
TUHHTUHHHamburg University of TechnologyHamburg University of Technology

Brandenburg University of TechnologyBrandenburg University of Technology

Technical Report
urn:nbn:de:gbv:830–tubdok–12285

GlueAPI
Joining REFLEX and CometOS

Gerry Siegemund
Hamburg University of Technology

Stefan Lohs
Brandenburg University of Technology

Hamburg, Cottbus, Germany

2013 tu
bd

ok
–1

22
85

Table of Contents

1 Introduction 2

2 Resources 3

3 Interface Description 4
3.1 Module . 4
3.2 Message . 5
3.3 Gate . 6
3.4 PlatformGate . 8
3.5 Activity . 9
3.6 TimeTriggeredActivity . 9

4 Example 11

References 15

i

TABLE OF CONTENTS

ii

Abstract

English Wireless sensor networks (WSN) are built for various tasks in arbitrary environ-

ments. Operating systems for sensor nodes appear in multiple forms, from a variety of vendors,

universities, or private persons. This work presents the GlueAPI, a merge layer to combine

the usability of two such operating systems: REFLEX of the Brandenburg University of Tech-

nology and CometOS of the Hamburg University of Technology. Both operating systems are

suitable for simulations using the OMNeT++ framework and several hardware platforms.

Deutsch Drahtlose Sensornetzwerke (WSN) wurden für viele verschiedene Aufgaben

in unterschiedlichsten Umgebungen entworfen. Betriebssysteme für Sensorknoten gibt es

in diversen Formen, von unterschiedlichen Anbietern, Universitäten, oder Privatpersonen.

Dieser Report präsentiert die GlueAPI, eine Zwischenschicht um zwei solche Betriebssysteme,

REFLEX von der BTU Cottbus und CometOS von der TU Hamburg, zu verschmelzen. Beide

Betriebssysteme unterstützen Simulationen mit dem OMNeT++ - Framework und einer Reihe

von Hardwareplattformen.

1

Chapter1Chapter1

Introduction

We introduce the GlueAPI, an interface library that allows programming for the REFLEX [1]

and the CometOS [2] operating systems for wireless sensor nodes (Figure 1.1). Both operating

systems allow programming for different types of sensor nodes (i.e., hardware) and evaluating

these algorithms in the OMNeT++ simulation framework. The programming language for

the GlueAPI, the operating systems, and the simulation system is C++. Either CometOS or

REFLEX and their dependencies are necessary for the GlueAPI to work. Knowledge of either

system is not required.

The GlueAPI enables the user to send data between certain components of the system

and through the network. It also provides message receiving and task scheduling. Memory

allocation on the other hand is not modifiable and handled transparently by the underlying

systems.

Glue API (CometOS and Re�ex merge layer)
Re�ex (BTU Cottbus)CometOS (TU Hamburg)

OMNeT++ (Simulation) Di�erent Hardware

Application (Yours to implement using the GlueAPI)

�� Figure 1.1: GlueAPI in architecture context

2

Chapter2Chapter2

Resources

GlueAPI The current version of the GlueAPI is part of the ToleranceZone repository. The

URL of the repository trunk is idun.informatik.tu-cottbus.de/toleranceZone/

svn/implementation/glueAPI/trunk. The files include the header files for both

operating systems.

OMNeT++ and MiXiM For evaluating the system the OMNeT++ simulation environment

is used. The GlueAPI was tested with the OMNeT++ 4.3 version (www.omnetpp.org).

To simulate the behavior of a sensor network with wireless communication use the MiXiM

framework in its current version 2.2.1 (mixim.sourceforge.net).

OMNeT++ is a simulation environment. Among other things, it is used to simulate networks,

nodes, and the communication in and between parts of the nodes. Nodes are the main

components of a network. A node consists of layers, or modules. The top module is usually

referred to as application. All layers of a node are connected through gates. OMNeT++ uses

ned-files to wire all components. Layers can have multiple gates.

REFLEX The REFLEX operating system is being developed by the distributed system/

operating system group of the Brandenburg University of Technology (BTU). The current

release and more information can be found at idun.informatik.tu-cottbus.de/

reflex.

CometOS The CometOS operating system is being developed by the Institute of Telematics

at the Hamburg University of Technology (TUHH). The current release and more information

can be found at www.ti5.tuhh.de/research/projects/cometos.

3

idun.informatik.tu-cottbus.de/toleranceZone/svn/implementation/glueAPI/trunk
idun.informatik.tu-cottbus.de/toleranceZone/svn/implementation/glueAPI/trunk
www.omnetpp.org
mixim.sourceforge.net
idun.informatik.tu-cottbus.de/reflex
idun.informatik.tu-cottbus.de/reflex
www.ti5.tuhh.de/research/projects/cometos

Chapter3Chapter3

Interface Description

The GlueAPI consist of several header files which abstract the communication (Gate, ↙

PlatformGate, Message) and the scheduling (Activity, TimeTriggeredActivity)

of the underlying operating system. The API uses the namespace glueAPI. In the fol-

lowing the interfaces of the GlueAPI classes will be described.

3.1 Module

Each C++-Class describes a component of the system. A component can contain different

activities and communicates with other components by using message passing gates. To

describe such a base component, e.g., the application layer, the Module interface needs to be

implemented.

Methods

The initialize() method (Listing 3.1 line 3) initializes the component. After finishing

the construction of all modules the initialize() method of all modules in the system is

executed. The method is abstract and needs to be implemented.

1 class Module : public cSimpleModule {

2 virtual void initialize() = 0;

3 };

�� Listing 3.1: Module

4

3.2 MESSAGE

Reflex

The interfaces provides a #define to define the module name. In case of REFLEX this

pre-compiler directive does nothing.

CometOS

The interface provides the name to access the module by name at the .ned configuration files.

3.2 Message

To communicate between different components the Message datatype is used. This datatype

represents a byte array of an static length MESSAGE_SIZE. The buffer field can not be

written directly (because it is private). The writePos variable represents the size of the

written buffer, it can be read with the getLength() function.

1 #define MESSAGE_SIZE 100

2

3 class Message {

4 private:

5 uint8_t writePos;

6 uint8_t buffer[MESSAGE_SIZE];

7

8 public:

9 buffer[PACKET_ID];

10 buffer[APP_POS];

11 buffer[STATE_POS];

12 buffer[NB_POS];

13 buffer[NODE_ID_POS];

14

15 Message();

16

17 void setNodeID(nodeIdType ownID);

18 void setPacketID(uint16_t val);

19 void setAppPos(uint8_t pos);

20 void setStatePos(uint8_t pos);

21 void setNBPos(uint8_t pos);

22

5

3 INTERFACE DESCRIPTION

23 NodeIdType getNodeID();

24 uint16_t getPacketID

25 uint8_t getAppPos();

26 uint8_t getStatePos();

27 uint8_t getNBPos();

28

29 uint8_t getLength();

30

31 void write(const Type &value);

32 uint8_t read(Type &value, uint8_t readPos);

33 }

�� Listing 3.2: Message

Using template functions, writing and reading of any type is possible, using the analogous

functions. The read function returns readPos + sizeof(Type), therefore consec-

utive reading, e.g., in a while loop is possible. The first six byte of any message are reserved

for the header. It states where in the message which part of information is encapsulated (see

Figure 3.1 for clarification). Not all possible message fields have to be used, e.g., it can consist

merely of application data.

PACKET_ID APP_POS STATE_
POS

NB_ POSNODE_ ID

 1 2 3 4 5 6 7 10 20 30 ~ 70 80 90 100

.

.

.

Message with �xed maximum message size of 100 byte

#F46A 7 65 74 #A1

�� Figure 3.1: An example message, using all possible fields

Three different types of message data are supported. Application (APP) data, state data,

and neighborhood (NB) data. With the obvious setter and getter methods a programmer can

indicate where certain information starts and reproduce where it ends, respectively. The ending

of this data is either the beginning of a subsequent field or the end of the message.

(Side note: The above is done to make piggy backing of, e.g., neighborhood data, eas-

ier. A programmer who wants to send application data only will not notice this extended

functionality.)

3.3 Gate

The Gate class represents a message passing channel, i.e., the in/output of a component.

Each component can contain an arbitrary number of gates, if necessary. The gate is a template

6

3.3 GATE

class, consisting of ClassName and a pointer to the handle (callback) function for messages

receiving (Listing 3.3).

1 template<typename T, void(T::*MemFn)(Message*)>

2 class Gate {

3 Gate(T& object, const char *GateName)

4

5 void send(Message msg)

6 };

�� Listing 3.3: Gate

A Gate is declared by:

1 Gate<ClassName, &ClassName::handleReceiveFunct> gateName;

The ClassName is the name of the class of the owner object. This object must contain

a member method, which handles the reception of a message from another component. An

example for such a method is:

1 void handleReceiveFunct(Message* msg);

Methods

The Gate class needs to be constructed by the owner class (Listing 3.3 line 4). The constructor

needs two parameters, the object which owns the gate and the name of the gate itself. The

name is necessary to connect two gates and must be unique at the specific module.

With the send method (Listing 3.3 line 6) a message is passed from an out gate to the input

of a target gate.

Beware!: Because of the typical lack of a memory management at an embedded system, the

passed message is only a local variable. Because of the event driven behavior it is necessary to

copy the message at the destination of the output.

7

3 INTERFACE DESCRIPTION

Reflex

In case of REFLEX the system is not configured by .ned files. The connection of modules is

done by a NodeConfiguration. To connect the gate output with the gate input of another

gate two additional methods exists.

1 void connect_out_outGate(reflex::Sink1<Message>* ↙

outGateDestination);

2 reflex::Sink1<Message>* get_in_inGate();

connect_out_outGate connects this gate output with the input of another gate. In case

of REFLEX a gate abstracts from the sink concept. the get_in_inGate() methods returns

a pointer to the input of the gate.

CometOS

CometOS behaves like a regular OMNeT++ simulation. The gates and the layers inside of a

node are wired by .ned files. Additional configuration is done by the omnetpp.ini. There

is nothing specific to be aware of when defining gates with CometOS because it is build

right on top of OMNeT++.

3.4 PlatformGate

While the Gate is designed to pass messages/data between components of the application

layers, the PlatformGate is designed to pass messages to the operating system. The usage

of the PlatformGate is the sames as the Gate 3.3.

Reflex

The implementation of the PlatformGate converts a glueAPI::Message into a

reflex::Buffer and vice versa. The buffer is passed to a reflex::Sink1<Buffer*>

of the REFLEX part of the System.

CometOS

The behavior is the same as the normal Gate implementation.

8

3.5 ACTIVITY

3.5 Activity

This class provides scheduling as an activity function, e.g., if an event was triggered this

activity could handle such an event. The definition of an Activity is shown in listing 3.4

line 4.

The ClassName is the class type of the owner object, the handleMethod is called if

the system scheduler triggers the activity. The handleMethod member function must be of

the form as shown at line 3.

The constructor 3.4 line 10 of the Activity class needs the owner object of the activity.

The notify() method schedules the registered function for execution.

1 class app : public Module {

2 void handleMethod();

3 Activity<ClassName, &ClassName::handleMethod> activity;

4 }

5

6 template <typename T, void (T::* MemFn)()>

7 class Activity {

8 Activity(T& object);

9 void notify();

10 }

�� Listing 3.4: GlueAPI Activity class and usage

3.6 TimeTriggeredActivity

This class extends the Activity class by timer triggered scheduling. The definition and

construction of the TimeTriggeredActivity is analog to the father class, Activity.

In addition there are three new methods: 3.5.

1 template <typename T, void (T::* MemFn)()>

2 class TimeTriggeredActivity {

3 void setTime(uint16 time, timerType type);

4 void start();

5 void stop(); }

�� Listing 3.5: GlueAPI TimeTriggerdActivity class

9

3 INTERFACE DESCRIPTION

The set methods initialize the time to the next scheduling of the activity. The repetitions are

defined by the timerType. Possible values are PERIODIC or ONESHOT. The start()-

method (re)starts and the stop()-method stops the timer. Note: A timer cannot be resumed,

only restarted.

10

Chapter4Chapter4

Example

In the following a small Ping-Pong application, using the GlueAPI, is shown. It can be found

in the GlueAPI folder mentioned in Section 2. The goal of this application is to send a Ping

message to each all neighbors which reply with a Ping message of their own (forwarded to all

their neighbors).

To demonstrate the usage of the GlueAPI the Ping message is send timer triggered. Listing

4.1 shows the header file of the application. It declares one TimeTriggerdActivity,

two start and stop Activitys, and a Gate for communication. The Gate is connected to

the receivePacket method for reception of packets.

1 #include "TimeTriggeredActivity.h"

2 #include "Activity.h"

3 #include "Message.h"

4 #include "Gate.h"

5 #include "Module.h"

6

7 class PingPong : public glueAPI::Module {

8 using namespace glueAPI;

9 public:

10 PingPong();

11 void initialize();

12

13 void handleTimer();

14 void receivePacket(glueAPI::Message* msg);

11

4 EXAMPLE

15

16 void start();

17 void stop();

18

19 private:

20 TimeTriggeredActivity<PingPong, &PingPong::handleTimer>

21 timerActivity;

22

23 Activity<PingPong, &PingPong::start> startActivity;

24 Activity<PingPong, &PingPong::stop> stopActivity;

25

26 Gate<PingPong, &PingPong::receivePacket> gate;

27 }

�� Listing 4.1: Header file of Ping Pong Application

The implementation of the constructor (listing 4.2) needs to initialize all the activities and

gates. The activities are connected to the this object, to locate the appropriate function,

as soon as an activity is triggered. The gate is connected to the this object and named

“lowerInOut”.

1 PingPong::PingPong():

2 timerActivity(*this)

3 , startActivity(*this)

4 , stopActivity(*this)

5 , gate(*this, "lowerInOut")

6 {

7 rounds = 0;

8 inactive = true;

9 }

�� Listing 4.2: Constructor of Ping Pong Application

After finishing all constructors the initialize (listing 4.3) method is run. If the current

nodes id is zero, then the startActivity is triggered and the connected function start()

is registered for scheduling. The start method sets the timer activity to a periodic timer with

a duty cycle of one second (1000ms). The stop method stops the timer, if the stop activity is

12

triggered.

1 void PingPong::initialize() {

2 // only node Id = 0 starts on its own

3 // all other nodes have to receive a packet

4 if (NodeID == 0)

5 {

6 startActivity.notify();

7 }

8 }

9

10 void PingPong::start() {

11 // set time to 1s

12 timerActivity.setTime(1000, timerActivity.PERIODIC);

13 inactive = false;

14 }

15

16 void PingPong::stop() {

17 // stop timer

18 timerActivity.setTime(0, timerActivity.PERIODIC);

19 inactive = true;

20 }

�� Listing 4.3: initialize of application module

After one duty cycle the handleTimer method is scheduled (listing 4.4). The method

constructs a Message and writes the string “Ping” as application data then it is sent through

the out gate.

1 void PingPong::handleTimer() {

2 rounds++;

3

4 glueAPI::nodeIdType nodeId = NodeID;

5

6 glueAPI::Message msg;

7

8 msg.setNodeID(platform->getNodeId());

13

4 EXAMPLE

9

10 msg.setAppPos(msg->getLength());

11

12 msg.write(’P’);

13 msg.write(’i’);

14 msg.write(’n’);

15 msg.write(’g’);

16

17 gate.send(msg); // send message

18

19 if (rounds > 10)

20 {

21 stopActivity.notify();

22 }

23 }

�� Listing 4.4: Timer handling of ping pong application

If the Gate receives a message it is passed to the defined receive method. Here the handle

method starts the timer for ten rounds (listing 4.5). After each node, which receives at least

one ping messages, sends ten ping messages the application stops.

1 void PingPong::receivePacket(glueAPI::Message* msg) {

2 if ((inactive) && (rounds < 10))

3 {

4 startActivity.notify();

5 }

6 }

�� Listing 4.5: Handle reception method

14

References

[1] K. Walther and J. Nolte. Xtc: A practical topology control algorithm for ad-hoc networks.

In Proceedings of the 21st International Conference on Advanced Information Networking

and Applications Workshops (AINAW), Washington, DC, USA, pages 784–791. IEEE

Computer Society, 2007.

[2] Stefan Unterschütz, Andreas Weigel, and Volker Turau. Cross-Platform Protocol De-

velopment Based on OMNeT++. In Proc. 5th Int. Workshop on OMNeT++, March

2012.

15

	Titlepage
	Table of Contents
	1 Introduction
	2 Resources
	3 Interface Description
	3.1 Module
	3.2 Message
	3.3 Gate
	3.4 PlatformGate
	3.5 Activity
	3.6 TimeTriggeredActivity

	4 Example
	References

