fractional powers and interpolation theory and is therefore of independent

interest.

Proposition 4.1.14. Let α ∈ CRe>0 and n ∈ N such that n > Reα. Then for every

∥·∥p ∈ PX there are C > 0 and ∥·∥q ∈ PX such that

∀x ∈ D(An) : ∥Aαx∥p ≤ C ∥x∥1−
Reα
n

q · ∥Anx∥
Reα
n

q .

Proof. The proof is the same as in the situation of X being a Banach space. So let ∥·∥p
be given. Choose any R > 0. There are constants Cn,p and Dn,p as well as continuous

seminorms ∥·∥q1 and ∥·∥q2 such that

sup
t>0

⃦⃦
An(t+ A)−nx

⃦⃦
p
≤ Cn,p ∥x∥q1 and sup

t>0

⃦⃦
tn(t+ A)−nx

⃦⃦
p
≤ Dn,p ∥x∥q2

because of the equicontinuity of the families
(︁
A(t+A)−1

)︁
t>0

and
(︁
t(t+A)−1

)︁
t>0

. Choose

∥·∥q ∈ PX such that ∥·∥q ≥ max{∥·∥q1 , ∥·∥q2} which is possible since the system is assumed

to be directed. Then there is C > 0 such that for all R > 0

∥Aαx∥p ≤
Γ(n)

|Γ(α)Γ(n− α)|
·
{︂
Cn,p ∥x∥q

R∫︂
0

tReα−1dt+Dn,p ∥Anx∥q

∞∫︂
R

tReα−1−ndt
}︂

≤C
(︂
RReα ∥x∥q +RReα−n ∥Anx∥q

)︂
.

If ∥x∥q = 0, one could send R → ∞ and gets that ∥Aαx∥p = 0 as well. So in this situation

the statement is true for any C > 0. Otherwise, the derived expression has a minimum for

R =
(︂

∥Anx∥q
∥x∥q

)︂ 1
n
and the statement follows as well.
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Corollary 4.1.15. Let t > 0 and n ∈ N such that n > Reα. Then Aα(t + A)−n is

continuous.

Proof. This directly follows from the Moment inequality since we get for any ∥·∥p ∈ PX

⃦⃦
Aα(t+ A)−nx

⃦⃦
p
≤ C

⃦⃦
(t+ A)−nx

⃦⃦1−Reα
n

q
·
⃦⃦
An(t+ A)−nx

⃦⃦Reα
n

q
.

for some suitable ∥·∥q ∈ PX .

For later use let us de�ne the Balakrishnan operator, denoted by Jα with domain

D(Jα) := D(An), n ∈ N, n > Reα, to be the restriction

Jα := Aα|D(An)

Let us now talk about properties we expect fractional powers to have. In order to prove

a �rst one, namely a power law and in particular the fact that the domains of fractional

powers are nested, we will need the following lemma which says that the operator A(t+A)−1

does not in�uence the `smoothness' of an element x ∈ X.

Lemma 4.1.16. Let t > 0, n ∈ N and m ∈ N0. Then we have

An(t+ A)−nx ∈ D(Am) ⇔ x ∈ D(Am).

Proof. Assume An(t + A)−nx ∈ D(Am). This means in particular that Ak(t + A)−nx ∈
D(Am) for k ∈ {0, . . . , n}. Having this in mind we conclude

x = (A+ t)n(t+ A)−nx =
n∑︂

k=0

(︃
n

k

)︃
tn−k Ak(t+ A)−nx⏞ ⏟⏟ ⏞

∈D(Am)

∈ D(Am).

Conversely, if x ∈ D(Am), the bounded operator An(t+A)−n commutes with all resolvent

operators and we therefore get with y = (1 + A)mx

An(t+ A)−nx = An(t+ A)−n(1 + A)−my = (1 + A)−mAn(t+ A)−ny ∈ D(Am).

Another ingredient we need is the fact that we might not use resolvents to introduce Aα

but they can be used to characterise it.
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Lemma 4.1.17. Let t > 0 and n ∈ N such that n > Reα. Then x ∈ D(Aα) if and only if

Aα(t+ A)−nx ∈ D(An). In this situation (t+ A)nAα(t+ A)−nx = Aαx

Proof. Using the fact that Aαe−zAγ
is a continuous operator which commutes with resol-

vents and which equals e−zAγ
Aα on D(Aα), one establishes (t + A)−nAα ⊆ Aα(t + A)−n.

This being said let x ∈ D(Aα). Then

Aαx = (t+ A)n(t+ A)−nAαx = (t+ A)nAα(t+ A)−nx⏞ ⏟⏟ ⏞
∈D(An)

while conversely we can de�ne y := (t + A)nAα(t + A)−nx and �nd, bringing (t + A)n on

the left-hand side and applying e−zAγ
,

(t+ A)−nAαe−zAγ

x = (t+ A)−ne−zAγ

y,

i.e., y = Aαx.

We technically did not show yet the exptected fact that

∀k ∈ N0 : e
zAγ(︁

λke−zλγ)︁
(A) = Ak

where we interpret the right-hand side in its usual meaning as k-folded application of A.

Corollary 4.1.18. It holds that

∀k ∈ N0 : e
zAγ(︁

λke−zλγ)︁
(A) = Ak.

Proof. Let x ∈ X and k ∈ N0. If k ∈ N, we calculate, using t(t + A)−1 = 1− A(t + A)−1

and Lemma 4.1.1 k times,

(︁
λke−zλγ)︁

(A)x =
1

π

∞∫︂
0

tke−ztγ cos(γπ) sin
(︁
ztγ sin(γπ)− kπ

)︁
(t+ A)−1x dt

=
1

π
A

∞∫︂
0

tk−1e−ztγ cos(γπ) sin
(︁
ztγ sin(γπ)− (k − 1)π

)︁
(t+ A)−1x dt

=
1

π
Ak

∞∫︂
0

e−ztγ cos(γπ) sin
(︁
ztγ sin(γπ)

)︁
(t+ A)−1x dt

= Ake−zAγ

x.
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Let now x ∈ D(Ak). Then

(︁
λke−zλγ)︁

(A)x = Ake−zAγ

x = e−zAγ

Akx,

i.e., Ak ⊆ ezA
γ(︁
λke−zλγ)︁

(A) while conversely we use Lemma 4.1.17 and get

ezA
γ(︁
λke−zλγ)︁

(A)x = (t+ A)nezA
γ

Ake−zAγ

(t+ A)−nx = (t+ A)nAk(t+ A)−nx = Akx

which proves the claim.

Proposition 4.1.19. Let A ∈ M(X) and α, β ∈ CRe>0. Then Aα+β = AαAβ. In particu-

lar, D(Aα) ⊆ D(Aβ) whenever Reα > Re β.

Proof. From the general properties of the functional calculus the inclusion AαAβ ⊆ Aα+β

follows. The converse inclusion is of interest. So let x ∈ D(Aα+β). Choose n ∈ N,

n > max{Reα,Re β}. Then

An(1 + A)−nAβ(1 + A)−2nx = An−α(1 + A)−nAβ+α(1 + A)−2nx ∈ D(A2n)

which, by Lemma 4.1.16, yields Aβ(1 + A)−2nx ∈ D(A2n), i.e., x ∈ D(Aβ). Furthermore,

Aβ(1 + A)−2nx ∈ D(A2n) ⊆ D(Aα) and

AαAβ(1 + A)−2nx = Aα(1 + A)−2nAβx.

Therefore, (1 + A)−2nx ∈ D(AαAβ) ⊆ D(Aα+β) and

AαAβ(1 + A)−2nx = Aα+β(1 + A)−2nx = (1 + A)−2nAα+βx

where the last equality used again x ∈ D(Aα+β). Putting things together we have

Aα(1 + A)−2nAβx = (1 + A)−2nAα+βx ∈ D(A2n)

which means Aβx ∈ D(Aα) and AαAβx = Aα+βx.

The reader may note that another consequence of the nested domain property is an

interpolation of Lemma 2.0.9. We namely even have for all α ∈ CRe>0 : D(Aα) = D.

Let us come to another application of Lemma 4.1.17. In fact we can actually use it

to show that fractional powers de�ned by the calculus introduced in this work are the

same as fractional powers introduced by the sectorial functional calculus as it is discussed
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thoroughly in [25]. The basic ideas from the Banach space theory can be readily transferred

to the locally convex setting.

Proposition 4.1.20. Let A ∈ S(X) and ϕ ∈ [0, π) such that σ(A) ⊆ Sϕ. Choose n ∈ N,
n > Reα and θ ∈ (ϕ, π). Then we de�ne

(︁
λα(1 + λ)−n

)︁
(A)x :=

1

2πi

∫︂
∂Sθ

wα

(1 + w)n
(w − A)−1x dw

where the boundary ∂Sθ is orientated from +i∞ towards −i∞. One has
(︁
λα(1+λ)−n

)︁
(A)x ∈

D(An) if and only if x ∈ D(Aα). In this situation,

(1 + A)n
(︁
λα(1 + λ)−n

)︁
(A)x = Aαx.

Proof. A minor generalisation of Proposition 2.0.3 yields that for any y ∈ X we have

w ↦→ (w − A)−1y ∈ H(C \ Sϕ ;X). Let x ∈ X and choose numbers r, R > 0, ψ, θ ∈ (ϕ, π),

ψ > θ, γ ∈ (0, 1
2
), and z ∈ C \ {0} with |arg(z)| < (1

2
− γ)π. By holomorphy

0 =
1

2πi

∮︂
C

wαe−zwγ

(w − A)−1x dw

with the cycle (a formal integer combination of a �nite number of paths) C be given as

indicated in Figure 4.1.1.

Since this result does not depend on the chosen parameters, we can take the limits

already indicated in Figure 4.1.1 and �nd

(︁
λαe−zλγ)︁

(A)x =
1

2πi

∫︂
∂Sθ

wαe−zwγ

(w − A)−1x dw.

One may multiply this equation with (1+A)−n from the left and use the resolvent identity

(1 + A)−1(w − A)−1 = (1 + w)−1
(︁
(w − A)−1 + (1 + A)−1

)︁
n times under the integral sign on the right-hand side (the integral for the second summand
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Re

Im

ϕ

θ

ψ → π−

r →
0+

R
→
∞

Figure 4.1.1.: Integration cycle C

is always 0) to obtain

(1 + A)−n
(︁
λαe−zλγ)︁

(A)x =
(︁
λαe−zλγ)︁

(A)(1 + A)−nx = e−zAγ

Aα(1 + A)−nx

=
1

2πi

∫︂
∂Sθ

wα

(1 + w)n
e−zwγ

(w − A)−1x dw.

We may send z → 0 which gives

Aα(1 + A)−nx =
(︁
λα(1 + λ)−n

)︁
(A)x.

The claimed equivalence follows now from this together with Lemma 4.1.17.

Remark 4.1.21. For later use we shall also add here that the operator −A 1
2 generates a
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semigroup given by

e−sA
1
2 =

2

πs2

∞∫︂
0

(︁
sin(s

√
t)− s

√
t cos(s

√
t)
)︁
(t+ A)−2x dt

where x ∈ X and s > 0 (see [44, Thm. 5.5.2]). In contrast to the semigroups generated

by the lower powers, this semigroup is in general not holomorphic unless A is properly

sectorial of some angle ω ∈ [0, π). In this case A
1
2 ∈ Sω

2
which can be seen from the

sectorial calculus of A (cf. Proposition 4.1.20). This result will play a role in the �rst part

of the next chapter.

Our next goal is to establish the main reason why Balakrishnan's original closure de�-

nition of Aα does not su�ce in general. We start with a lemma.

Lemma 4.1.22. Let x ∈ D(Aα) and assume y := Aαx ∈ D. Then x ∈ D
(︁
(AD)

α
)︁
and

(AD)
αx = y.

Proof. By Lemma 2.0.24 the operator AD is non-negative. Hence, an expression like (AD)
α

makes sense. For every element x ∈ D and any t > 0, we have (t + A)−1x = (t + AD)
−1x

and for this reason the bounded Stieltjes calculi of A and AD agree on the space D. In

particular,

e−z(AD)γy = e−zAγ

y =
(︁
λαe−zλγ)︁

(A)x =
(︁
λαe−zλγ)︁

(AD)x.

So x ∈ D
(︁
(AD)

α
)︁
and (AD)

αx = y.

The lemma actually even shows (AD)
α = Aα

D where the expression on the right-hand

side means the part of the operator Aα in the subspace D. In the following we will use the

notation without parentheses.

Proposition 4.1.23. The operator Jα is closable and Jα = Aα
D.

Proof. Let n ∈ N, n > Reα. The �rst part follows since we already know that Jαx =

Aα
|D(An)x and Aα is closed by construction. So Jα is closable as restriction of a closed

operator.

Let x ∈ D(Jα) and let (xκ) in D(An) ⊆ D be a net convergent towards x ∈ D such that

Jαxκ = Aαxκ → Aαx ∈ D (the last statement follows since Aαxκ ∈ D(An−α) ⊆ D). By

Lemma 4.1.22 we can see Jα ⊆ Aα
D.

Conversely, let x ∈ D(Aα
D). De�ne xt := tn(t+ A)−nx ∈ D(An) where n > Reα. Then,

by Lemma 2.0.9,

xt → x and Jαxt = Aα
Dt

n(t+ A)−nx = tn(t+ A)−nAα
Dx→ Aα

Dx
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as t→ ∞ which proves the claim.

The next proposition will be devoted to a bunch of standard properties one expects

fractional powers to have.

Proposition 4.1.24. Let A ∈ M(X) and α ∈ CRe>0. Then

1. A ∈ L(X) implies Aα ∈ L(X).

2. Let n ∈ N and α ∈ C0<Re<n. Then

C0<Re<n ∋ α ↦→ Aαx ∈ X

is holomorphic for all x ∈ D(An).

3. One has N (A) = N (Aα).

Proof.

1. This follows from the Moment Inequality.

2. This follows from the Balakrishnan formula.

3. Let x ∈ N (Aα). By Proposition 4.1.19 we have An = An−αAα for some n ∈ N,

n > Reα which implies x ∈ N (An) = N (A) by Corollary 2.0.10.

Conversely, let x ∈ N (A). The strategy from above only works for α ∈ CRe>1. In

order to include all α ∈ CRe>0 we note that x ∈ N (An) ⊆ D(An) for some n ∈ N,
n > Reα. Hence,

Aαx =
Γ(n)

Γ(α)Γ(n− α)

∞∫︂
0

tα−1An(t+ A)−nx dt = 0

which shows the missing inclusion.

At this point we could elaborate further on many, many aspects of the theory of frac-

tional powers one would expect to hold in LCS as well. Just to mention some, we could

think about (A−1)α = (Aα)−1 for injective operators A as suggested by Lemma 2.0.8 and

Proposition 4.1.24, one could establish that the operators Aγ, γ ∈ (0, 1
2
) are really the

generators of the before introduced semigroup (a partial answer to this question is going

to be given in the next section), and one could think about the expected second power law

(Aδ)α = Aδα. All these questions would go beyond the scope of the work at hand but are

noteworthy to be considered in future works.
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4.2. Fractional powers with 0 < α < 1 for generators of

equicontinuous C0-Semigroups

There are well known formulas to describe fractional powers of the strictly smaller class

of operators whose negatives generate equibounded C0-semigroups. One can see this by

combining the Balakrishnan formula with the fact that the resolvents of such operators

are given by Laplace transformation of the corresponding semigroups, cf. [44, Prop. 3.2.1].

Actually, they were the �rst class of operators in general Banach spaces for which people

studied fractional powers. In this section however, we will concentrate on the special case of

0 < α < 1. For these values of the power α, the function z ↦→ zα belongs to a special class

of functions and this fact yields yet another way to describe the corresponding fractional

powers. To be more precise, in this situation one can use subordination.

De�nition 4.2.1 (Bernstein function). Let f : (0,∞) → [0,∞). Then f is called a Bern-

stein function provided f ∈ C∞(︁(0,∞)
)︁
and (−1)k−1f (k) ≥ 0 for all k ∈ N.

Bernstein functions appear in a vast number of �elds such as probability theory, har-

monic analysis, complex analysis and operator theory under di�erent names, e.g., Laplace

exponents, negative de�nite functions or Pick, Nevanlinna or Herglotz functions (complete

Bernstein functions, cf. [57]). It will not cause any greater di�culty which is why the

following results, taken from [39], shall be presented for general Bernstein functions. As

a demonstration example, we shall return to z ↦→ zα various times. A �rst fact which we

will need is that Bernstein functions allow for a characterisation by two numbers and a

measure with a growth property.

Proposition 4.2.2 ([57, Thm. 3.2]). Let f : (0,∞) → [0,∞). The following are equivalent.

1. f is a Bernstein function.

2. There exist constants a, b ≥ 0 and a positive Radon measure µ on (0,∞) having the

growth property
∫︁
(0,∞)

1 ∧ t µ(dt) <∞ such that

f(λ) = a+ bλ+

∫︂
(0,∞)

(︁
1− e−λt

)︁
µ(dt) (λ > 0). (4.2.1)

The representation of f in (4.2.1) is called Lévy�Khintchine representation. The function

f determines the two numbers a, b and the measure µ in the Lévy�Khintchine representa-

tion uniquely and the triple (a, b, µ) is called Lévy triplet for f .
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Every Bernstein function admits a continuous extension to [0,∞) since by applying

dominated convergence to the representation formula (4.2.1) one gets f(0+) = a.

Example 4.2.3. Let α ∈ (0, 1) and f : (0,∞) → [0,∞) be de�ned by f(λ) := λα. Then f

is a Bernstein function with Lévy triplet (0, 0, µ) and µ ∈M
(︁
(0,∞)

)︁
given by

µ(A) :=
−1

Γ(−α)

∫︂
A

t−1−α dt.

Hence,

λα =
−1

Γ(−α)

∫︂
(0,∞)

(︁
1− e−λt

)︁
t−1−αdt.

Let us now turn to a concept closely related to Bernstein functions.

De�nition 4.2.4. Let (µt)t≥0 be a family in M
(︁
[0,∞)

)︁
. Then (µt) is called

1. a family of sub-probability measures if ∀t ∈ [0,∞) : µt

(︁
[0,∞)

)︁
≤ 1,

2. vaguely continuous (at s ≥ 0 with limit µs) if

∀f ∈ Cc

(︁
[0,∞)

)︁
: lim

t→s

∫︂
[0,∞)

f(λ)µt(dλ) =

∫︂
[0,∞)

f(λ)µs(dλ)

3. convolution semigroup if µ0 = δ0 and ∀s, t ∈ [0,∞) : µt ∗ µs = µt+s.

Remark 4.2.5.

1. A vaguely continuous convolution semigroup (µt) of sub-probability measures is also

weakly continuous , i.e., De�nition 4.2.4 actually holds for all f ∈ Cb

(︁
[0,∞)

)︁
. In order

to see this choose f ∈ Cc

(︁
[0,∞)

)︁
such that 0 ≤ f ≤ 1 and f = 1 in a neighbourhood

of 0. Then

1 ≥ µt

(︁
[0,∞)

)︁
≥
∫︂

[0,∞)

fµt → f(0) = 1 as t→ 0+.

So µt

(︁
[0,∞)

)︁
→ 1 as t → 0+. The same argument works to show that for every

c > 0 one has µt

(︁
[0, c)

)︁
→ 1 as t → 0+. Therefore also µt

(︁
[c,∞)

)︁
→ 0 as t → 0+.

Now weak continuity in 0 follows from (g ∈ Cb

(︁
[0,∞)

)︁
, fCc

(︁
[0,∞)

)︁
as above with

f = 1 on [0, ε) for some ε > 0)

⃓⃓ ∫︂
[0,∞)

gµt − g(0)
⃓⃓
≤
⃓⃓ ∫︂
[0,∞)

gfµt − g(0)
⃓⃓
+ ∥f∥µt

(︁
[ε,∞)

)︁
→ 0
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as t→ 0+.

2. One can use a vaguely continuous convolution semigroup of sub-probability mea-

sures (µt) to de�ne a C0-semigroup (e−tA)t≥0 on Cbu

(︁
[0,∞)

)︁
(bounded uniformly

continuous functions) via

(e−tAf)(x) :=

∫︂
[0,∞)

f(x+ y)µt(dy).

In particular, the convolution semigroup is actually vaguely continuous in every t ∈
[0,∞). We shall brie�y sketch the proof. For given f ∈ Cbu

(︁
[0,∞)

)︁
and δ > 0,

chosen su�enctly small, we estimate for all x ∈ [0,∞)

⃓⃓∫︂
[0,∞)

f(x+ y)µt(dy)− f(x)
⃓⃓
≤
⃓⃓∫︂

[0,δ)

f(x+ y)− f(x)µt(dy)
⃓⃓

+ 2 ∥f∥µt

(︁
[δ,∞)

)︁
+ |f(x)|

(︁
1− µt

(︁
[0,∞)

)︁
which shows the desired result. One can also establish strong continuity in Cb

(︁
[0,∞)

)︁
if one is willing to coarse its Banach space topology to the strict topology which

is a mixture of its original Banach space topology with the topology of uniform

convergence on compacts.

Every Bernstein function is naturally associated to a vaguely continuous convolution

semigroup of sub-probability measures (µt)t≥0 and vice versa.

Proposition 4.2.6 ([57, Thm. 5.2]). Let (µt)t≥0 be a vaguely continuous convolution semi-

group of sub-probability measures on [0,∞). Then there exists a unique Bernstein function

f such that for all t ≥ 0 the Laplace transform of µt is given by

L(µt) = e−tf .

Conversely, given any Bernstein function f , there exists a unique vaguely continuous con-

volution semigroup of sub-probability measures (µt) on [0,∞) such that the above equation

holds.

By the above proposition, we obtain that the sub-probability measures µt are probability
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measures if and only if f(0+) = 0, since

µt

(︁
[0,∞)

)︁
= lim

λ→0+

∫︂
[0,∞)

e−λsµt(ds) = lim
λ→0+

e−tf(λ) = e−tf(0+). (4.2.2)

Example 4.2.7. Let α ∈ (0, 1) and f : (0,∞) → [0,∞) be de�ned by f(λ) := λα and let

(µt) be the corresponding family of sub-probability measures. Then, for t > 0, the measure

µt has a density gt w.r.t. the Lebesgue measure given by

gt(s) =
1

2πi

∫︂
γΘ

e−twα

eswdw (s > 0), (4.2.3)

where γΘ = γ+Θ ∪ γ−Θ is parametrised by

γ−Θ(r) := −re−iΘ (r ∈ (−∞, 0)), γ+Θ(r) := reiΘ (r ∈ (0,∞))

and Θ ∈ [π/2, π] is arbitrary, see Figure 4.2.1 for one possible choice.

Re

Im

Θ

Θ

γ−Θ

γ+Θ

Figure 4.2.1.: Possible path of integration

For α = 1
2
one can explicitly calculate the integral and �nds (see [69, p. 259�268] for

details)

gt(s) =
te−

t2

4s

2
√
πs

3
2

(s > 0).

Analogously to the case of bounded C0-semigroups on Banach spaces (see [57, Propo-

sition 13.1]) we can construct a new equicontinuous C0-semigroup from an existing one

using a vaguely continuous semigroup (µt) of sub-probability measures.

Proposition 4.2.8. Let X be a LCS, (e−tA) be an equicontinuous C0-semigroup on X

and (µt) be a vaguely continuous convolution semigroup of sub-probability measures with
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associated Bernstein function f . For t ≥ 0 de�ne e−tf(A) : X → X by

x ↦→ e−tf(A)x :=

∫︂
[0,∞)

e−sAxµt(ds). (4.2.4)

Then (e−tf(A))t≥0 is an equicontinuous C0-semigroup on X.

We will call (e−tf(A)) the subordinated semigroup to (e−tA) w.r.t. f .

Proof. Let t ≥ 0. The linearity of e−tf(A) is evident. The semigroup property of (e−tf(A))

is inherited from the semigroup property of (µt) and of (e−sA). Indeed, let s, t ≥ 0. For

x ∈ X, x′ ∈ X ′ we have

⟨x′, e−tf(A)e−sf(A)x⟩ =
∫︂

[0,∞)

∫︂
[0,∞)

⟨x′, e−uAe−vAx⟩µs(du)µt(dv)

=

∫︂
[0,∞)

∫︂
[0,∞)

⟨x′, e−(u+v)Ax⟩µs(du)µt(dv) =

∫︂
[0,∞)

⟨x′, e−wAx⟩µs ∗ µt(dw)

=

∫︂
[0,∞)

⟨x′, e−wAx⟩µs+t(dw) = ⟨x′, e−(t+s)f(A)x⟩.

For the strong continuity of (e−tf(A)), let x ∈ X. We estimate

⃦⃦
e−tf(A)x− x

⃦⃦
p
≤
∫︂

[0,∞)

⃦⃦
e−sAx− x

⃦⃦
q
µt(ds) → 0,

since
(︁
s ↦→

⃦⃦
e−sAx− x

⃦⃦
q

)︁
∈ Cb

(︁
[0,∞)

)︁
with value 0 at s = 0 and µt → δ0 weakly.

It remains to show that (e−tf(A)) is equicontinuous. This follows from

⃦⃦
e−tf(A)x

⃦⃦
p
≤
∫︂
[0,∞)

⃦⃦
e−sAx

⃦⃦
q
µt(ds) ≤ C ∥x∥r

where we used the equicontinuity of (e−sA) as well as the uniform boundedness (namely

by 1) of the family (µt).

Our next goal is to represent the generator f(A) of a subordinated semigroup (e−tf(A))

for a given Bernstein function f as it was performed in [57, Eq. (13.10)] for Banach spaces.

Proposition 4.2.9. Let f be a Bernstein function with Lévy triplet (a, b, µ) and x ∈ D(A).

Then the function

(0,∞) ∋ s ↦→ x− e−sAx ∈ X
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is integrable in the sense that∫︂
(0,∞)

(x− e−tAx)µ(dt) =

∫︂
(0,1)

(x− e−tAx)

t
tµ(dt) +

∫︂
[1,∞)

(x− e−tAx)µ(dt) (4.2.5)

Proof. Note that the measures tµ on (0, 1) and µ on [1,∞) are both bounded. Since

x ∈ D(A), the mapping s ↦→ e−sAx is di�erentiable and

d

ds
e−sAx = −Ae−sAx = −e−sAAx (s ≥ 0).

Hence, we get for a continuous seminorm ∥·∥p

⃦⃦
x− e−tAx

⃦⃦
p
≤

t∫︂
0

⃦⃦
e−sAAx

⃦⃦
q
ds ≤ C ∥Ax∥r · t (t ≥ 0)

and which is what one needs to show that the �rst summand in (4.2.5) makes sense. For

the second summand, we can use the equicontinuity of (e−tA) and get

⃦⃦
x− e−tAx

⃦⃦
p
≤ (C + 1) ∥x∥q .

Theorem 4.2.10. Let X be a LCS, (e−tA) be an equicontinuous C0-semigroup on X with

generator −A and f be a Bernstein function with Lévy triplet (a, b, µ). In this situation

we have for all x ∈ D(A) that x ∈ D(f(A)) and

f(A)x = ax+ bAx+

∫︂
(0,∞)

(︁
x− e−tAx

)︁
µ(dt). (4.2.6)

Remark 4.2.11. For Banach spaces X this result is due to Phillips [53].

Proof. We adapt the proof of [57, Thm. 13.6] to our context. Let (a, b, µ) be the Lévy

triplet for f and (µt) the associated family of measures.

(i) Let us �rst assume that f(0+) = a = 0, i.e., (µt) is actually a family of probability

measures. Recall that

e−tf(λ) =

∫︂
[0,∞)

e−λsµt(ds)
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and de�ne

fn(λ) :=

∫︂
(0,∞)

(1− e−λs)nµ 1
n
(ds).

It follows that

fn(λ) =
1− e−

1
n
f(λ)

1
n

→ f(λ) as n→ ∞ (4.2.7)

for all λ > 0, i.e., (fn) is a sequence of Bernstein functions converging pointwise to f .

Using [57, Coro. 3.9], we obtain

lim
n→∞

nµ 1
n
= µ vaguely on (0,∞), (4.2.8)

lim
C→∞

µ({C})=0

lim
n→∞

nµ 1
n

(︁
[C,∞)

)︁
= 0, (4.2.9)

lim
c→0+

µ({c})=0

lim
n→∞

∫︂
(0,c)

t nµ 1
n
(dt) = b. (4.2.10)

Let x ∈ D(A) and x′ ∈ X ′. Furthermore, choose c, C > 0 such that µ({c, C}) = 0, i.e.,

c and C are points of continuity of the measure µ. Note that
(︁
t ↦→ ⟨x′, x − e−tAx⟩

)︁
∈

Cb

(︁
[c, C)

)︁
. Using the fact that c and C are points of continuity, one can show that

nµ 1
n

(︁
[c, C)

)︁
→ µ

(︁
[c, C)

)︁
by approximating 1[c,C) from below and from above by functions

f , g ∈ Cc

(︁
(0,∞)

)︁
with supports contained in [c+ ε, C − ε] and [c− ε, C + ε], respectively,

for some ε > 0 chosen su�ciently small. Moreover, essentially the same kind of argument

gives nµ 1
n
|[c,C) → µ|[c,C) vaguely. Using again [57, Thm. A.4], we therefore have nµ 1

n
|[c,C) →

µ|[c,C) weakly. Hence,

lim
n→∞

∫︂
[c,C)

⟨x′, x− e−tAx⟩nµ 1
n
(dt) =

∫︂
[c,C)

⟨x′, x− e−tAx⟩µ(dt).

By dominated convergence we obtain

lim
c→0+
C→∞

µ({c,C})=0

lim
n→∞

∫︂
[c,C)

⟨x′, x− e−tAx⟩nµ 1
n
(dt) =

∫︂
(0,∞)

⟨x′, x− e−tAx⟩µ(dt). (4.2.11)
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Let us keep this result in mind for a moment and consider for c > 0

∫︂
(0,c)

⟨x′, x− e−tAx⟩nµ 1
n
(dt) =

∫︂
(0,c)

t∫︂
0

⟨x′, e−sAAx− Ax⟩ ds nµ 1
n
(dt)

+

∫︂
(0,c)

t⟨x′, Ax⟩nµ 1
n
(dt).

Note that
(︁
(0, c) ∋ t ↦→

∫︁ t

0
⟨x′, e−sAAx−Ax⟩ ds

)︁
∈ Cb

(︁
(0, c)

)︁
. Let ϕ ∈ Cc

(︁
(0, c)

)︁
. One gets(︁

t ↦→ ϕ(t)
∫︁ t

0
⟨x′, e−sAAx− Ax⟩ ds

)︁
∈ Cc

(︁
(0, c)

)︁
which results in

∫︂
(0,c)

ϕ(t)

t∫︂
0

⟨x′, e−sAAx− Ax⟩ds nµ 1
n
(dt) →

∫︂
(0,c)

ϕ(t)

t∫︂
0

⟨x′, e−sAAx− Ax⟩dsµ(dt)

i.e., the sequence
(︂∫︁ t

0
⟨x′, e−sAAx−Ax⟩ ds nµ 1

n

)︂
n∈N

converges vaguely on the interval (0, c)

to the measure
∫︁ t

0
⟨x′, e−sAAx− Ax⟩ ds µ. Moreover,∫︂

(0,c)

∫︂ t

0

⃓⃓
⟨x′, e−sAAx− Ax⟩

⃓⃓
dsµ(dt) ≤ sup

s∈(0,c)

⃓⃓
⟨x′, e−sAAx− Ax⟩

⃓⃓ ∫︂
(0,c)

tµ(dt)

which says that
∫︁ t

0
⟨x′, e−sAAx−Ax⟩ ds µ is a �nite measure. If µ({c}) = 0, we thus obtain

that the convergence is even weak, i.e., for all f ∈ Cb

(︁
(0, c)

)︁
. In particular, for such c we

have

lim
n→∞

∫︂
(0,c)

t∫︂
0

⟨x′, e−sAAx− Ax⟩ ds nµ 1
n
(dt) =

∫︂
(0,c)

t∫︂
0

⟨x′, e−sAAx− Ax⟩ dsµ(dt),

and therefore

lim
c→0+

µ({c})=0

lim
n→∞

∫︂
(0,c)

t∫︂
0

⟨x′, e−sAAx− Ax⟩ ds nµ 1
n
(dt) = 0. (4.2.12)

Finally,

lim
c→0+

µ({c})=0

lim
n→∞

∫︂
(0,c)

t⟨x′, Ax⟩nµ 1
n
(dt) = b ⟨x′, Ax⟩ (4.2.13)

by (4.2.10).

Putting together Equation (4.2.12) and Equation (4.2.13), we get as a second interme-
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diate result

lim
c→0+

µ({c})=0

lim
n→∞

∫︂
(0,c)

⟨x′, x− e−tAx⟩nµ 1
n
(dt) = b ⟨x′, Ax⟩. (4.2.14)

Before we can summarise everything, we need to discuss the region [C,∞) as well. Luckily

the argument is rather short in this case since (e−tA) is equicontinuous and, by (4.2.9), we

obtain

lim
C→∞

µ({C})=0

lim
n→∞

∫︂
[C,∞)

⟨x′, x− e−tAx⟩nµ 1
n
(dt) = 0. (4.2.15)

We are ready for the main argument. We are now going to consider the integral expres-

sion in Equation (4.2.6) and split it in the three regions (0, c), [c, C), and [C,∞). This

will enable us to bring in the intermediate results from Equation (4.2.14) for (0, c), Equa-

tion (4.2.11) for [c, C), and Equation (4.2.15) for [C,∞). So, one has⟨︂
x′, bAx+

∫︂
(0,∞)

(x− e−tAx)µ(dt)
⟩︂
= lim

c→0+
µ({c})=0

lim
n→∞

∫︂
(0,c)

⟨x′, x− e−tAx⟩nµ 1
n
(dt)

+ lim
c→0+
C→∞

µ({c,C})=0

lim
n→∞

∫︂
[c,C)

⟨x′, x− e−tAx⟩nµ 1
n
(dt)

+ lim
C→∞

µ({C})=0

lim
n→∞

∫︂
[C,∞)

⟨x′, x− e−tAx⟩nµ 1
n
(dt)

= lim
c→0+
C→∞

µ({c,C})=0

lim
n→∞

∫︂
(0,∞)

⟨x′, x− e−tAx⟩nµ 1
n
(dt)

= lim
n→∞

⟨x′, n(x− e
1
n
f(A)x)⟩.

where the last equality follows similar to its scalar counterpart in Equation (4.2.7). The

result tells us that the element x ∈ D(A) is apparently also in the domain of the weak

closure of the operator f(A). However, by general considerations weak and ordinary closure

are the same and f(A) is closed since −f(A) is the generator of a C0-semigroup. We

conclude x ∈ D(f(A)) as well as the representation formula

f(A)x = bAx+

∫︂
(0,∞)

(︁
x− e−tAx

)︁
µ(dt) (x ∈ D(A)).

(ii) For the general case f(0+) = a ≥ 0 consider h := f − a. Then h is a Bernstein

function with h(0+) = 0. Let (νt) be the associated family of sub-probability measures.

The family (µt), given by µt = e−taνt (t ≥ 0), is the family of measures associated to f .
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Thus, for t ≥ 0 and x ∈ X, we have

e−tf(A)x =

∫︂
[0,∞)

e−sAxµt(ds) =

∫︂
[0,∞)

e−sAx e−taνt(ds) = e−tae−th(A)x,

i.e., (e−tf(A)) is a rescaling of (e−th(A)). Analogously to the case of C0-semigroups on Banach

spaces, one proves that this implies f(A) = h(A) + a. Thus the general case follows from

(i).

Corollary 4.2.12. We have that f(A)|D(A) = f(A).

Proof. The domain D(A) is dense in X since −A is a generator of a C0-semigroup, by

Theorem 4.2.10 we have D(A) ⊆ D(f(A)). Moreover, the semigroup (e−tf(A)) commutes

with resolvent operators (λ+A)−1 which means that the semigroup leaves D(A) invariant.

Thus, as in the case of C0-semigroups on Banach spaces, we conclude that D(A) is a core

for f(A) (see e.g. [2, Prop. 1.14] for the case of C0-semigroups on Banach spaces).

It remains to answer the question whether the generator of the subordinated semigroup

is the fractional power assuming we use the Bernstein function f(λ) = λα for the subordi-

nation process. Indeed, this is the case.

Theorem 4.2.13. Let −A be the generator of an equicontinuous C0-semigroup in an LCS

X, α ∈ (0, 1) and f(λ) = λα. Then Aα = f(A).

Proof. The theorem is a consequence of Laplace transform which reads for λ ∈ CRe>0 and

x ∈ X

(t+ A)−1x =

∞∫︂
0

e−ste−sAx ds.

Let x ∈ D(A). Using the representation of the resolvent as Laplace transform of the
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generated semigroup in Equation (4.1.3) gives

Aαx =
sin(απ)

π

∞∫︂
0

tα−1A(t+ A)−1x dt

=
1

Γ(α)Γ(1− α)

∞∫︂
0

tα−1

∞∫︂
0

(− d

ds
e−sAx) · e−stds dt

=
1

Γ(α)(−α)Γ(−α)

∞∫︂
0

(x− e−sAx)

∞∫︂
0

tα+1−1e−stdt ds

=
−1

Γ(−α)

∞∫︂
0

(︁
x− e−sAx

)︁
s−1−αds

= f(A)x

where the last equality used Example 4.2.3 and Theorem 4.2.10. The domain D(A) is a

core for f(A) by Corollary 4.2.12. Moreover it is dense since −A generates a C0-semigroup.

Together with Proposition 4.1.23 it is therefore also a core for Aα. Taking closures thus

implies f(A) = Aα.

Remark 4.2.14. Let us �nally answer an open question from Remark 4.1.5. Namely one

may use the representation of the resolvent as Laplace transform in Equation (4.1.2) and

�nds it to be in agreement with Equation (4.2.3) for the special case Θ = π. Thus, by

Theorem 4.2.13, the family de�ned in Equation (4.1.2) is really the semigroup generated by

the negative fractional power −Aγ at least under the hypothesis that −A itself generates

a C0-semigroup.
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5. The Ca�arelli-Silvestre Extension

Problem

In this chapter we shall deal with what is either called Ca�arelli-Silvestre Extension prob-

lem or, alternatively, harmonic extension problem. Before introducing it in more detail,

we shall brie�y make some remarks on its history. Its �rst and rather indirect appearance

dates back to the short paper [51] from 1968. The authors actually considered stochastic

processes subordinated to a Brownian motion and studied methods to describe them by

trace processes taking place in the original space extended by an `additional dimension'. To

be more concrete, the authors studied for α ∈ (0, 1) the one-dimensional process generated

by the operator

Sα =
d2

dt2
+

1− 2α

t

d

dt
.

Formally one can think of this process as the magnitude of a Brownian motion in 2− 2α

dimensions since for an n-dimensional Brownian motion (Bt) the process (Jt) given by

Jt := ∥Bt∥, called a Bessel process of order n, is generated by the operator

S 2−n
2

=
d2

dt2
+
n− 1

t

d

dt

(sometimes with an additional factor 1/2). Using the local time of the Bessel process,

the authors constructed a time change for an independent Brownian motion which yields

the subordinated processes commonly called α-stable Lévy process. The fact that this

observation is actually independent of the special example of a Brownian motion seems to

be noticed for the �rst time in [52].

The approach was rediscovered 40 years later from the PDE point of view in the in�u-

ential paper of Ca�arelli and Silvestre [13] where the authors described fractional powers

of the Laplacian by means of taking traces of functions solving the PDE

∂2t u(t, x) +
1− 2α

t
∂tu(t, x) = −∆xu(t, x), (t, x) ∈ (0,∞)×Rn,

u(0, x) = f(x), x ∈ Rn,
(5.0.1)
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with α ∈ (0, 1) being the fractional power. Formally, one could interpret solutions to

(5.0.1) as harmonic functions de�ned on Rn ×R2−2α. In this case the Equation (5.0.1) is

nothing but the usual Laplacian applied to a function v of the special form

v : Rn ×R2−2α → R, v(x, y) = u (∥y∥ , x) ,

with a suitable function u : R×Rn → R. So it just depends on the norm of the additional

2− 2α coordinates. This may be the reason why the technique is sometimes also referred

to as harmonic extension problem. The here sketched idea is used nicely in [13] to obtain

results analogously to the ones available for the Laplacian in Rn.

Using a solution u to (5.0.1), one can then calculate (−∆x)
α as

cα
(︁
(−∆x)

αf
)︁
(x) = − lim

t→0+
t1−2α∂tu(t, x), x ∈ Rn,

with an explicitly known constant cα which was calculated for the �rst time in [63].

The relation between the PDE and the stochastic setting is that Brownian motions

are generated by the Laplacian while the processes subordinated to the Brownian motion

are generated by the fractional powers of the Laplacian for α ∈ (0, 1) (in stochastics the

parameter 2α is typically used which is why it ranges there from 0 to 2).

One may generalise Equation (5.0.1) by replacing −∆ with a more general sectorial

operator A in some Banach space X or even a non-negative operator in some LCS and

furthermore consider α ∈ C0<Re<1. Now (5.0.1) becomes

u′′(t) +
1− 2α

t
u′(t) = Au(t), t ∈ (0,∞), (5.0.2)

u(0) = x, (5.0.3)

i.e., a linear ODE in the space X with initial datum x ∈ X which degenerates for t = 0

(unless α = 1
2
) and which seems to be `incomplete' since no initial condition for u′ is given.

The case α = 1
2
was already studied in [5] for Banach spaces with the result that under

the additional assumption of u being bounded the problem has the unique solution given

by

u(t) = e−t
√
Ax,

i.e., is given by the C0-semigroup generated by
√
A. We did not deal with

√
A but one

can show that its negative always generates a semigroup which is in general not analytic

unless A is even sectorial.

It was then noticed in [63] that if the considered Banach space X is one-dimensional,
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Equation (5.0.2) is another form of Bessel's di�erential equation and integral represen-

tations of its solutions provide solutions to (5.0.2) by interpreting them via a functional

calculus.

Assuming u to be a bounded solution to (5.0.2), in the one-dimensional case it follows

that u is unique and that

− lim
t→0+

t1−2αu′(t) = cαA
αx. (5.0.4)

The expression on the left is usually referred to as a generalised Neumann boundary con-

dition (namely the evalutation of the weighted negative derivate of u at t = 0). Following

this terminology one calls u(0) = x a Dirichlet boundary condition and therefore thinks

of the limit in (5.0.4) as generalised Dirichlet-to-Neumann operator, an operator mapping

the Dirichlet-data of a solution on its corresponding Neumann-data, which is given by the

fractional power of the operator A appearing in the ODE. The question arises whether the

solution u is also unique in general LCS (that would mean that the Dirichlet-to-Neumann

operator can be de�ned) and whether this operator is up to a constant still given by a

fractional power.

The entire topic got studied in a couple of works since 2007 starting with Hilbert space

approaches and their generalisations to Banach spaces, see [3, 23, 46, 48, 47, 49, 63].

While existence of a solution can usually be tackled by means of functional calculus

methods, it turned out that the discussion of uniqueness of the solution is slightly more

challenging. In the following we shall deal with both points in a LCS X but under the

slightly more restrictive assumption on A being a `proper' sectorial operator rather than

solely being non-negative. For Banach spaces this is no restriction as there both classes

coincide.

5.1. Problem and preliminaries

For the entire section let X be a LCS with fundamental system of seminorms PX and

A ∈ Sω(X), ω ∈ [0, π), a densely de�ned, sectorial operator and α ∈ C0<Re<1.

De�nition 5.1.1. A function u ∈ Cb

(︁
[0,∞);X

)︁
such that we have for all ϕ ∈ D

(︁
(0,∞)

)︁
∫︂ ∞

0

u(t)ϕ(t)dt ∈ D(A),

∞∫︂
0

u(t)
d

dt
t1−2α d

dt
t2α−1ϕ(t)dt = A

∫︂ ∞

0

u(t)ϕ(t)dt and u(0) = x,

where x ∈ X is given, shall be called a weak solution of the Ca�arelli-Silvestre Problem.

A weak solution u of the Ca�arelli-Silvestre Problem will be called strong solution if even
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u ∈ Cb

(︁
[0,∞);D(A)

)︁
. In this situation one has

A

∫︂ ∞

0

u(t)ϕ(t)dt =

∫︂ ∞

0

Au(t)ϕ(t)dt,

i.e.,

Au = t2α−1Dt1−2αDu in D′(︁(0,∞);X
)︁
:= D′(︁(0,∞)

)︁
εX,

i.e., the functions correspond as vector-valued distributions. Furthermore, Au ∈ Cb

(︁
[0,∞);X

)︁
.

Hence, u ∈ C2
(︁
(0,∞);X

)︁
and therefore

∀t > 0 : t2α−1 d

dt
t1−2αu′(t) = u′′(t) +

1− 2α

t
u′(t) = Au(t). (5.1.1)

Remark 5.1.2.

1. The here presented de�nition of a solution di�ers and is actually more general than

the one in [48]. The changes are a result of the discussion in [49].

2. The assumption of a dense domain of the operator A is as usual pure convenience.

Assume A for the moment to be non-densely de�ned and set D := D(A). Since we

are seeking continuous solutions of the above equation, no solution for x ∈ X \ D
can be expected even though the solution operators will be de�ned on the full space.

The di�erential equation will still be solved but no continuity at t = 0 will hold.

This e�ect can already be observed for the much simpler case of an ordinary Cauchy

problem

u′(t) = Au(t), u(0) = x.

5.2. Uniqueness of a solution

In this section we will begin to discuss the uniqueness of possible weak solutions to the

Ca�arelli-Silvestre Problem. We adopt the assumptions and notation from Section 5.1.

Because A is sectorial, we may choose any z ∈ C \ Sω and consider for a given weak

solution u with u(0) = x the function v := (z − A)−1u ∈ Cb

(︁
[0,∞);D(A)

)︁
. Then v is a

strong solution with v(0) = (z−A)−1x. The statement u = 0 is equivalent to v = 0 which

is why we can concentrate on the uniquess of strong solutions to the Ca�arelli-Silvestre

Problem. Let us collect some properties of v.
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Lemma 5.2.1. Let v be a strong solution to the Ca�arelli-Silvestre Problem with v(0) =

x ∈ D(A). Then we have

1. y := limt→0+ −t1−2αv′(t) exists,

2. ∀ ∥·∥p ∈ PX ∃C1, C2 > 0 ∀t > 0 : ∥v′(t)∥p ≤ C1t
2Reα−1 + C2t,

3. ∀ ∥·∥p ∈ PX ∃C > 0∀t > 0 : ∥v(t)− x∥p ≤ C(t2Reα ∧ 1).

Proof.

1. Consider Equation (5.1.1) and bring the prefractor t2α−1 on the right-hand side. Let

0 < t < s. Integration from t to s gives

−t1−2αv′(t) = −s1−2αv′(s) +

s∫︂
t

r1−2αAv(r)dr.

It is possible to send t → 0+ since r ↦→ r1−2α is locally integrable near t = 0 while

the function Av is continuous.

2. Let ∥·∥p be a continuous seminorm. Using the same argument from the �rst part,

we conclude

t1−2Reα ∥v′(t)∥p =
⃦⃦
t1−2αv′(t)

⃦⃦
p
≤ ∥y∥p +

C

2− 2Reα
t2−2Reα.

for some C > 0. This implies the statement.

3. The case t ≥ 1 follows from boundedness of v. It remains to discuss t < 1. Since the

limit limt→0+ −t1−2αv′(t) exists, the function t ↦→ t1−2αv′(t) has to be bounded in a

neighborhood of t = 0 which in turn implies integrability of v′ in a neighborhood of

t = 0. Now the fundamental theorem yields

∥v(t)− x∥p ≤
t∫︂

0

t2Reα−1
⃦⃦
t1−2αv′(t)

⃦⃦
q
dt ≤ Ct2Reα

where ∥·∥q ∈ PX is another continuous seminorm.

For both, the uniqueness and the existence part, we will be needing a certain generali-

sation (among many possible) of the exponential function. As preparation, note that the
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functions Iα and Kα from C \ (−∞, 0] to C de�ned by

Iα(t) :=

(︃
t

2

)︃α ∞∑︂
k=0

t2k

4k · k! · Γ(α + k + 1)
and Kα(t) :=

π

2 sin(απ)

(︁
I−α(t)− Iα(t)

)︁
,

are called modi�ed Bessel functions of �rst and second kind, respectively. The name origins

from the fact that both functions solve

t2u′′(t) + tu′(t)− (t2 + α2)u(t) = 0,

the so�called modi�ed Bessel equation.

Remark 5.2.2. From its de�nition it seems at �rst glance that Kα cannot be de�ned

for α ∈ Z. However, one can extend the representation also to those values of α. A

representation which works for all α ∈ C
Re>−1

2
, t > 0 is

Kα(t) =

√
π

Γ(α + 1
2
)

(︃
t

2

)︃α
∞∫︂
1

e−ts(s2 − 1)α−
1
2ds (5.2.1)

([1, 10.32.8]). Using integration by parts, one can derive integral representations from it

which are even valid for larger halfplanes but we will not need this.

De�nition 5.2.3. For α ∈ CRe>0 we de�ne the function Eα : C \ (−∞, 0) → C by

Eα(t) :=
2

Γ(α)

(︃
t

2

)︃α

Kα(t) (5.2.2)

Remark 5.2.4.

1. The functionKα decays exponentially as t→ ∞ but it diverges as t−Reα when t→ 0+

which is why the factor tα appears in the above de�nition. Both limit behaviours

stay true when the function is considered on a sector with opening angle strictly less

than π
2
.

2. The rather complicated α-dependent prefactor simply ensures Eα(0) = 1, cf. [1,

10.30.2]

3. Note that E1
2
(t) = e−t.
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Lemma 5.2.5. Let λ ∈ CRe>0. Then we have for all t ≥ 0 the representation

Eα(λt) =
λ2α

Γ(2α)

∞∫︂
t

e−λs(s2 − t2)α−
1
2ds

Consequently,

∀ϕ ∈ [0, π
2
)∃C > 0 ∀t > 0, λ ∈ Sϕ : |Eα(λt)| ≤ Ce−

1
2
Reλ·t.

Proof. The given representation is just the de�nition of Eα combined with the integral

representation (5.2.1), the substitution y := ts applied to

Eα(λt) =
2
√
π

Γ(α)Γ(α + 1
2
)

(︃
λt

2

)︃2α
∞∫︂
1

e−λts(s2 − 1)α−
1
2ds,

and Legendre's duplication formula
√
π · Γ(2α) = 22α−1Γ(α)Γ(α + 1

2
). Because of

|Eα(λt)| ≤ D(|λ| t)2Reαe−
1
2
Reλt

∞∫︂
1

e−
1
2
Reλts(s2 − 1)Reα− 1

2ds

= De−
1
2
Reλt

(︃
|λ|
Reλ

)︃2Reα
∞∫︂

Reλt

e−
1
2
r
(︁
r2 − (Reλt)2

)︁Reα− 1
2dr,

D being a constant only depending on α, the entire discussion is basically just about the

boundedness of the continuous function f given by

f(t) :=

∞∫︂
0

e−
1
2
s(s2 − t2)Reα− 1

21(t,∞)(s)⏞ ⏟⏟ ⏞
=:gt(s)

ds. (5.2.3)

Let us �rst consider the case Reα ≥ 1
2
. In this case we have g0 ∈ L1

(︁
(0,∞)

)︁
, g0 ≥ gt and

lim
t→0+

gt(s) = g0(s) as well as lim
t→∞

gt(s) = 0.

By dominated convergence f is bounded at t = 0 and t = ∞. Concerning Reα < 1
2
, one
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may substitute y := s− t to get

f(t) =

∞∫︂
0

e−
1
2
(y+t)yReα− 1

2 (y + 2t)Reα− 1
2⏞ ⏟⏟ ⏞

=:ht(y)

dy.

Discussing the family (ht) analogously as (gt) gives the same result. So the claim follows

by choosing C := supt>0 f(t).

Remark 5.2.6. Note that, for given values t > 0, λ ∈ CRe>0, the function α ↦→ Eα(λt) is

analytic in the strip C0<Re<1.

A second ingredient for the uniqueness proof will be a special operator.

De�nition 5.2.7. On the Banach space C0

(︁
[0,∞)

)︁
we de�ne the operator T : D(T ) →

C0

(︁
[0,∞)

)︁
by

(Tf)(t) := −1

t
f ′(t)

on the domain D(T ) := {f ∈ C0

(︁
[0,∞)

)︁
∩ C1

(︁
(0,∞)

)︁
| t ↦→ 1

t
f ′(t) ∈ C0

(︁
[0,∞)

)︁
}.

Remark 5.2.8.

1. For the de�nition of the operator we could have chosen Lp-spaces as well. However,

this would have made the discussion slightly more di�cult.

2. The importance of the operator comes from the equation(︃
1

z

d

dz

)︃k

zαKα(z) = (−1)kzα−kKα−k(z) (5.2.4)

([1, 10.29.4]) as we will see.

Proposition 5.2.9. The operator T is injective with (unbounded) inverse. Both operators

are densely de�ned. It is also sectorial of angle ω = π
2
and m-accretive.

Proof. The operator is injective since Tf = 0 implies that f = c for some c ∈ C which got

to be 0 since f ∈ C0

(︁
[0,∞)

)︁
. With a direct calculation one con�rms that for λ ∈ CRe>0

the resolvent (λ+ T )−1 is given by

(︁
(λ+ T )−1g

)︁
(t) = e

1
2
λt2

∞∫︂
t

se−
1
2
λs2g(s)ds.
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The functions fλ, de�ned by fλ(t) := e−
1
2
λt2 with λ ∈ CRe>0, are eigenfunctions of T with

eigenvalue λ. We conclude that σ(T ) = CRe≥0 while ρ(T ) = CRe<0. Using the explicit

representation of the resolvent, we can estimate

⃦⃦
(λ+ T )−1

⃦⃦
≤ 1

Reλ

which implies sectoriality, ω = π
2
, and m-accretivity. Finally T−1 is unbounded because

one has the representation (︁
T−1ϕ

)︁
(t) =

∞∫︂
t

sϕ(s)ds

for all ϕ ∈ Cc

(︁
[0,∞)

)︁
which does not de�ne a continuous operator. However, apparently

T−1 has got Cc

(︁
[0,∞)

)︁
in its domain which is why it is densely de�ned.

In order to show denseness of D(T ) let us show that λ(λ + T )−1f → f as λ → ∞ for

every f ∈ C0

(︁
[0,∞)

)︁
. So let f ∈ C0

(︁
[0,∞)

)︁
, t ∈ [0,∞), and ε > 0 be given. Choose

t0 > 0 such that supt>t0 |f(t)| <
ε
3
. Furthermore, choose δ > 0 with |f(x)− f(y)| < ε

3

whenever |x− y| < δ. We estimate for t ≥ 0

⃓⃓(︁
λ(λ+ T )−1f

)︁
(t)− f(t)

⃓⃓
≤

∞∫︂
t

λse−
1
2
λ(s2−t2) |f(s)− f(t)| ds

=

∞∫︂
0

e−y
⃓⃓⃓
f(
√︁

2yλ−1 + t2)− f(t)
⃓⃓⃓
dy

=

t0∫︂
0

e−y
⃓⃓⃓
f(
√︁

2yλ−1 + t2)− f(t)
⃓⃓⃓
dy

+

∞∫︂
t0

e−y
⃓⃓⃓
f(
√︁

2yλ−1 + t2)− f(t)
⃓⃓⃓
dy

≤ ε

3
+

2ε

3

for λ > λ0 where we have choosen λ0 such that
√︁
2t0λ

−1
0 < δ. This �nishes the proof.

If we rewrite Equation (5.2.4) using T and the functions Eα we �nd for k ∈ N and

α ∈ CRe>0, Reα > k

T kEα =
Γ(α− k)

2kΓ(α)
Eα−k. (5.2.5)

Furthermore, T admits fractional powers. At this point the reader may already sense that
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one could interpolate Equation (5.2.5) for k ∈ C0≤k<Reα. This is actually true as we will

see. The following lemma will be needed. Before the reader may recall that it holds that

T−1 is non-negative by Lemma 2.0.8 (actually even sectorial of the same angle as T ) and

admits therefore fractional powers as well. It holds that (T−1)α = T−α. For Banach spaces

this can be found in [25, Prop. 3.2.1] but in fact it actually remains also true in general

LCS.

Lemma 5.2.10. Let f ∈ R(T ) = D(T−1), g ∈ D(T ), and α ∈ CRe>0 such that Reα < 1.

Then we have for t ≥ 0 the representations

(︁
T−αf

)︁
(t) =

1

2α−1Γ(α)

∞∫︂
t

s(s2 − t2)α−1f(s)ds (5.2.6)

and (︁
Tαg

)︁
(t) =

1

2−α−1Γ(−α)

∞∫︂
t

s(s2 − t2)−α−1
(︁
g(s)− g(t)

)︁
ds. (5.2.7)

Proof. This result is just an application of the Balakrishnan formula (4.1.3). Note that

T−1(λ + T−1)−1 = 1
λ
( 1
λ
+ T )−1. Having this in mind and making use of the Balakrishnan

representation, we can calculate

(︁
T−αf

)︁
(t) =

1

Γ(α)Γ(1− α)

∞∫︂
0

λα−1 1

λ
e

t2

2λ

∞∫︂
t

se−
s2

2λf(s)dsdλ

=
1

Γ(α)Γ(1− α)

∞∫︂
t

sf(s)

∞∫︂
0

λα−1e−
s2−t2

2λ
dλ

λ
ds

=
1

2α−1Γ(α)

∞∫︂
t

sf(s)(s2 − t2)α−1ds
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as well as

(︁
Tαg

)︁
(t) =

1

Γ(α)Γ(1− α)

∞∫︂
0

λα−1
(︁
−1

t
D
)︁
e

1
2
λt2

∞∫︂
t

se−
1
2
λs2g(s)ds dλ

=
1

Γ(α)Γ(1− α)

∞∫︂
0

λα−1 · λ
∞∫︂
t

se−
1
2
λ(s2−t2)

(︁
g(t)− g(s)

)︁
ds dλ

=
1

Γ(α)(−α)Γ(−α)

∞∫︂
t

s
(︁
g(t)− g(s)

)︁ ∞∫︂
0

λαe−
1
2
λ(s2−t2)dλ ds

=
1

2−α−1Γ(−α)

∞∫︂
t

s(s2 − t2)−α−1
(︁
g(s)− g(t)

)︁
ds

which shows the claim.

Corollary 5.2.11. Let α ∈ C0<Re<1 and λ ∈ CRe>0. Then
(︁
t ↦→ e−λt

)︁
∈ D(T

1
2
−α) and

∀t ∈ [0,∞) : Eα(λt) =

√
πλ2α−1

2α−
1
2Γ(α)

(︁
T

1
2
−α(s ↦→ e−λs)

)︁
(t)

as well as
(︁
t ↦→ Eα(λt)

)︁
∈ D(Tα− 1

2 ) and for all t ∈ [0,∞)

2α−
1
2Γ(α)√
πλ2α−1

(︂
Tα− 1

2

(︁
s ↦→ Eα(sλ)

)︁)︂
(t) =

λ · Γ(1− α)√
π · Γ(3

2
− α)

∞∫︂
t

E1−α(λs)s
2α−1(s2 − t2)

1
2
−αds.

(5.2.8)

Proof. Let us �rst consider the case Reα > 1
2
. Note that

(︁
t ↦→ e−λt

)︁
∈ D(T−1). Hence,(︁

t ↦→ e−λt
)︁
∈ D(T

1
2
−α) and using the �rst representation from Lemma 5.2.10 we calculate

(︁
T

1
2
−α(s ↦→ e−λs)

)︁
(t) =

1

2α−
3
2Γ(α− 1

2
)

∞∫︂
t

se−λs(s2 − t2)α−
3
2ds

=
λ

2α−
1
2Γ(α + 1

2
)

∞∫︂
t

e−λs(s2 − t2)α−
1
2ds

where we used integration by parts which is possible due to Reα > 1
2
. Together with

Lemma 5.2.5 the claim is shown in this situation.

Let now Reα < 1
2
. To begin with note that

(︁
t ↦→ e−λt

)︁
/∈ D(T ). However, the formula
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(5.2.7) still makes sense for this function. By this we mean that the appearing integral is

convergent and integration by parts yields

1

2α−
3
2Γ(α− 1

2
)

∞∫︂
t

s(s2 − t2)α−
3
2

(︁
e−λs − e−λt

)︁
ds =

λ

2α−
1
2Γ(α + 1

2
)

∞∫︂
t

e−λs(s2 − t2)α−
1
2ds.

Tracing back the steps we undertook to derive (5.2.7) from the Balakrishnan formula, we

conclude

lim
n→∞

√
πλ2α−1

2α−
1
2Γ(α)Γ(1

2
− α)Γ(1

2
+ α)

n∫︂
0

µ− 1
2
−α · µ

∞∫︂
t

se−
1
2
µ(s2−t2)

(︁
e−λt − e−λs

)︁
ds dµ

⏞ ⏟⏟ ⏞
=:fn(t)

= Eα(λt),

i.e., (fn) converges to t ↦→ Eα(λt) pointwisely and boundedly. By dominated convergence

the convergence is weakly in C0

(︁
[0,∞)

)︁
. By [44, Thm. 3.1.10, Rem. 3.1.3] we obtain(︁

t ↦→ e−λt
)︁
∈ D(T

1
2
−α) and

√
πλ2α−1

2α−
1
2Γ(α)

(︁
T

1
2
−α(s ↦→ e−λs)

)︁
(t) = Eα(λt).

The validity for Reα = 1
2
follows from [44, Prop. 7.1.5] since it implies that α ↦→

(︁
T

1
2
−α(s ↦→

e−λs)(t) is holomorphic on the strip 0 < Reα < 1 and on the parts 0 < Reα < 1
2
as well

as 1
2
< Reα < 1 it coincides with the function α ↦→ Eα(λt) which in turn is holomorphic

on the entire strip.

The so far presented argument also implies
(︁
t ↦→ Eα(λt)

)︁
∈ D(Tα− 1

2 ). The remain-

ing integral representation follows similar to the two derivations from above where one

additionally needs to use the identity

d

ds
Eα(λs) = −2−αΓ(1− α)

2α−1Γ(α)
λ2αs2α−1E1−α(λs) (5.2.9)

which in turn follows from Equation (5.2.4). This �nishes the proof.

Remark 5.2.12. Corollary 5.2.11 is nothing but a special case of the earlier announced

relation how the di�erent Eα are related to each other by the fractional powers of T .

Reasoning as above one can actually show that the Balakrishnan representation of T β,

β ∈ CRe<Reα is applicable to t ↦→ Eα(λt) which gives
(︁
t ↦→ Eα(λt)

)︁
∈ D(T β) and, using
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Corollary 5.2.11, we obtain

T β
(︁
t ↦→ Eα(λt)

)︁
=

√
πλ2α−1

2α−
1
2Γ(α)

T βT
1
2
−α(t ↦→ e−λt) =

√
πλ2α−1

2α−
1
2Γ(α)

T β+ 1
2
−α(t ↦→ e−λt)

=
λ2βΓ(α− β)

2βΓ(α)

(︁
t ↦→ Eα−β(λt)

)︁
.

Technically the thesis only covers the situation for Reα > 1
2
. However, the general Banach

space theory su�ces and the necessary result for the remaining values of α can be found

in [44, 7.1.1].

We proceed by using the so far derived results to show the injectivity of an integral

transform generalising the Laplace transformation.

De�nition 5.2.13. Let α ∈ C0<Reα<1. We de�ne Lα : C0

(︁
[0,∞)

)︁
→ H(CRe>0) by

(︁
Lαf

)︁
(λ) :=

∞∫︂
0

f(t)t1−2αEα(λt)dt.

Note that we already know that the just introduced integral transform is injective for

α = 1
2
since in this case it is simply the Laplace transform. We shall show that this is

actually true for all values α ∈ C0<Re<1.

Proposition 5.2.14. The mapping Lα is injective for all α ∈ C0<Re<1.

Proof. Let f ∈ C0

(︁
[0,∞)

)︁
. Set F : (0,∞) → C, F (λ) :=

(︁
Lαf

)︁
(λ). Assume F ∈

D(T ) ∩ D(T−1), i.e., F admits a continuous extension to λ = 0 and the extension, again

denoted by F , is in the domain of T and T−1. Let us �rst consider the case Reα > 1
2
.

From the assumptions we conclude F ∈ D(Tα− 1
2 ) and we calculate

(︁
Tα− 1

2F
)︁
(λ)

=
1

2−α− 1
2Γ(−α + 1

2
)

∞∫︂
λ

s(s2 − λ2)−α− 1
2

∞∫︂
0

f(t)t1−2α
(︁
Eα(st)− Eα(λt)

)︁
dt ds

=

∞∫︂
0

f(t)t1−2α
(︂
Tα− 1

2

(︁
s ↦→ Eα(ts)

)︁)︂
(λ)dt

=

√
π

2α−
1
2Γ(α)

∫︂ ∞

0

f(t)e−λtdt.
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Let now Lαf = F = 0 for a given f ∈ C0

(︁
[0,∞)

)︁
. As a consequence we also have

∀λ ∈ (0,∞) :

∫︂ ∞

0

f(t)e−λtdt = 0

which implies the claim in this case since the Laplace transform is injective. The same

reasoning also works for the case Reα < 1
2
. It remains the case Reα = 1

2
, Imα ̸=

0. No direct integral representation is available in this situation which helps to verify

exchangeability with the integral transform. However,

0 = lim
ε→0+

(︁
Tα− 1

2
−εF

)︁
(λ)

= lim
ε→0+

∞∫︂
0

f(t)t1−2α
(︁
Tα− 1

2
−ε
(︁
s ↦→ Eα(ts)

)︁)︁
(λ)dt

= lim
ε→0+

∞∫︂
0

f(t)
t−2εΓ(1

2
− ε)

2α−
1
2
+εΓ(α)

E 1
2
+ε(tλ)dt

=

√
π

2α−
1
2Γ(α)

∞∫︂
0

f(t)e−λtdt

where we used dominated convergence for the last equality. The necessary bound for

applying it follows from the representation (5.2.8) valid in the entire strip C0<Re<1.

With the injectivity result at hand, we can proceed towards our �nal goal and show that

(weak and strong) solutions to the Ca�arelli-Silvestre Problem are unique.

Theorem 5.2.15. A solution of the Ca�arelli-Silvestre problem is unique.

Proof. By what has been said at the beginning of Section 5.2, it is enough to consider

strong solutions since every weak solution in our sense gives rise to a uniquely determined

strong solution. So let v ∈ C2
(︁
(0,∞);X

)︁
∩ Cb

(︁
[0,∞);D(A)

)︁
be such that v(0) = 0

obtained from a weak solution u via regularisation with a resolvent, i.e., v = (ε + A)−1u

for some ε > 0. We need to verify that v = 0. Apply the integral transformation Lα to

v′′(t) +
1− 2α

t
v′(t) = t2α−1 d

dt
t1−2αv′(t) = Av(t).
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We de�ne y := − limt→0+ t
1−2αv′(t) and calculate

∞∫︂
0

Eα(λt)
d

dt
t1−2αv′(t)dt = t1−2αv′(t)Eα(λt)

⃓⃓⃓∞
0
−

∞∫︂
0

v′(t) · t1−2α d

dt
Eα(λt)dt

= y −
∞∫︂
0

v′(t) · t1−2α d

dt
Eα(λt)dt

where we used integration by parts as well as Lemma 5.2.1 and Lemma 5.2.5 for the

evaluation of the boundary terms. Also be aware that, again by Lemma 5.2.5 together

with formula (5.2.9), the appearing integrand in the second line is in L1
(︁
(0,∞)

)︁
. We may

integrate one more time by parts to get

y −
∞∫︂
0

v′(t) · t1−2α d

dt
Eα(λt)dt = y +

∞∫︂
0

v(t)t1−2α · t2α−1 d

dt
t1−2α d

dt
Eα(λt)dt

which is possible, yet another time, by formula (5.2.9), and Lemma 5.2.5 and Lemma 5.2.1.

Since Kα is a solution to the modi�ed Bessel equation, a calculation reveals

t2α−1 d

dt
t1−2α d

dt
Eα(λt) = λ2Eα(λt). (5.2.10)

For now let us set f := Lαv ∈ H(CRe>0;X) and, using our last �nding, write

y + λ2f(λ) = Af(λ). (5.2.11)

This equation implies

(λ+
√
A)(λ−

√
A)f(λ) = (λ2 − A)f(λ) = −y. (5.2.12)

Let us now de�ne a function g on C \ {0} by

g(λ) =

⎧⎨⎩−λ(λ−
√
A)−1y λ ∈ C \ Sω

2
,

λ(λ+
√
A)f(λ) λ ∈ CRe>0.

Note that both expressions are well de�ned holomorphic functions on the respective do-

mains and that g is well de�ned because the functions coincide on the overlapping region

(C \ Sω
2
) ∩ CRe>0 as a consequence of Equation (5.2.12). For this reason g is holomorphic

on C\{0}. Furthermore, f(λ) → 0 as Reλ→ ∞ in a �xed sector Sϕ in the right half plane
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by dominated convergence and using the bound from Lemma 5.2.5. This behaviour carries

over to Af(λ) since the resolvent regularisation applied to u at the beginning of the proof

commutes with applying our generalised Laplace transform. Again by Equation (5.2.12),

we conclude that λ2f(λ) → −y. From this we are able to tell that g got to be bounded

on C \ B(0, R) for any R > 0 since λA
1
2f(λ) → 0 as Reλ → ∞ by Proposition 4.1.14.

A standard estimate using the concrete form of the integral transform as well as again

Lemma 5.2.5 shows the existence of some constant M (depending on a concretely chosen

continuous seminorm ∥·∥p ∈ PX) such that

∥f(λ)∥p ≤M(Reλ)2Reα−2 Γ(2− 2Reα). (5.2.13)

This means that λ ↦→ λ2g(λ) is bounded in a neighborhood of λ = 0 and admits therefore

an entire extension, denoted by h, due to Riemanns theorem on removable singularities

(which holds for holomorphic functions with values in locally convex spaces with the same

proof as for the scalar-valued case based on the power series expansion, see [32, Satz 10.11

(e)] why the latter is true). Since h(0) = 0 (one may use a limit and approach λ = 0

within the region C \ Sω
2
), the function λ ↦→ λ−1h(λ) is still entire. Using this argument a

second time, we conclude that the original function g actually already extends to an entire

function. By Liouville's theorem ([32, p. 242]) we can tell that g is constant and by our

�ndings from before we obtain g(λ) = −y. Taking into account the de�nition of g this

means that y ∈ N (A) because λ(λ−
√
A)−1y = y means y ∈ N (

√
A) which in turn implies

y ∈ N (A) by using Proposition 4.1.24. Considering yet another time the de�nition of g

in the overlapping region (C \ Sω
2
) ∩ CRe>0, we obtain f(λ) = −λ−2y. Putting this into

(5.2.13) results in

∥y∥p ≤M(Reλ)2Reα Γ(2− 2Reα)

which is only possible for every continuous seminorm ∥·∥p ∈ PX if y = 0. Hence f = 0

which eventually implies v = 0 by Proposition 5.2.14.

The proof of Theorem 5.2.15 is, even though being similar in spirit, di�erent from the

uniquess proof presented in [48] which relied on growth properties. As a drawback it makes

substantial use of the `proper' sectoriality of A which is no loss of generality in a Banach

space. The author is not sure whether the before mentioned proof can be generalised to

LCS and would therefore possibly extend the uniquessness result to non-negative operators

in LCS.
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5.3. Existence of solutions

Let us come to the discussion of the existence of a solution to the Ca�arelli-Silvestre

Problem. Let again ω ∈ [0, π) and A ∈ Sω(X). We choose σ ∈ [0, π−ω
2

), z ∈ Sσ and

consider the `germ' (a holomorphic function de�ned on a slightly larger sector Sω+ε for

some ε > 0 but suitably small) fz given by λ ↦→ fz(λ) := Eα(
√
λz). This function is not

contained in Esec(Sω) (it decays at in�nity but does not approach 0 at λ = 0; cf. Example

3.0.2 (c) for recalling the de�nition) but in an extended version of it. The major idea which

enables us to plug in A into this function is the algebraic manipulation

fz(λ) = fz(λ)−
fz(0)

1 + z2λ
+

fz(0)

1 + z2λ

for all λ ∈ C \ (−∞, 0). This is nothing but the sectorial calculus of the operator A known

from the Banach space case, see [25]. It gives rise to the following de�nition.

De�nition 5.3.1. Let everything be as above, �x θ ∈ (ω, π−2σ), and de�ne the continuous

linear operator fz(A) ∈ L(X) by

fz(A)x :=
(︁
fz − fz(0) · (1 + z2λ)−1

)︁
(A)x+ fz(0)(1 + z2A)−1x.

Here the expression
(︁
fz − fz(0)(1 + z2λ)−1

)︁
(A)x is given by the Cauchy integral

(︁
fz − fz(0)(1 + z2λ)−1

)︁
(A)x :=

1

2πi

∫︂
∂Sθ

(︂
fz(λ)−

fz(0)

1 + z2λ

)︂
(λ− A)−1x dλ

where the path of integration is as usual orientated from i∞ to −i∞.

As in the case of Banach spaces, one shows that the de�nition does not depend on the

angle θ entering in the integration path. What remains is to show that z ↦→ fz(A)x actually

de�nes a strong solution to the Ca�arelli-Silvestre problem for every x ∈ X.

Remark 5.3.2. The chosen de�nition to introduce the main object of interest di�ers from

the approach in [48]. There, the here used de�nition also came into play but solely for

the purpose of establishing continuity of the function z ↦→ fz(A)x at z = 0. However, the

sectorial calculus approach is also suitable for deriving all other needed properties as we

will see.

Lemma 5.3.3. Let δ > 0 and x ∈ X. Then

δ2A(δ + A)−2x =
1

2πi

∫︂
∂Sθ

δ2λ

(δ + λ)2
(λ− A)−1x dλ
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holds.

Proof. Choose R > δ and set ΩR := (C \ Sθ) ∩ B(0, R). Orientate the boundary of ΩR

clockwise. Cauchy's integral theorem and the residue theorem (the integrand has a second

order pole within the contour) then give

1

2πi

∫︂
∂Sθ

δ2λ

(δ + λ)2
(λ− A)−1x dλ

= lim
R→∞

1

2πi

∫︂
∂ΩR

δ2λ

(δ + λ)2
(λ− A)−1x dλ

=−
(︂ d

dλ
δ2λ(λ− A)−1x

)︂⃓⃓⃓
λ=−δ

= δ2A(δ + A)−2x.

Remark 5.3.4. Note that the chosen proving strategy can be generalised to get integral

represenations for all bounded operators of the form AnΠm
k=1(λk − A)−1 where n,m ∈ N,

m− n ≥ 1 and λ1, . . . , λm ∈ ρ(A).

A second rather technical result is also needed.

Lemma 5.3.5. Let ω ∈ [0, π) and f ∈ E(Sω). Then

sup
−ω≤δ≤ω

∞∫︂
0

⃓⃓
f(seiδ)

⃓⃓
s

ds <∞.

Proof. Let f ∈ E(Sω). A standard argument using Cauchy's integral formula and a limit

shows that

∀a ∈ Sω \ {0} : f(a) =
1

2πi

∫︂
∂Sω+ε

f(z)

z − a
dz

for some ε > 0 but suitably small. Let a ∈ Sω \ {0} and consider the function given by

g(z) = e−(ln z−ln a)2 de�ned on C \ (−∞, 0]. One has g ∈ E(Sω) and, since g(a) = 1,

f(a) =
1

2πi

∫︂
∂Sω+ε

f(z)e−(ln z−ln a)2

z − a
dz. (5.3.1)

Let δ ∈ [−ω, ω]. We have to estimate
∫︁∞
0

|f(seiδ)|
s

ds. To do so, we replace the function in the

integrand using equation (5.3.1) which, after an application of the triangle inequality, will

yield the sum of two convergent integrals. In the following we just consider one summand
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corresponding to the integration path γ given by the parametrisation z(t) = tei(ω+ε),

0 ≤ t ≤ ∞. The other summand can be obtained by replacing ω with −ω. We estimate

∞∫︂
0

1

s

⃓⃓⃓⃓
⃓⃓ 1

2πi

∫︂
γ

f(z(t))e−(ln z(t)−ln s−iδ)2

z(t)− seiδ
dz(t)

⃓⃓⃓⃓
⃓⃓ ds ≤

∞∫︂
0

1

s

1

2π

∞∫︂
0

⃓⃓
f(tei(ω+ε))

⃓⃓
e− ln2( t

s
)e(ω+ε−δ)2

|tei(ω+ε) − seiδ|
dtds

For the appearing denominator one can use an orthogonal projection (in C considered as

R2) and minimise with respect to δ to get

⃓⃓
tei(ω+ε) − seiδ

⃓⃓
≥ t sin(ε)

Hence,

∞∫︂
0

1

s

⃓⃓⃓⃓
⃓⃓ 1

2πi

∫︂
γ

f(z(t))e−(ln z(t)−ln s−iδ)2

z(t)− seiδ
dz(t)

⃓⃓⃓⃓
⃓⃓ ds ≤ e(2ω+ε)2

2π sin(ε)

∞∫︂
0

⃓⃓
f(tei(ω+ε))

⃓⃓
t

dt

∞∫︂
0

e− ln2 x

x
dx

where we applied the substitution x = t
s
in the integral with respect to s. This gives

the result for one of the two appearing summands. The other summand is estimated

similarly.

As a direct corollary we obtain a uniform boundedness principle applicable for a common

construction of families of bounded operators.

Corollary 5.3.6. Let ω ∈ (0, π), h ∈ E(Sω), δ ∈ [0, ω), and ε > 0 be such that δ + ε ≤ ω.

De�ne a family of functions (hz)z∈Sε by hz(λ) := h(zλ). Then

sup
z∈Sε,

−δ≤α≤δ

∞∫︂
0

|fz(teiα)|
t

dt <∞.

Proof. Let α ∈ [−δ, δ]. Since for all z ∈ Sε one has |arg(z)| ≤ ε, we conclude that

|α + arg(z)| ≤ ω. Therefore,

∞∫︂
0

|fz(teiα)|
t

dt ≤
∞∫︂
0

⃓⃓
f(tei(α+arg(z)))

⃓⃓
t

dt ≤ sup
−ω≤γ≤ω

∞∫︂
0

|f(teiγ)|
t

dt.

We are now already in the position to prove the main result.
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Theorem 5.3.7. Let X be a LCS, ω ∈ [0, π) and A ∈ Sω(X). Furthermore, let x ∈ X

and σ ∈ [0, π−ω
2

). De�ne u : Sσ → X by u(z) := fz(A)x. Then the following properties

hold:

1. ∀z ∈ Sσ \ {0} : u(z) ∈ D(A∞),

2. u ∈ Cb(Sσ) and u(0) = x,

3. u ∈ H(S̊σ) and ∀z ∈ Sσ \ {0} : u′′(z) + 1−2α
z
u′(z) = Au(z).

Before we proceed with the proof, let us make some remarks.

Remark 5.3.8.

1. The �rst property of above's theorem says that the family fz(A) is smoothing. It

maps the entire space into D(A∞). This is not totally surprising. If α = 1
2
, one has

fz(A) = e−z
√
A. It is known that this is a holomorphic semigroup in Banach spaces

and this result stays true in locally convex spaces for sectorial operators A.

2. The second property may be translated as z ↦→ fz(A) is strongly continuous. Again

considering the special case α = 1
2
, this is not surprising at all. As we will see the

strong continuity holds on D(A) which is X by the assumption that A is densely

de�ned.

3. Since σ is arbitrary the last property yields that z ↦→ fz(A)x is holomorphic on S̊ π−ω
2
.

This result can be strengthened to z ↦→ Akfz(A)x is holomorphic for all k ∈ N.

Proof.

1. Only the step u(z) ∈ D(A) will be somewhat di�cult. The statement u(z) ∈ D(Ak)

for k ≥ 2 will follow in the same manner and actually much easier. Choose δ > 0

and θ1, θ2 ∈ (ω, π), θ2 > θ1. We calculate

δ2A(δ + A)−2u(z)

=
1

(2πi)2

∫︂
∂Sθ1

δ2λ

(δ + λ)2
(λ− A)−1 dλ ·

∫︂
∂Sθ2

(︂
fz(λ)−

fz(0)

1 + z2λ

)︂
(λ− A)−1x dλ

+ fz(0)δ
2A(δ + A)−2(1 + z2A)−1x

where we made us of Lemma 5.3.3. Using the resolvent identity and the holomor-

phicity of the integrands, the appearing integral can be simpli�ed (a manifestation
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of the fact that this is actually the sectorial calculus which is multiplicative) and we

get

δ2A(δ + A)−2u(z) =
1

2πi

∫︂
∂Sθ1

δ2λ

(δ + λ)2

(︂
fz(λ)−

fz(0)

1 + z2λ

)︂
(λ− A)−1x dλ

+ fz(0)δ
2A(δ + A)−2(1 + z2A)−1x

=
1

2πi

∫︂
∂Sθ1

δ2λ

(δ + λ)2
fz(λ)(λ− A)−1x dλ

where for the last equality we made use of the fact that due to the additional factor

in the integrand both summands yield convergent integrals and the second integral

precisely cancels the last summand.

Now we are in the position to send δ → ∞ where the expression on the right-hand

side is convergent by dominated convergence. By density of D(A) we also have

δ2(δ + A)−2u(z) → u(z) (Lemma 2.0.9). Moreover A is closed. So u(z) ∈ D(A) and

Au(z) =
1

2πi

∫︂
∂Sθ1

λfz(λ)(λ− A)−1x dλ.

Using this expression one can iterate the argument now.

2. The equation u(0) = x holds by de�nition of f0(A).

Continuity for z ∈ Sσ \ {0} can be deduced from dominated convergence. Namely,

one splits the integral under consideration in a part where λ is close to 0 and its

complement. For the complement part one argues⃓⃓⃓⃓
fz(λ)−

fz(0)

1 + z2λ

⃓⃓⃓⃓
≤ Ce−

1
2

√
|λ||z| cos( θ

2
+σ) +

⃓⃓⃓⃓
1

1 + z2λ

⃓⃓⃓⃓
(5.3.2)

where we used that fz(0) = 1 as well as Lemma 5.2.5 in combination with the

de�nitions of fz and fz(A). Note that fz is a very well behaved function at in�nity

(it drops of exponentially).

The second summand only gives the necessary regularisation at λ = 0. So let us now

discuss this part. Going back to the very de�nition, the following expansion for fz

can be written down:

fz(λ) =
Γ(1− α)

2α

∞∑︂
k=0

1

4k · k!

(︃
λkz2k

2−αΓ(−α + k + 1)
− λk+αz2k+2α

2αΓ(α + k + 1)

)︃
. (5.3.3)
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Using it one sees the integrability of

λ ↦→
(︂
fz(λ)−

1

1 + z2λ

)︂
· 1
λ

close to λ = 0 uniformly for all z in compact subsets of Sσ.

The argument requires modi�cation for z = 0 since in this case Inequality (5.3.2)

does not give an integrable majorant anymore. We shall show now the following:

x ∈ D(A) ⇔ lim
z→0
z∈Sσ

fz(A)x = x.

One implication is clear. Let fz(A)x→ x. We already know that fz(A)x ∈ D(A∞) ⊆
D(A) and therefore x ∈ D(A). The converse is more interesting. Consider the family

(hz)z∈Sσ , hz : Sω → C de�ned by

hz(λ) :=
fz(λ)− 1

(1 + λ)
= z2α

fz(λ)− 1

(z2λ)α
λα

1 + λ
.

The expansion (5.3.3) yields

f1(λ)− 1

λα
→ − Γ(1− α)

22αΓ(α + 1)
.

as λ→ 0 in Sγ for every �xed γ ∈ [0, π). As for large values of λ, the fraction f1(λ)−1
λα

is bounded on Sγ. It follows that fz(λ)−1
(z2λ)α

is uniformly bounded on Sω+ε for z ∈ Sσ

and ε > 0 such that ω + 2σ + ε < π. So the net (hz) is in E(Sω) and one has

∞∫︂
0

⃓⃓
hz
(︁
sei(ω+ε)

)︁⃓⃓
s

ds ≤ C |z|2Reα sup
|δ|≤ω+ε

∞∫︂
0

sReα

s |1 + seiδ|
ds

where C > 0 is independent of z. Hence,

lim
z→0

sup
|δ|≤ω+ε

∞∫︂
0

⃓⃓
hz
(︁
seiδ
)︁⃓⃓

s
ds = 0

and therefore, using that

∥hz(A)x∥p ≤
M

π
∥x∥q sup

|δ|≤ω+ε

∞∫︂
0

⃓⃓
hz
(︁
sei(ω+ε)

)︁⃓⃓
s

ds

108



where M ≥ 1 is a constant, it follows that

(fz(A)x− 1) (1 + A)−1 x = hz(A)x→ 0

in X as z → 0 in Sσ which shows

lim
z→0
z∈Sσ

fz(A)x = x

for x ∈ D(A). The �nal claim follows if we could show that
(︁
fz(A)

)︁
z∈Sσ

is equicon-

tinuous which would imply that the limit behaviour holds for all x ∈ D(A). Also,

uniform boundedness of the solution was claimed anyway in the proposition and has

not been shown yet. It follows from Corollary 5.3.6. On the one hand, one has

⃦⃦(︁
fz(λ)− (1 + z2λ)−1

)︁
(A)x

⃦⃦
p
≤ sup

z∈Sσ
|δ|≤ω+ε

∞∫︂
0

|fz
(︁
seiδ
)︁
− 1

1+z2seiδ
|

s
ds
M

π
∥x∥q

≤ sup
|δ|≤ω+2σ+ε

∞∫︂
0

|f1
(︁
seiδ
)︁
− 1

1+seiδ
|

s
ds
M

π
∥x∥q

while on the other hand

⃦⃦
(1 + z2A)−1x

⃦⃦
p
=
⃦⃦
z−2(z−2 + A)−1x

⃦⃦
p
≤M ∥x∥r

by the sectoriality of A and, for z ∈ Sσ \ {0}, z−2 ∈ S2σ \ {0} ⊊ S̊π−ω ⊂ ρ(−A).

3. It remains to show the di�erentiability of z ↦→ u(z) = fz(A)x as well as the fact that

this function ful�lls the di�erential equation

∀z ∈ Sσ \ {0} : u′′(z) +
1− 2α

z
u′(z) = Au(z).

So far we have not changed the parameter α ∈ C0<Re<1 during our considerations.

This will change now. So let us write for this last part fz,α instead of simply fz. Let

λ ∈ Sω+ε. A calculation con�rms the equality

d

dz
fz,α(λ) = −cαz2α−1λαfz,1−α(λ) (5.3.4)

for all z ∈ Sσ \ {0} where cα = Γ(1−α)
22α−1Γ(α)

. Hence, λ ↦→ d
dz
fz(λ) ∈ E(Sω) for all
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z ∈ Sσ \ {0}. Applying this equality a second time gives

d2

dz2
fz(λ) = −(2α− 1)cαλ

αz2α−2fz,1−α(λ)− cαλ
αz2α−1(−c1−α)z

1−2αλ1−αfz,α(λ)

= (1− 2α)cαλ
α z

2α−1

z
fz,1−α(λ) + λfz,α(λ).

We also read of λ ↦→ d2

dz2
fz(λ) ∈ E(Sω) as well as

d2

dz2
fz(λ) +

1−2α
z

d
dz
fz(λ) = λfz(λ) (a

fact which we technically already know from (5.2.9)). Finally,(︂
λ ↦→ d

dz

1

1 + z2λ

)︂
=
(︂
λ ↦→ −2zλ

(1 + z2λ)2

)︂
∈ E(Sω).

So, putting all pieces together, we conclude

u′(z) =
d

dz

1

2πi

∫︂
∂Sθ

(︂
fz(λ)−

1

1 + z2λ

)︂
(λ− A)−1x dλ+

d

dz
(1 + z2A)−1x

=
1

2πi

∫︂
∂Sθ

(−cα)z2α−1λαfz,1−α(λ)(λ− A)−1x dλ

as well as

u′′(z) =
1

2πi

∫︂
∂Sθ

(︂
(1− 2α)cαλ

α z
2α−1

z
fz,1−α(λ) + λfz,α(λ)

)︂
(λ− A)−1x dλ

and therefore

u′′(z) +
1− 2α

z
u′(z)− Au(z)

=
1

2πi

∫︂
∂Sθ

(︂
d2

dz2
fz(λ) +

1−2α
z

d

dz
fz(λ)− λfz(λ)

)︂
(λ− A)−1x dλ

=0

which shows everything which was to be shown.

Remark 5.3.9. Equation (5.3.4) is the key to a description of fractional powers of the

operator A by solutions of the Ca�arelli-Silvestre Problem. Namely, from it one can deduce

the equality

lim
z→0

−z1−2α d

dz
fz(A)x = cαA

αx
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for all x ∈ D(Aα). The left-hand side is typically called a generalised Dirichlet-to-Neumann

operator in analogy to other problems where Dirichlet boundary conditions get mapped

onto the corresponding Neumann conditions. The interpretation becomes more clear when

one just considers the domain (0,∞) with boundary 0. Following this interpreation, u(0) =

x should be called Dirichlet boundary condition. The expression limt→0+ −t1−2αu′(t) = y

may be seen as considering the negative �rst derivative at t = 0. The necessary scaling is

the origin of the additional term `generalised'. For more details and proofs (at least in the

case of a Banach space) see [48].

We summarise the main �nding of this last chapter in a theorem.

Theorem 5.3.10. Let X be a Hausdor� quasi�complete LCS, A ∈ Sω(X), ω ∈ [0, π), a

densely de�ned, sectorial operator, α ∈ C0<Re<1 a given parameter, and x ∈ X a given

vector. Then the Ca�arelli-Silvestre problem

u′′(t) +
1− 2α

t
u′(t) = Au(t) (t > 0), u(0) = x

has a unique solution u in the sense of De�ntion 5.1.1. The function u is holomorphic on

S̊ π−ω
2

and continuous and bounded on Sσ for every σ ∈ [0, π−ω
2

).
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A. Notions from Measure Theory

The �rst part of the appendix will quickly introduce the basic de�nitions concerning mea-

sure theory which we will occasionally need and which we will make use of without further

mentioning.

The two-point compacti�cation of R will be denoted by R := R ∪ {−∞,∞}. We use

the convention ∀x ∈ R : x + ∞ = ∞ + x := ∞ and x − ∞ = −∞ + x := −∞. We

do not intend to de�ne ∞−∞. The one-point compacti�cation of C will be denoted by

C := C ∪ {∞} and similarly to above we shall agree on ∀z ∈ C : z +∞ = ∞+ z := ∞

De�nition A.0.1. Let Ω be a set and Σ ⊆ 2Ω be a σ-algebra on Ω. A real-valued measure

is a mapping ν : Σ → R such that either its range R(ν) ⊆ (−∞,∞] or R(ν) ⊆ [−∞,∞),

ν(∅) = 0, and for every sequence (An) in Σ of pairwise disjoint measurable sets it holds

that

ν

(︄
∞⋃︂
n=1

An

)︄
=

∞∑︂
n=1

ν(An).

A real-valued measure µ is said to be positive if R(µ) ⊆ [0,∞] and �nite if R(µ) ⊆ R. A

complex measure is a mapping µ : Σ → C for which there are two real-valued measures

ν1 and ν2 with the property that µ(A) = ν1(A) + iν2(A) whenever ν1(A), ν2(A) ∈ R and

µ(A) = ∞ ∈ C if ν1(A) ∈ {−∞,∞} ⊂ R or ν2(A) ∈ {−∞,∞} ⊂ R. A complex measure

µ is �nite if R(µ) ⊆ C.

If µ is a complex measure, we can de�ne an associated positive measure |µ| called its

total variation via (A ∈ Σ)

|µ| (A) := sup
∞∑︂
i=1

|µ(Ai)|

where the supremum is taken over all countable partitions (Ai) in Σ of A. A measurable

set N is called null set for the complex measure µ if |µ| (N) = 0 (which implies µ(N) = 0

but the converse is in general wrong unless µ is positive). If Λ is another set carrying a

σ-algebra Ξ and f : Ω → Λ is a measurable function, we call the class of all functions

µ-a.e. equal to f an essentially measurable function which we also shall denote again by

f . We write L0(Ω,Σ, µ; Λ,Ξ) for the set of all essentially measurable functions and we
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will drop the reference to the domain Ω, the σ-algebra Σ and / or the measure µ when

no confusion can arise. The reference to the codomain Λ will not appear if Λ = C in

which case we shall choose Ξ = B(C); the Borel σ-algebra of C (a similarly notation will

be used for the Borel σ-algebra of more general topological spaces). Every f ∈ L0(Ω,Σ, µ)

allows us to de�ne a measure µf on B(C) called its image measure which is de�ned by

µf (B) = µ
(︁
f−1(B)

)︁
. For the concrete calculation of f−1(B) one can use any representative

of f . The outcome will only di�er by a µ�nullset which means that µf is well de�ned. Note

that for every A ∈ B(C) one has |µf | (A) ≤ |µ|f (A) and in general this inequality is strict.

In particular, every null set of |µ|f is also a null set for µf . One says that a complex

measure µ is absolutely continuous w.r.t. the complex measure ν if both measures share

the same domain of de�nition and if every ν-null set is also a µ-null set. One writes µ≪ ν.

The reader should be aware that the above notation does not imply |ν| (A) ≥ |µ| (A) for
all measurable A in a common domain. Coming back to our last observation we could

rephrase that, in particular, the measure µf is absolutely continuous w.r.t. the measure

|µ|f . The support of the measure |µ|f will be called essential range of f and we are going

to use the symbol Ress(f) for it.

The set of integrable functions is

L1(Ω,Σ, µ) = {f ∈ L0(Ω) |
∫︂
Ω

|f(x)| |µ| (dx) <∞}.

Integration w.r.t. the complex measure µ = ν1 + iν2 is de�ned by∫︂
Ω

f(x)µ(dx) :=

∫︂
Ω

f(x)ν+1 (dx)−
∫︂
Ω

f(x)ν−1 (dx) + i

∫︂
Ω

f(x)ν+2 (dx)− i

∫︂
Ω

f(x)ν−2 (dx)

where ν+k and ν−k are a Hahn-Jordan decomposition of the real-valued measure νk, e.g., [11,

Coro. 3.1.2]. Analogously to L1 we can also de�ne the Banach spaces Lp for p ∈ [1,∞].

Suppose now additionally that Ω is a Hausdor� locally compact space and Σ = B(Ω).
Furthermore, assume µ to be �nite on all compact sets, i.e., |µ| (K) < ∞ for all compact

sets K ⊆ Ω. For such spaces we de�ne analogously to the ordinary Lp-scale of Banach

spaces a Lp-scale of locally convex spaces Lp
loc(Ω) de�ned by

Lp
loc(Ω) := {f ∈ L0(Ω) | ∀K ⊆ Ω, K compact : f · 1K ∈ Lp(K)}

with 1K being the indicator function of the set K. Each K gives rise to a seminorm ∥·∥K
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via

∥f∥K :=

⎛⎝ ∫︂
K

|f(x)|p |µ| (dx)

⎞⎠ 1
p (︁

p ∈ [1,∞)
)︁

and analogously in the case L∞
loc(Ω).

Finally, let us introduce the notation M(Ω) for the space of all Radon measures de�ned

on B(Ω). Here a measure µ will be called a Radon measure if it is �nite on all compacts

K ⊆ Ω, inner regular on open sets, i.e., |µ| (O) = sup{|µ| (K) | K ⊆ O, K compact}
holds for all open sets O ⊆ Ω, and outer regular on all measurable sets which means

|µ| (B) = inf{|µ| (O) | B ⊆ O, O open} holds even for all measurable sets B ⊆ Ω. The

symbol Mb(Ω) will denote the set of all bounded Radon measures.
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B. Analysis in Rn

The second part of the appendix introduces standard notations and facts about common

tools from analysis in Rn and subsets of it. Points in Rn will be typically denoted by

x = (x1, . . . , xn) ∈ Rn. Confusion with powers seems to be unlikely. Occasionally we will

extend functions from Rn to Cn. In this case we shall denote points by z = (z1, . . . , zn) ∈
Cn. When extending to Cn also notions like Re z := (Re z1, . . . ,Re zn) ∈ Rn and Im z :=

(Im z1, . . . , Im zn) ∈ Rn are useful. The symbol ∥·∥ shall, also in the case that we work in

Cn, be reserved for the norm, i.e., ∥z∥ := (|z1|2+ · · ·+ |zn|2)
1
2 . The standard inner product

of two vectors z, w ∈ Cn will be denoted by (z|w) := z1w1 + · · · + znwn. Note that the

de�nition implies linearity in the second argument.

For a di�erentiable function f : Rn → R, a point x ∈ Rn, and a direction v ∈ Rn we

shall write

(Dvf)(x) := lim
t→0

f(x+ tv)− f(x)

t

for the directional derivative along the direction v. In case v = ek, the k
th canonical

basis vector, we use the symbol Dk := Dek . Furthermore, if n = 1, we just write D

instead of D1 and occasionally f ′ instead of Df as well as d
dt
f(t) for (Df)(t). Multi-

indices α = (α1, . . . , αn) ∈ N0 are usually denoted by lower case greek letters. We set

|α| := α1 + · · ·+ αn. With their help multiple partial derivatives are expressed via multi-

index notation as in

Dα := Dα1
1 . . . Dαn

n .

For subsets Ω ⊆ Rn (and also in Cn) we use standard topological notations. We write Ω̊

for the interior of Ω, we use Ω for its closure, and ∂Ω = Ω\ Ω̊ for the boundary. Let k ∈ N0

and Ω ⊆ Rn such that Ω̊ = Ω. This condition means that all boundary points of Ω can be

approached from its interior. In particular open sets ful�ll this condition. For such sets we

write Ck(Ω) for the collection of all functions f : Ω → C which are k times continuously

di�erentiable on the interior Ω̊ and for which all partial derivatives Dαf : Ω̊ → C, |α| ≤ k,

extend to continuous functions, denoted by the same symbol,
(︁
Dαf : Ω → R

)︁
∈ C(Ω).

The imposed condition on Ω ensures uniqueness of the extensions. Important subsets of
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C(Ω) := C0(Ω) are

Cb(Ω) := {f ∈ C(Ω) | f is bounded},

the bounded continuous functions, and

C0(Ω) := {f ∈ C(Ω) | ∀ε > 0 ∃K ⊆ Ω, compact, ∀x ∈ Ω \K : |f(x)| < ε},

the set of continuous functions vanishing on Ω\Ω. If Ω is open and bounded, the set C0(Ω)

are the continuous functions which vanish on the boundary ∂Ω of the set Ω. In case Ω is

compact we have C0(Ω) = C(Ω). Furthermore,

C∞(Ω) :=
∞⋂︂
k=0

Ck(Ω)

denotes the set of in�nitely often continuously di�erentiable functions. For short we simply

will refer to them as smooth functions. We shall also combine the so far introduced notions

and consider spaces such as Ck
b (Ω), the set of k-times continuously di�erentable functions

with bounded derivatives, and Ck
0 (Ω), the same thing for k-times di�erentiable functions

such that all derivatives belong to C0(Ω). We will also make use of C∞
b (Ω) and C∞

0 (Ω).

The space of functions (actually equivalence classes of functions being equal almost

everywhere) integrable with respect to the Lebesgue measure over some set Ω ⊆ Rn will

be L1(Ω) and similar for the other Lp-spaces. Integration with respect to the Lebesgue

measure will be denoted by
∫︁
Ω
f(x)dx or

∫︁
f if references to the integration variables or

the domain of integration are not needed. If µ is another Borel measure and absolutely

continuous w.r.t. the Lebesgue measure with density g, we shall write µ = gdx (or using

any other variable instead of x). For common functions such as the exponential we shall

even write f(x)dx instead of fdx with f given by some expression f(x). For example,

e−|x|dx is the Lebesgue measure weighted with the density x ↦→ e−|x|. Another important

function space will be

D(Ω) := {f ∈ C∞(Ω) | supp(f) ⊆ Ω is compact}.

For α ∈ Nn
0 and x ∈ Rn we shall also use xα := xα1

1 . . . xαn
n and, if f is some function

de�ned on some set Ω ⊆ Rn, xαf for the function x ↦→ xαf(x). Especially when dealing

with problems in full space, the function space of all Schwartz functions

S (Rn) := {f ∈ C∞(Rn) | ∀α, β ∈ Nn
0 : xαDβf ∈ Cb(R

n)}
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is of tremendous importance. The Fourier transformation F , given by

(Ff)(y) := 1

(2π)
n
2

∫︂
Rn

f(x)e−i(x|y)dx, f ∈ S (Rn),

de�nes a bijection from S (Rn) onto itself. One has S (Rn) ⊆ L2(Rn) and the Fourier

transformation can be extended to a unitary operator, again denoted by F , from L2(Rn)

onto L2(Rn).

Let Ω ⊂ Rn be open. Functions f ∈ Lp(Ω) having their distributional derivatives Dαf

up to a certain order k ∈ N0 again in Lp(Ω) are said to be Sobolev functions and their set

is denoted by W k,p(Ω). For p = 2 it is common to write W k,2(Ω) =: Hk(Ω). The closure

of D(Ω) in W k,p(Ω) is denoted by W k,p
0 (Ω) and again analogously for the case p = 2.

At some points we will also encounter functions de�ned on subsets of the complex plane.

If f is such a function de�ned on an open domain Ω ⊆ C and the function is moreover

complex di�erentiable for all z ∈ Ω, we will call f a holomorphic function and denote

the set of all such functions with domain Ω by H(Ω). The subalgebra of all bounded

holomorphic functions on Ω will be denoted by H∞(Ω).
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List of symbols

X locally convex vector space, typically abbreviated as LCS, occasionally

also Y will be used to denote LCS, 5

∥·∥p a continuous seminorm, typically the letters p,q and r (with possible

additional subscripts) are used for indexing, 5

PX system of continuous seminorms on X generating the topology, 5

U collection of all 0-neighbourhoods of X, 5

Bp(x, r) ball around x ∈ X with radius r > 0 w.r.t. the seminorm ∥·∥p ∈ PX , 5

C(X, Y ) set of all linear closed operators from X to Y , 6

D(A) linear subspace of a given space and domain of the linear operator A, 6

L(X, Y ) set of all linear continuous operators from X to Y , 6

ρ(A) resolvent set of the linear operator A, {λ ∈ C | (λ− A)−1 ∈ L(X)}, 6
σ(A) spectrum of the linear operator A, C \ ρ(A), 6
M(X) set of all linear non-negative operators de�ned on a subspace D(A) of

X, 6

arg(z) argument of z ∈ C \ (−∞, 0], unique number in (−π, π) such that the

equation z = |z| ei arg(z) holds, 6
Sω closed sector around the positive real axis of half opening angle ω ∈ [0, π),

Sω = {z ∈ C \ (−∞, 0] | |arg(z)| ≤ ω} ∪ {0}, 6
(e−zA)z∈Sω operator semigroup, 6

1X identity operator on the space X, the reference to the space will be

dropped if it is clear from context, 7

LB(X) set of the continuous, linear operators on a LCS X equipped with the

locally convex topology induced by the bornology B, 11
β strong topology; the topology of uniform convergence on bounded sets,

11

X ′
β dual space of the LCS X equipped with the topology of uniform conver-

gence on bounded sets of X, 11

X ′′ dual space of the strong dual X ′
β, 15
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X ′′
β dual space of the strong dual X ′

β equipped with the strong topology, i.e.,

the topology of uniform convergence on the bounded sets of X ′
β, 15

σ(X,X ′) weak topology on the LCS X induced by its dual space X ′, 15

indα∈A Xα inductive limit of the inductive spectrum (Xα)α∈A, 17

B(x, r) ball around x with radius r > 0, 17

acx (U) absolutely convex hull of the set U ⊂ X, 20

projα∈AXα projective limit of the projective spectrum (Xα)α∈A, 21

Sω set of all sectorial operators of angle ω on a given LCS X, 27

E(Sω) example of a special inductive limit, cf. Example 2.0.12 (c) and Exam-

ple 3.0.2 (c), 29

κ topology of the uniform convergence on absolutely convex compact sets

in a LCS X, 30

XεY ε-product of the LCS X and Y , set of continuous linear operators

Lec(Y
′
κ,X) where one uses the topology of uniform convergence on ab-

solutely convex compact sets in Y for the dual space Y ′ and where the

space itself is topologised by using uniform convergence on the equicon-

tinuous subsets of Y ′ 30

U◦ (absolute) polar of the set U ⊆ Y , i.e., all y′ ∈ Y ′ with |⟨y′, y⟩| ≤ 1 for

all y ∈ U ; if U ⊆ Y ′, one de�nes U◦ to be all y ∈ Y with |⟨y′, y⟩| ≤ 1 for

all y′ ∈ U , 30

K(Y,X) set of the compact operators between the Banach spaces Y and X, 31

σ(Y ′, Y ) weak topology on the LCS Y ′ induced by the space Y ; readers used to

Banach spaces would call it weak∗-topology, 31

τs shift operator; maps f(·) ↦→ f(·+ s), 36

µ ∗ ν either standard or Stieltjes convolution of the measures µ and ν, 37, 55

LS(CRe>0) the Laplace-Stieltjes algebra; the algebra of all Laplace transforms of

bounded measures µ on [0,∞), 46

S Stieltjes algebra; the algebra of all Stieltjes transforms of elements µ of

(S∞)′, 58

L0(Ω,Σ, µ; Λ,Ξ) vector space of all essentially measurable functions, i.e., equivalence

classes of functions being µ�a.e. equal to a measurable function f : Ω →
Λ where (Ω,Σ, µ) is a measure space and (Λ,Ξ) is a measurable space,

112

Ress(f) essential range of f ∈ L0(Ω), all z ∈ C such that for all ε > 0 one has

|µ| ({|f − z| < ε}) > 0, 113
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Lp
loc(Ω) Fréchet space of all essentially measurable functions being p-integrable

or essentially bounded, respectively, on measurable subsets K ⊆ Ω of

�nite total variation measure, 113

1K indicator function of the measurable set K ∈ Σ, 113

M(Ω) set of all Radon measures de�ned on the Borel σ-algebra B)(Ω) of the
locally compact space Ω, Mb(Ω) denotes the subset of bounded Radon

measures, 114

Dα Dα1
1 . . . Dαn

n where α ∈ Nn
0 is a multi�index and Dk is the directional

derivative in direction ek, 115

Ω̊ interior of the set Ω ⊂ Rn, {x ∈ Ω | ∃ε > 0 : B(x, ε) ⊆ Ω)}, 115
Ω closure of the set Ω ⊂ Rn, {x ∈ Rn | ∃(xn) in Ω) : xn → x}, 115
∂Ω boundary of the set Ω ⊂ Rn, Ω \ Ω̊, 115
Ck

b (Ω) k times continuously di�erentiable functions such that Dαf , α ∈ Nn
0 ,

|α| ≤ k is bounded on Ω ⊆ Rn, 116

Ck
0 (Ω) k times continuously di�erentiable functions such that Dαf , α ∈ Nn

0 ,

|α| ≤ k vanishes on the boundary ∂Ω of Ω ⊆ Rn, 116

C∞
b (Ω)

⋂︁∞
k=0C

k
b (Ω), 116

C∞
0 (Ω)

⋂︁∞
k=0C

k
0 (Ω), 116

D(Ω) {f ∈ C∞(Ω) | supp(f) ⊊ Ω, supp(f) is compact}, space of test functions
with support contained in Ω ⊆ Rn, 116

S (Rn) {f ∈ C∞(Rn) | ∀α, β ∈ Nn
0 : xαDβf ∈ Cb(R

n)}, space of Schwartz

functions, 116

F Fourier transformation, (Ff)(y) := 1

(2π)
n
2

∫︁
Rn

f(x)e−i(x|y)dx, 117

W k,p(Ω) k-times weakly di�erentiable functions with weak derivatives in Lp(Ω),

117

Hk(Ω) W k,2, Space of Sobolev functions for p = 2, 117

W k,p
0 (Ω) closure of D(Ω) in W k,p(Ω), 117

H(Ω) set of all holomorphic (complex di�erentiable) functions de�ned on a

domain Ω ⊆ C, 117
H∞(Ω) set of all bounded holomorphic functions de�ned on a domain Ω ⊆ C,

117
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Index

0-neighbourhood, 5

C0-semigroup, 7

ε-product, 30

ε-product of operators, 32

absolutely convex, 5

absolutely convex hull, 20

anchor set, 47

angle of sectoriality, 27

Balakrishnan formula, 66

balanced, 5

Bernstein function, 76

bidual, 15

bornology, 10

bounded, 5

Ca�arelli-Silvestre Problem, 89

closed linear operator, 6

complex measure, 112

continuous functional calculus, 28

convex, 5

convolution, 37

countable, strict,regular embedding

spectrum, 17

directed, 5

equicontinuous, 6

fractional power, 65

Hille-Phillips-Schwartz calculus, 40

holomorphic semigroup, 62

inductive limit, 17

inductive spectrum, 17

Lévy triplet, 76

Lévy�Khintchine representatiov n, 76

Laplace�Stieltjes algebra, 46

locally bounded, 6

Locally convex space, 5

mixed topology, 39, 50

modi�ed Bessel functions, 92

non-negative, 6

operator semigroup, 6

part of an operator, 25

polar set, 30

projective limit, 21

projective spectrum, 21

quasi-complete, 6

re�exive, 15

resolvent set, 6

sectorial operator, 27

semi-re�exive, 15

shift operator, 36

spectrum, 6

Stieltjes algebra, 58
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Stieltjes convolution, 55

Stieltjes transform, 49

strong bidual, 15

strong dual, 11

strong topology, 11

sub-probability measure, 77

vague continuity, 77

weak continuity, 77

weak topology, 15

web, 16
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