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Abstract
Industry 4.0 is all about interconnectivity, sensor-enhanced process control, and data-driven systems. Process analytical
technology (PAT) such as online nuclear magnetic resonance (NMR) spectroscopy is gaining in importance, as it
increasingly contributes to automation and digitalization in production. In many cases up to now, however, a classical
evaluation of process data and their transformation into knowledge is not possible or not economical due to the
insufficiently large datasets available. When developing an automated method applicable in process control, sometimes
only the basic data of a limited number of batch tests from typical product and process development campaigns are
available. However, these datasets are not large enough for training machine-supported procedures. In this work, to
overcome this limitation, a new procedure was developed, which allows physically motivated multiplication of the
available reference data in order to obtain a sufficiently large dataset for training machine learning algorithms. The
underlying example chemical synthesis was measured and analyzed with both application-relevant low-field NMR and
high-field NMR spectroscopy as reference method. Artificial neural networks (ANNs) have the potential to infer
valuable process information already from relatively limited input data. However, in order to predict the concentration
at complex conditions (many reactants and wide concentration ranges), larger ANNs and, therefore, a larger training
dataset are required. We demonstrate that a moderately complex problem with four reactants can be addressed using
ANNs in combination with the presented PAT method (low-field NMR) and with the proposed approach to generate
meaningful training data.
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Abbreviations
Ahf Measured high-field NMR areas (reference)
Ahf,test Measured high-field NMR areas

(reference) of test dataset
Ahf,val Measured high-field NMR areas (reference) of

validation dataset
Alf,ANN Predicted areas of ANN model
Alf,ANN,val Predicted areas of ANN model

for validation dataset (Slf,val)
Alf,IHM Predicted areas of IHM
Alf,synth Areas of pure components of synthetic

mixture spectra
k Index for component model
K Total number of pure component models
NNi/ii Final artificial neural network trained with Xi/ii
Shf Experimental high-field NMR spectra
Slf Experimental low-field NMR spectra
Slf,val Experimental low-field NMR spectra

used for validation
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Slf,test Experimental low-field NMR spectra
used for testing

w Component weight
Xi Dataset based on combinations of

measured pure component spectra
Xii Dataset based on a spectral model
Xi/ii,train Training dataset of synthetic data
Xi/ii,val Validation dataset of synthetic data
α Peak maximum
β Gauss–Lorentz weight
β1 Exponential decay rate first moment

estimates, Adam optimizer
β2 Exponential decay rate second-moment esti-

mates, Adam optimizer
γ Peak width
θGS Group shift parameter
θP Peak parameters of the pure component model
θPB Peak broadening parameter
θS Component shift parameter
ν Spectral axis (in ppm)
χ Spectral mixture model
ω Peak position

Introduction

The process industry faces a growing demand for variable
high-performance materials and specialized products with
short setup times and a low resource consumption. This re-
quires an increased use of digital technologies and a change of
mind as this poses a major challenge to the industry and its
suppliers. The measurement of specific process data by means
of complex process analytical technology (PAT) can be quite
complicated and expensive. Since the data pretreatment and
evaluation in some cases has to be performed by people with a
high level of competence, this leads to high costs which is why
some process analytical procedures are often scarcely used.

Quantitative nuclear magnetic resonance (NMR) spectros-
copy is today one of the most important instrumental analyt-
ical methods in the natural sciences and medicine, because of
its ability to determine clear substantial and structural infor-
mation nondestructively. Due to its direct quantitative nature,
it is particularly important for the chemical, biochemical, and
pharmaceutical industries, e.g., for purity analysis of organic
compounds [1]. Apart from this, NMR spectroscopy can also
serve as an online method for reaction and process monitoring
[2–4] of fluids and technical mixtures (e.g., for process devel-
opment) because it provides quantitative reference data that
can be transferred to analytical methods operated in parallel. A
recent application example suggests that NMR spectroscopy
has significant potential to enter the production environments
in process industry [5], making it a useful extension to the
toolbox of PAT methods like optical process spectroscopy

[6]. Further, NMR spectroscopy can be applied in a wide
temperature and pressure range. The high linearity between
absolute signal area and concentration makes it an absolute
analytical comparison method to determine the concentrations
of major and secondary components without altering the sam-
ple. Peak areas in the spectrum can be used directly for quan-
tification, without the need for calibration—assuming com-
plete spin magnetization is achieved. This is an important
prerequisite for robust data evaluation strategies within a con-
trol concept and reduces the need for extensive maintenance
of the evaluation model over the time of operation.

Challenges

The use of low-field NMR spectrometers with permanent
magnets is favorable for process monitoring tasks, due to low-
er space and maintenance requirements compared to high-
f i e ld NMR spec t rome te r s us ing he l ium-coo led
superconducting magnets. Technical samples lack deuterated
solvents, and usually multiple analytes and the solvent are
present. This often results in complex and overlapping spectra
which prevent the evaluation through direct integration of
peaks to quantify chemical species in the mixture. Despite
these overlaps, the NMR signals behave extremely linear
and independent of the surrounding matrix, which is an excel-
lent basis for research into data evaluation methods.

Multivariate methods for quantitative analysis
of spectra

There are several established methods to overcome these dif-
ficulties, like line fitting [7], indirect hard modeling (IHM) [5,
8, 9], model-based methods in time domain [10], and regres-
sion methods like partial least squares regression (PLS-R) [11,
12]. Whereas the model-based approaches require careful pa-
rameterization but less data to set up, data-driven methods
such as PLS-R and artificial neural networks require a large
amount of training data along with reference/meta-data.

Typically for PAT applications, the calibration and valida-
tion data need to be collected from time and cost-intensive lab
experiments and the quality of multivariate models strongly
depends on sampling, sample preparation, and the uncertainty
of the reference analytical method. In order to map the diver-
sity and variance of states in the process, this calibration
should move along a design of experiments. Such modeling
is typically very costly and can be even more expensive than
the cost of the method itself. Furthermore, a transfer of the
data from the process laboratory or R&D into real processes is
often not possible because laboratory data does not include the
disturbing factors occurring in the real process as these cannot
be accounted for well enough in the laboratory. Later, the
model must be constantly updated with real samples if, for
example, the raw materials vary. In many cases, chemometric
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models can only represent what has been implemented during
the calibration process, in addition to the considerable costs
for the creation of suchmodels, which have a strongly limiting
influence on the use of PAT. Often, models fail when addition-
al, untrained conditions occur, e.g., additional substances
within the process and blocked windows, or when device
components such as optical windows, optical fibers, light
sources, or detectors wear out or age, to name an example of
optical spectroscopy.

The ideal solution would be to have a measurement system
that, based on its analytical methods and the appropriate cal-
ibration models, can provide the operator with more informa-
tion than current models can. Such a “smart sensor” would be
able to deliver valuable information on additionally occurring
substances or unknown process conditions.

Artificial neural networks

Machine learning is currently experiencing a huge technical
and social interest, because machine-supported processes can
take over complex tasks by learning from examples. Artificial
neural network (ANN) algorithms are a subgroup of machine
learning algorithms. They are particularly useful for problems
where it is difficult to provide a simple model-based solution
or data must be processed quickly due to either the large
amounts of data or a real-time constraint [13]. The application
of ANNs for quantitative [14–16] and qualitative [17] spec-
troscopy as well as chromatographic data [18] has already
been described in the literature. In these studies, ANNs can
help to improve accuracy and speed up the analysis of spectra
but, using interpretable machine learning techniques, can also
help to visualize important features in spectra [19]. ANNs are
especially useful when linear models such as PLS-R fail due
to a high level of complexity within the spectra.

ANNs are based on a collection of nodes or units that are
typically arranged in layers between an input layer and the
output of the ANN. The information between different layers
of an ANN can be passed and processed in various ways,
involving mathematical linear operations and typically non-
linear activation functions between nodes or layers. The
strength (or weights) of the connections between the individ-
ual nodes between layers is typically adjusted, or learned,
during the training phase by means of a backpropagation al-
gorithm with the aim of minimizing a loss function. That
means that the ANN is optimized to predict a minimal devia-
tion of the ANN’s output compared to the ground truth of the
training examples. Using input data, here NMR spectra, that
are fed to the input layer of the trained model, it will then
predict output results, in our case component areas and there-
fore concentrations. The generalization capability and accura-
cy of the models’ predictions verymuch depend on the quality
and quantity of the training data as well as the training labels.

In this work, we have trained and tested two different
ANN architectures: a simple multilayer perceptron
(MLP) model, where all nodes between subsequent
layers are directly connected, as well as convolutional
neural networks (CNNs). CNNs perform particularity
well on multidimensional data with spatial dependencies
[13], such as image processing tasks and object recog-
nition, but can also be applied to our 1D spectral data
[17]. CNNs typically contain the following components:
convolutional layer, application of a nonlinear activation
function, and a subsampling layer. Each convolution
layer extracts features from the incoming data (such as
an image or spectrum) using a set of adaptive filters,
called kernels. The convolution calculation is performed
as a sliding dot product between the filter kernels and
the input data. At the last stage of a CNN, a classifier
or regression layer is used to extract the requested
information.

Both the MLPs and CNNs need ample amounts of training
data to make accurate predictions, and in some examples, the
complexity of determining the ANN weights was compensat-
ed by increasing the amount of measured reference data.
Bishop [13], Liu et al. [17], and Kästner et al. [20] described
data augmentation procedures for spectral data based on linear
combinations of measured spectra to increase the diversity of
the data available for training ANNs.

The presented work shows a novel calibration concept for
spectroscopic sensors using machine learning, which needs
less calibration data than usual approaches. We hope that this
simplifies the integration of smart sensors into the digital in-
frastructure. This supports not only real-time release and con-
tinuous manufacturing but also classic batch chemistry for
fine chemicals. To overcome the issue of the large amount
of training data needed for ANNs and the development of
multivariate models, in this publication, simulated variants
of the measured data (i.e., synthetic NMR spectra) are
employed to avoid overfitting. This data augmentation proce-
dure for the generation of synthetic but physically based NMR
spectra enables the development of data-driven models such
as neural nets because the initial training dataset can be sized
and distributed along various prediction variables arbitrarily.

As an exemplary system, a lithiation reaction was moni-
tored in a continuous flow mode in lab scale with a low-field
NMR spectrometer (1H, 43 MHz). For validation purposes, a
high-field NMR spectrometer (1H, 500 MHz) served as refer-
ence. To have enough data to train the ANNs towards the
prediction of the reactants’ concentrations, different possibil-
ities are available. Two approaches for the generation of syn-
thetic ANN training data are proposed: (i) training data gen-
erated from combinations of measured pure component spec-
tra and (ii) training data based on a spectral model, which
incorporates nonlinear effects such as peak shifts and peak
broadening. Within the following work, Xi refers to the “pure
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component spectral dataset” and Xii refers to the “spectral
model dataset.” The concentration data based on experimental
low-field NMR spectra and reference values from the high-
field NMR results are used to validate the proposed methods.

Materials and methods

Experimental methods

Chemical reaction

The synthesis of nitro-4′-methyldiphenylamine (MNDPA) by
aromatic substitution of p-toluidine and 1-fluoro-2-
nitrobenzene (o-FNB) is a relevant example for the pharma-
ceutical industry [5, 21]. p-Toluidine was activated by a pro-
ton exchange with the organolithium compound lithium
bis(trimethylsilyl)amide (Li-HMDS). Figure 1 shows a
scheme of the complete reaction network. After addition of
Li-HMDS to the reagents (1 and 3), the proton exchange takes
place between the primary amine (1) and Li-HMDS. In the
second step, the product MNDPA (4) is formed by a substitu-
tion reaction of the produced lithiated toluidine (2) and o-FNB
(3). LiF precipitates as a solid in the reaction solution due to its
low solubility in tetrahydrofuran (THF) [22].

Subsequent reactions (Fig. 1b) are proton exchange reac-
tions analogous to the first reaction step between the amine
group of MNDPA (4) and a lithium compound (2 or Li-
HMDS), where the equilibrium of the respective reaction is
completely on the product side (Li-MNDPA, 5). This means
that for the complete conversion of reagents, at least a twofold
excess of Li-HMDS is required due to the abovementioned
unavoidable secondary reactions.

Chemicals

The chemicals p-toluidine (Sigma-Aldrich, 99.6%), 1-fluoro-
2-nitrobenzene (Sigma-Aldrich, 99%), THF (Chemsolute, >
99.9%), and lithium bis(trimethylsilyl)amide (Sigma-Aldrich,
1 mol L−1 in THF) were used without prior purification.

Experimental setup

To evaluate the robustness of various data analysis ap-
proaches for online spectra, a continuous reaction setup
was implemented (Fig. 2). The reactants p-toluidine
(0.83 mol L−1 in THF) and o-FNB (0.63 mol L−1 in
THF) were dosed by a syringe pump (P1 and P2,
Gemini 88; KD Scientific, Holliston, USA), premixed
in a T piece, and subsequently mixed with 1 mol L−1

Li-HMDS (P3, Nemesys high-pressure syringe pump;
Cetoni, Korbussen, Germany; with modified sealings).
For stoichiometric conversion, the ratio of p-toluidine,
o-FNB, and Li-HMDS was set to 1:1:2 which resulted
in flow rates of 0.193 mL min−1, 0.254 mL min−1, and
0.353 mL min−1, respectively. After screening the edges
o f t he r e ac t i on cond i t i on s (0 mL min− 1 and
0.8 mL min−1 for each reactant), the flow rates were
modulated with 90–150% of the stoichiometric flow
rates. The overall flow rate for the tubular reactor was
fixed to 0.8 mL min−1.

Based on step tracer experiments, the delay time between
the change of a flow rate and the signal change of each spec-
trometer was set to 3.3 min and 8.8 min for low-field and high-
field spectrometers, respectively. The flow cells consisted of a
glass cell with 4 mm inner diameter (low-field NMR) and a
1/16-in. PFA tube (ID = 1 mm, high-field NMR).
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Online NMR spectroscopy and basic data preparation

High-field NMR spectra (Shf) were acquired as reference spec-
tra using a 500-MHz NMR spectrometer (Varian) with a
medium-pressure broad band flow probe (1H/15N–31P).
Online proton spectra during reaction monitoring were ac-
quired with two scans, 45° pulses, 5-s acquisition time, and
15-s relaxation delay. The low-field NMR instrument
(Spinsolve Proton; Magritek, Aachen, Germany) operating
at 43.3 MHz proton frequency is equipped with a 5-mm bore
for standard NMR tubes at a magnet temperature of 28.5 °C.
Online proton spectra were acquired with single scans, a 90°
pulse, 6.5-s acquisition time, and 15-s repetition time.

The acquired proton spectra were processed in MATLAB
(R2019a). Apodization by exponential multiplication with a
line broadening factor of 0.5 Hz was conducted. After Fourier
transformation, spectra were immediately processed by auto-
mated methods, implemented in MATLAB. These are base-
line correction [23], phasing [24], and spectral alignment to a
THF spectrum using the icoshift algorithm [25]. Due to signal
overlap in both high-field and low-field NMR spectra, quan-
tification of reactants was performed using indirect hard
modeling [26] as described in Kern et al. [8].

Experimental reference data

Amajor advantage of NMR spectroscopy as an analytical tool
is that the signal intensity in the spectrum is directly propor-
tional to the number of nuclei responsible for this resonance.
Peak areas can be converted into corresponding SI units such
as the amount of substance concentrations or mass concentra-
tion by a simple linear conversion function. For simplicity,
consequently, component areas were used within all
calculations.

Reactants involved in the investigated aromatic substitu-
tion reaction show several protons with similar chemical shifts
in the aromatic spectral range within the 1H NMR spectrum
(see Figs. 3 and 4a). However, further aliphatic NMR signals
from the solvent and the organolithium compound in low-ppm
region (5.5 to − 1 ppm) were not taken into consideration. The
spectral range which was considered for quantitative evalua-
tion (5.6 to 9 ppm) showed much more complex signals in the
low-field NMR spectrum (1H, 43 MHz) due to the increased
line widths in comparison to high-field NMR spectra. In
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addition, due to the low field strength, higher-order spectra
occur; i.e., the distance of the chemical shifts (δi) within a spin
system falls in the range of the coupling constants, so that the
exact δi can usually no longer be interpreted visually from the
peaks. Consequently, the respective area of each pure compo-
nent in the low-field NMR spectra cannot be obtained directly
from numerical integration of spectral ranges and has to be
determined using multivariate methods or, as newly proposed
in this work, using artificial neural networks. To overcome the
issue of lacking training data, a data augmentation procedure
is proposed and is based on simulated variants of themeasured
pure component spectra (hereafter called synthetic NMR
spectra). The systematic approach used in this work is present-
ed in Fig. 3 and henceforth described in detail.

Further data filtering and refinement

We validate the three different data evaluation models, which
use baseline-corrected, phased, and aligned low-field NMR
spectra with high-field NMR data. We consider only measure-
ments during steady-state phases of the continuous reaction
setup to prevent reference concentrations from being affected
by concentration gradients moving through both NMR spec-
trometers (Fig. 2) while acquiring the spectra. In a first step,
for each timestamp of low-field NMR spectra, a correspond-
ing high-field NMR result was assigned by the nearest-

neighbor interpolation, since both spectrometers did not ac-
quire spectra at the same time. For each analyte concentration
(derived from IHM), a moving linear fit was calculated from
11 consecutive online NMR concentration values. Linear fit
results with both a slope below 0.1 mol h−1 and a standard
deviation below 0.01 mol L−1 among the data points were
classified as steady states. Additionally, outliers which
showed greater deviations than 0.04 mol L−1 between high-
field NMR and low-field NMR (from IHM) were removed.

The remaining dataset consisted of about 1700 spectra and
reference values with a comparably high bias within the con-
centration ranges. The Kennard–Stone algorithm [27] was
used to select 300 samples with a uniform coverage from the
remaining dataset. The final experimental reference dataset
consisted of the measured high-field NMR results (Ahf) and
low-field NMR spectra (Slf).

Simulation of synthetic training spectra

The experimental mixture spectra from the continuous
MNDPA synthesis (Fig. 4d) were mainly obtained for concen-
tration ranges around the optimal stoichiometric conditions by
systematically varying the pump rates in this range. Especially
in industrial applications, it is of great importance to minimize
the concentration of the remaining reagents in the product
stream. Consequently, for calibration purposes, it is
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challenging to validate automated data analysis methods if
prediction parameters are nonuniformly distributed within
the training data. Therefore, we propose two possible methods
for the generation of synthetic training data, which are uni-
formly distributed for all prediction parameters (Fig. 4b, c).

Each NMR spectrum of chemical mixtures can be consid-
ered as a linear combination of pure component spectra, due to
the strictly linear correlation of signal area and concentration
within the NMR method. However, online NMR experiments
in continuous flow are usually subject to a large number of
distortions in the NMR spectrum caused by inhomogeneities
in the magnetic field such as temperature fluctuations of the
magnet or solid particles in the sample. These nonlinear ef-
fects result in peak shape distortions (peak widening or asym-
metric peaks) or peak shifts, which must be considered during
the generation of synthetic mixture spectra. For all calcula-
tions within this section, the standard uniform pseudorandom
number generator in MATLAB was used.

Training data based on combinations of measured pure
component spectra

For the generation of synthetic mixture spectra based on
a linear combination of measured pure component spec-
tra, the parameters line broadening factor, component
shift, and component area were uniformly distributed
by random numbers in the specified range (Table 1).
For every generated mixture spectrum, these parameters
were generated for each of the four pure component
spectra: o-FNB, p-toluidine, Li-p-toluidine, and Li-
MNDPA. Subsequently, all altered pure component
spectra are summarized to one mixture spectrum with
known component areas. The component area was cal-
culated by numerical integration of each altered pure
component spectrum.

By introducing alterations in each pure component spec-
trum, the distortions through abovementioned nonlinear ef-
fects are intended to mimic real process variations. In order
to adjust the component area, each pure component spectrum
was scaled by multiplication with a scalar.

The direct use of measured pure component spectra
comprises two major limitations compared to a model-
based approach. First, noise obtained with the measure-
ment is scaled equally while altering the component
area. Second, shifts of single peaks within a pure

component spectrum due to mixing effects cannot be
considered. Both limitations can be overcome using a
spectral model, e.g., as published by Alsmeyer and
Marquardt [28] and Kriesten et al. [9]. These are based
on parametric models of the pure component spectra
that are made flexible enough to describe typical varia-
tions in mixture spectra. Hereby, each pure component
is modeled by a sum of peak functions (pseudo-Voigt
functions).

Training data based on a spectral model

The model equations for the spectral model were adopted
from Kriesten et al. [9] and extended with NMR-related pa-
rameters in order to allow more variance within the synthetic
spectra. Pure component models of each reactant were gener-
ated in PEAXACT 4 by fitting pseudo-Voigt functions (V) to
the respective measured pure component spectrum (see
Electronic Supplementary Material (ESM) Fig. S1).
Resulting peak parameters half width (γ), maximum (α), po-
sition (ω), and Gauss–Lorentz weight (β) were imported to
MATLAB.

In order to group similar behaving signals in the pure com-
ponent spectrum, the individual peak functions were divided
into groups. Peak functions sharing the same group number
are affected by one same group shift parameter (θGS,k). The
group number was automatically assigned to the peak func-
tions. Peak functions whose position (ω) deviates by more
than Δν = 0.12 ppm from the position of another peak were
assigned to a new group. The value of Δν was determined
from preliminary experiments. The peak broadening parame-
ter (θPB,k) was introduced to account for any broadening ef-
fects which apply to all peaks in the pure component. θPB is
multiplied by all widths (γ) in the pure component model. The
spectral mixture model (χ) can be formulated analogous to
Kriesten et al. [9] by including the group shift parameter
(θGS,k) and the peak broadening parameter (θPB,k).

χ ν;w; θð Þ ¼ ∑K
k¼1wkSk ν; θP;k ; θS;k ; θGS;k ; θPB;k

� �
; ð1Þ

where the vector θ contains all model parameters, i.e., the
peak parameters of the pure component models
(θP = (θTP,1,…, θTP,K)

T) and the component shift parameters
(θS = (θTS,1,…, θTS,k)

T). The spectral axis in ppm is represent-
ed by ν, the component weights byw, and each kth component
model by Sk.

In order to generate the training data based on the spectral
model (χ), the following model parameters have been varied
within their ranges (Table 2) for calculation by the model:
peak position (ω), component shift (θS,k), group shift (θGS,k),
peak broadening parameters (θPB), and weights (w).
Additionally, signal noise from a measured and baseline
corrected spectrumwas added to the mixture model. Each data

Table 1 Parameter ranges for the generation of mixture spectra based
on pure component spectra (Xi) based on experience (prior knowledge)

Component area (Alf,synth / a.u.) 0–180

Line broadening factor / Hz 0.2, 0.5, 0.8, 1.0, 1.5

Component shift / ppm 0–± 0.015
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point from this spectrum (only baseline regions) was random-
ly selected and scaled with a noise factor.

Artificial neural networks

The first subsection describes the general training and valida-
tion procedure of the ANNs. Furthermore, it is specified how
the training, validation, and test data were used. The ANN
architecture and parameters are summarized in the second
subsection. The NN predictions and a corresponding perfor-
mance analysis are presented in the “Results and discussion”
section.

Training approach

The training of the ANNs is conducted with the generated
synthetic datasets: Xi (pure component spectral dataset) and
Xii (spectral model dataset). Xi/ii is randomly split into training
datasets (Xi/ii,train) and validation datasets (Xi/ii,val) by a ratio of
95:5. During training, the model performance is evaluated on
synthetic training data. Three hundred thousand synthesized
spectra Xi/ii are used during training, respectively. The training
labels are the respective areas of each underlying pure com-
ponent spectra (Alf,synth). The ANN predictions of the actual
component areas from low-field NMRmeasurement data (Slf)
are labeled Alf,ANN.

The measured high-field NMR results (Ahf) are used as
ground-truth labels as they exhibit much higher accuracy than
what can be obtained from low-field NMR spectra. Ahf is used
as reference to calculate the ANN predictions’ relative error
with the measured low-field NMR spectra (Slf) as model input.
Ahf is also used as reference for a conventional IHM analysis
[5, 8] (our reference method) from the same Slf input. The
deviations of the prediction values (Alf,ANN) and Alf,IHM from
the precise high-field NMR results (Ahf) are quantified as
mean squared error MSE (Ahf, Alf,ANN) and MSE (Ahf,
Alf,IHM) throughout this work.

We follow the training and validation procedure from ref-
erence [29]. The training is conducted on synthetic training
data, but along with the implicit validation on synthetic train-
ing data, additional validation is already conducted on

experimental measurement data during the training after each
training epoch (here, mean squared error deviation from Ahf).
With this evaluation step, the performance on the actual mea-
surement data can be analyzed already during the training with
the synthetic data. This significantly eases the selection of the
hyperparameters of the model architecture and the parameters
for the training. It also allows one to identify overfitting of the
model to the training data (see Fig. 5). For this additional
evaluation step, the measured low-field NMR spectral dataset
(Slf) is separated into a validation dataset (Slf,val) and a test
dataset (Slf,test). Slf,val is used to predict Alf,ANN,val during the
training after each training epoch in order to quantify the
model performance on actual measured spectra with the
MSE (Ahf,val, Alf,ANN,val) (cf. Fig. 5). The test dataset Slf,test is
finally used to quantify the prediction performance of the op-
timized ANN models by computing the mean squared error
MSE (Ahf,test, Alf,ANN,test).

Before the training, the ANN training data is normalized to
the range [0,1]. The measured low-field spectra were respec-
tively normalized to Slf′ = Slf/max (Xi/ii) before prediction. The
label range was also normalized to the range [0,1] by comput-
ing Alf,synth′ = Alf,synth/max (Alf,synth). The ANN predictions
(Alf,ANN) are therefore back transformed by multiplication
with the same factor max (Alf,synth) before the MSE analysis.
The Adam optimizer (β1 = 0.9, β2 = 0.999) was used for all
training sessions [30, 31]. The training and prediction were
conducted on an Intel i7-8565U CPU (1.8 GHz), using Keras
(v. 2.2.4) and TensorFlow (v. 1.15). The models are small
enough to do this efficiently on a CPU.

ANN architecture, hyperparameter search, and training

The ANN model architecture and training parameters were
selected using the above-described training procedure. Two
different neural network types were considered: MLPs (a se-
ries of fully connected layers) and CNNs.

Initial coarse hyperparameter exploration showed that
convolutional neural networks generally perform better than
MLPs for this task. The MLP prediction accuracy only comes
close to that of CNNs if multiple fully connected hidden layers
(> 3) with a large number of nodes (descending with increasing
layer number) are used. These models contain trainable parame-
ters in the order of > 40million, far more than CNNmodels. This
is also not favorable since real-time prediction with limited hard-
ware requirements is intended. The focus of the parameter search
was therefore on CNN-based architectures. The following archi-
tectures and hyperparameters were tested with respect to mini-
mizing MSE (Alf,ANN,val, Ahf,val): type of convolutional layers
(Conv1D vs. LocallyConnected1D), number of convolutional
layers, number of convolutional layers before pooling layer,
pooling layer type (AveragePooling1D, MaxPooling1D), size
of pooling or strides, number of filters, kernel size, number of
convolution/pooling blocks, type of activation function after

Table 2 Parameter ranges for the generation of mixture spectra based
on the applied spectral model (dataset Xii) based on experience (prior
knowledge)

Peak position, ω / ppm 0–± 0.005

Component shift, θS,k / ppm 0–± 0.015

Group shift, θGS,k / ppm 0–± 0.01

Peak broadening parameter, θPB,k / % 0–± 15

Component area, Alf,synth / a.u. 0–180

Noise factor / % 0–± 15
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convolutional layers (rectified linear unit (ReLU), exponential
linear unit (ELU), hyperbolic tangent function tan h), number
of dense layers after the convolutional blocks, number of nodes
in dense layers, activation function after dense layers, activation
function of output layer (linear, ReLU, ELU), learning rate, batch
size, and amplitude of additive white Gaussian noise (AWGN).

The parameter testing was conducted with the ANN
trained using the spectral model dataset (Xii) since its
predictions were consistently more precise than training
with the pure component spectral dataset (Xi), and the
relative performance did not deviate much between the
two datasets at initial coarse parameter cross-testing.
The final spectral model dataset ANN is labeled NNii

and the final “pure component spectral analysis” is la-
beled NNi. The model NNi is eventually trained with
the parameters obtained from the parameter search using
Xii.

From the hyperparameter analysis, it can be concluded
that a very compact and shallow architecture can be
used: a single convolutional layer with a kernel size of
9, strides of 9, with only 4 filters, and a single flatten
layer connected to the four-node output layer with ReLU
activation is sufficient. A single LocallyConnected1D
convolutional layer with ELU activation showed im-
proved performance compared to a Conv1D layer.
Increasing the ANN depth, kernel size, and filter num-
bers or adding additional fully connected layers after the

convolutional blocks did not improve the model’s predic-
tion accuracy. The final model consists of only 10,532
trainable parameters and can, therefore, also be integrat-
ed into embedded systems with typically limited memory
and computation power [32]. Using mean squared error
loss function, ADAM optimizer, and additive white
Gaussian noise with zero mean and a standard deviation
of 0.04 on Xi/ii showed the best results. To train the final
models, the learning rate was reduced in steps from 10−4

to 3 · 10−5 to 10−5 at epochs 170, 240, and 310, respec-
tively. A batch size of 1024 was used during training.

The prediction performance of the NNimodel (trained with
Xi) and the NNii model (trained with Xii) with respect to the
measured low-field validation data MSE (Ahf,val, Alf,ANN,val) as
well as loss and validation loss on the synthesized training Xi/ii
data for all reactants and the individual reactants during the
training are shown in Fig. 5.

It has to be noted that the ANNs have been trained to
predict over the entire combination of component area ranging
from 0 to 180 for each of the four reactants. However, we were
only able to test the performance on a relatively limited con-
centration range and a combination of reactant concentrations.
The MSE on measured validation data exhibits a minimum
after < 100 epochs (see Fig. 5a, b), increases with further
training, and converges after about 200 epochs while loss
and validation loss on synthetic training data exhibit a contin-
uous exponential decrease.

Fig. 5 Training progress for all
reactants expressed as the MSE
(Ahf,val, Alf,ANN,val) (a, b), and
training/validation loss (c, d). The
“pure component dataset” NNi

model results are shown in a and
c, and the “spectral model
dataset” NNii model results are
shown in b and d
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Although a better performance on the validation data and
also on the test data that is available to us can be achieved after
50 epochs, we continued the training of the final model to 400
epochs since we intended to train a model that can be applied
reliably to the entire concentration range of all reactants.
Stopping the training at a minimum of the MSE (Ahf,val,
Alf,ANN,val) would most likely result in a considerably reduced
precision for a wide range of reactant concentration combina-
tions, which are not well represented by the measured valida-
tion dataset. Due to the limited validation and test dataset, we
cannot test the model’s convergence for the entire reactant
concentration range and decided to continue training until
the convergence of the MSE (Ahf,val, Alf,ANN,val).

We conduct the evaluation on the measured test
dataset with a model that has been trained for 400
epochs and converged with respect to MSE (Ahf,val,
Alf,ANN,val). The ANN prediction performance on the test
dataset (Slf,test) is quantified and compared to the IHM
analysis in the following section.

Results and discussion

The prediction performance of the two neural networks that
were trained with the pure component spectral dataset (NNi)
and with the spectral model dataset (NNii) is compared to the
high-field NMR results (Ahf). Both networks were trained with
the same architecture using the parameters summarized above.
The parity plots of the NNi predictions and the NNii predic-
tions as well as the parity plot of the IHM evaluation results
from the test dataset (Slf,test) are shown in Fig. 6.

The entire reactant concentration results (Alf,test) computed
from Slf,test by NNi, NNii, and IHM as well as the high-field
NMR results are shown in Fig. 7.

A comparison of the mean squared errors of the single
reactants is summarized in Table 3. The NNii results (trained
with spectral model dataset) overall exhibit the smallest error,
slightly lower than the IHM results. NNii results also exhibit a
high MSE similarity to the IHM results for the single reac-
tants. The NNi results (trained with pure component spectral

Fig. 6 Parity plots of component areas (ANN,test) relative to the high-field
NMR results (Ahf,test) computed from low-field NMR input (Slf,test) (top)
along with their residuals (ANN,test − Ahf,test) (bottom). a Predicted by NNi

(trained with “pure component spectral dataset”). b Predicted by NNii

(trained with “spectral model dataset”). c IHM result
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dataset) exhibit the highest overall deviation from Ahf,test but
improved MSE for two of the reactants (Li-toluidine and to-
luidine). Training with a mixed dataset (pure component spec-
tral dataset and spectral model dataset with a 50:50 split) did
not lead to an overall improved MSE (Ahf,test, Alf,test).

The prediction time of the ANNs is about 33 μs/spectrum
for 1000-spectrum batch and about 0.9 ms for a single-
spectrum batch (on Intel i7-8565U CPU (1.8 GHz), Keras
(v. 2.2.4), TensorFlow (v. 1.15)). The computation time for
IHM predictions is in the order of several seconds and de-
pends on a nonlinear optimization with a termination criterion.

Conclusion

In order to validate a machine-supported method to build a
calibration model, reliable and meaningful low-field NMR
spectroscopy data of an exemplary reaction synthesis (300

spectra) was processed and compared with that of high-field
NMR spectroscopy as reference method. Normally, small ex-
perimental datasets are not diverse enough to apply machine-
supported methods. The experimental data was therefore arti-
ficially extended, applying a new method which introduced
additional variance by a systematic variation of peak shape
and position in the spectral model based on physical princi-
ples. This allowed to increase the size of the small initial
dataset to the amount of 300,000.

In order to better understand how this procedure works,
two variants to produce the synthetic spectra were employed.
In dataset (i), the pure substance data was shifted only on the
spectral frequency axis, and in dataset (ii), a more complex
method was applied, where size, shape, and spectral position
of the pure substance data were separately varied randomly. In
both cases, the amplified synthetic spectral datasets were suc-
cessfully used to train ANNs.

In the past, these types of measurements could only be
evaluated by physical methods, such as the direct integration
of spectral bands (e.g., according to the principle of Lambert
Beer’s law) or based on physical models (e.g., as in the case of
IHM). This makes the procedure time intensive and expen-
sive. However, the ANN method provides values comparable
to those of IHM. The ANNmethod is advantageous because it
requires very little computing power for predictions and is
orders of magnitudes faster than IHM. This is advantageous
if the prediction is to be implemented in embedded systems
such as “smart sensors.”Another advantage of the ANNmeth-
od is that it does not rely on discrete decisions of a nonlinear
optimization scheme, which is used during the spectral model
fitting within the IHM workflow. These discrete decisions

a

c

b

d

Fig. 7 Component areas (A)
predicted from low-field NMR
data along with experimental and
high-field NMR spectra as refer-
ence data for a o-FNB, b Li-
MNDPA, c Li-toluidine, and d
toluidine

Table 3 Comparison of
mean squared error MSE
(Ahf,test, Alf,test) of
computed reactant
concentrations (as signal
areas) from low-field
NMR test data (Slf,test)
using neural network
predictions (ANNi and
ANNii) and IHM analy-
sis in comparison to
high-field NMR results

Reactant NNi NNii IHM

o-FNB 6.37 2.28 2.17

Li-MNDPA 29.16 16.04 17.99

Li-toluidine 3.35 8.80 8.45

Toluidine 3.44 4.55 4.79

All reactants 10.58 7.92 8.35

The lowest MSE for each reactant is styled
in italics
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tend to yield biased or “jumping” predictions, e.g., when
fitting small peaks and overlapping larger peaks and such
effects are indirectly caused by penalty functions within the
optimization algorithm, e.g., when a peak is surpassing a giv-
en threshold. Synthetic spectra can therefore also be used for
the evaluation of other data-driven methods of data analysis,
such as PLS-R or support vector machines.

A certain limitation of the ANN methodology is that the
resulting model may only reproduce those changes that are
within the training label space. Consequently, the applica-
tion to ranges outside the training dataset will be limited. If
the variance within the prediction spectra is not or not
completely covered by the spectral model or the synthetic
spectra, the ANN methodology will therefore not be ro-
bust. This applies specially to baseline distortions, the oc-
currence of unexpected components, or disturbances in the
spectrum or similar. In our case, the variance of the predic-
tion spectra was based on previous knowledge and experi-
ence. As it is the case for many specific machine learning
applications, specific domain knowledge is a key to
achieve high-performance predictions also for our applica-
tion. Further research is needed on how this newly devel-
oped method can be systematically incorporated into the
design of the model. However, some application scenarios
are already feasible. Firstly, in the case of an addition of an
analyte, the training dataset can be regenerated within a
short time (seconds to minutes) in order to train an extend-
ed neural network for the prediction of the concentrations
in the new reaction mixture. This would be possible within
minutes on a standard PC. The extended (fast) ANN
models can then be reloaded into the embedded systems
as model updates. Secondly, the procedure described above
for multiplying the datasets could also have an impact on
the use of historical data and make it usable in retrospect.
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