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Abstract: The accurate description of the complex genesis and evolution of ocean waves, as well as
the associated kinematics and dynamics is indispensable for the design of offshore structures and
the assessment of marine operations. In the majority of cases, the water-wave problem is reduced to
potential flow theory on a somehow simplified level. However, the nonlinear terms in the surface
boundary conditions and the fact that they must be fulfilled on the unknown water surface make
the boundary value problem considerably complex. Hereby, the contrary objectives with respect
to a very accurate representation of reality and numerical efficiency must be balanced wisely. This
paper investigates the influence of characteristic sea state parameters on the accuracy of irregular
wave field simulations of different complexity. For this purpose, the high-order spectral method
was applied and the underlying Taylor series expansion was truncated at different orders so that
numerical simulations of different complexity can be investigated. It is shown that, for specific
characteristic sea state parameters, the boundary value problem can be significantly reduced while
providing sufficient accuracy.

Keywords: ocean waves; nonlinear waves; potential flow theory; high-order spectral method; wave
tank experiments; digital twin for wave experiments

1. Introduction

The design of offshore structures, as well as the assessment of marine operations
require an accurate description of the expected surface wave loads, ensuring efficient
and safe operations. Thus, precise knowledge of the genesis and evolution of waves
through their corresponding kinematics and dynamics is indispensable. To this end, a
sound understanding of irregular sea state simulations is critical, because the physical
mechanisms of ocean waves embed a relatively large range of different phenomena (i.e.,
resonant and non-resonant wave-wave interaction effects with different characteristic
scales). To describe the relevant physics, various theories and numerical methods have been
developed. Since the numerical complexity of wave models increases with their accuracy,
computational efficiency and accuracy must be weighed according to the requirements of
the investigated problem. One illustrative example is the deterministic wave prediction, for
which computations have to be performed faster than in real time while allowing the model
to represent all the phenomena that are likely to influence the kinematics and dynamics of
the considered wave field within the prediction horizon. In most cases, the water-wave
problem is reduced to the potential flow theory; see [1] for a historical overview.
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The development of established wave theories is based on extensive studies of
Stokes [2]. The Cauchy problem is approximated in Stokes wave theory by applying the
perturbation method and linking the perturbation parameter to the wave steepness. The
first-order solution of the Stokes expansion is referred to as the linear wave theory, which is
also known as the Airy wave theory [3]. Higher-order solutions are obtained by higher-
order expansions of the velocity potential and the surface elevation. These solutions include
nonlinearities such as a crest-trough asymmetry and an increase in the wave propagation
speed due to wave steepness (e.g., [4,5]).

Linear wave theory is a rather simple and fast approach that is capable of providing
acceptable results for many different ocean engineering applications. Thus, the linear
approach is widely used and serves as a standard model for ocean waves. The theoretical
foundation is based on the linear superposition of independent wave components, each
having a different frequency and amplitude (and direction of propagation in the case of
directional wave fields). In addition, the propagation velocity of the component waves
depends only on the wave frequency and the water depth. As a consequence, supposing a
constant water depth and with the knowledge of its energy density spectrum, the wave
field can be estimated at any time/location of interest by shifting the wave components.

Based on wind—-wave generation processes characterizing the energy transfer between
the wind blowing over the sea surface and surface waves, the growth of the wave heights
can be predicted in the form of an energy distribution along the wave frequencies of the
wave field. Taking into account the strength of the wind (generally represented by the
wind speed in the atmospheric boundary layer) and characteristic space and time scales
over which the wind is blowing, standard wave spectra have been introduced (e.g., [6-8]).
Among them, the empirical Pierson-Moskowitz spectrum [8] gives the shape of a wave
spectrum for a fully developed sea state, i.e., the wind is steadily blowing over a large area
and over a long time, as a function of the wind speed at 10 m above the sea surface (which
can be directly related to the total energy of the wave field) and the frequency of maximal
energy, referred to as the peak frequency. This spectral shape was later adapted to young
(or non-fully developed) sea states, for which the spectral shape exhibits a narrower energy
distribution around the peak frequency. The level of development of the sea state has
been investigated during the Joint North Sea Wave Project [9], leading to the well-known
JONSWAP spectrum. This spectrum uses a peak enhancement factor that represents the
influence of the propagation time of the wave field on the spectral shape. These spectra are
essential for design purposes and serve as standardized design wave spectra in many areas
of application, such as the study of wave characteristics, wave statistics, wave generation,
and stochastic, as well as deterministic wave-structure interaction. Assuming linear motion
behavior, in addition to the wave linearity, the spectral perspective of wave-structure
interaction offers many options for evaluating offshore structures (e.g., [10-13]).

However, simplifications of the water-wave problem pertaining to the linear approach
imply uncertainties. As nonlinear effects become important with increasing wave steepness,
the accuracy of the linear solution decreases significantly. Alternatively, more advanced
nonlinear methods can be utilized. In this context, the nonlinear potential flow theory
is suitable for simulating the majority of relevant nonlinear wave effects. Nevertheless,
the practical applicability of nonlinear potential flow solvers is limited to non-breaking
conditions due to their inability to model extreme wave heights and wave breaking physi-
cally, i.e., only approximated solutions are available to account for the energy dissipation
and to avoid numerical instabilities (e.g., [14,15]). However, there is a variety of different
nonlinear potential flow theory methods of different orders of complexity available—from
weakly nonlinear models to fully nonlinear simulations. Generally, the computational effort
increases with increasing complexity, i.e., the high accuracy of fully nonlinear numerical
methods comes at the expense of high computational costs, and the resulting solutions are
usually expressed on a discretized finite spatio-temporal domain, requiring extra work to
post-process the results compared to the reduced-order and linear wave theories. A review
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of nonlinear free surface flow simulation techniques can be found in Westhuis [16] and in
the references therein.

Among them, the envelope equations of the nonlinear Schrodinger equation (NLSE)
framework capture weakly nonlinear effects in a numerically efficient way [17-21]. Under
the assumption of small-amplitude waves and a narrow-banded wave spectrum centered
around a characteristic carrier wavelength, the description of the surface evolution is de-
termined by means of modulations of the carrier wave. Both the NLSE and the modified
NLSE (MNLSE)—which includes higher-order terms—have been investigated extensively,
experimentally and numerically, in terms of nonlinear wave evolution (e.g., [21-26]). Al-
though the NLSE captures relevant nonlinear phenomena and shows good accuracy for
sufficiently narrow spectra, it has been generally shown that, due to the spectral bandwidth
constraint, it is less suitable for simulating broader-band irregular sea states [27]. However,
the MNLSE, together with a modeling of the full dispersive effects, provides significantly
better results (e.g., [20,24,27]).

Another notable nonlinear method used frequently for wave simulation is the numeri-
cally efficient High-Order Spectral (HOS) method [28,29]. This pseudo-spectral approach
solves the water-wave boundary value problem up to any arbitrary order of nonlinearity.
Because the majority of the calculations are performed in the Fourier space (usually us-
ing a fast Fourier transform), the HOS method exhibits a high computational efficiency.
Numerous studies have shown the suitability of the HOS approach for a wide range of
applications: the simulation of long-term and large-scale wave fields for freak wave anal-
ysis [30,31], the modeling of a numerical wave tank [32], and the prediction of nonlinear
wave fields from wave measurements [27,33-36] are only a few examples illustrating its
versatility.

The HOS method has been applied for intensive investigations on the general applica-
bility and limitations of highly nonlinear potential flow solvers [37]. Thereby, the focus has
been on the limit of the non-breaking wave condition and on the characteristic sea state
parameters that violate this condition. For this purpose, the JONSWAP spectrum has been
applied for the generation of the initial wave fields, and the influence of discretization,
water depth, directional spreading, spectral peakedness, and significant wave height has
been studied. To overcome the identified limitations, methods to localize breaking events
and to model the associated energy dissipation have been introduced for the HOS method,
proving to be effective (e.g., [14,15]). Consequently, the HOS method can be seen as a
mature approach for ocean engineering applications, which motivates the choice of this
model for the study presented in this paper.

Considering the HOS method as a “good example of nonlinear potential flow
solvers” [37], this method is predestined for answering the question about the necessary
model accuracy for certain characteristic sea state parameters since different orders of
complexity can be straightforwardly taken into account without any influence on the basic
theoretical foundation. On the one hand, such a systematic investigation aims to provide a
better understanding of the capabilities of nonlinear models of different complexity. On the
other hand, it will help to limit the computational effort of the HOS method to its minimal
requirement, thus facilitating use in ocean engineering applications.

For this study, the impact of the different levels of modeling complexity (i.e., HOS of
nonlinearity) was systematically evaluated for different characteristic sea state parameters,
namely the spectral peak enhancement factor of the JONSWAP wave spectrum, the direc-
tional spreading, the wave steepness, and the propagation time. The fourth-order (M = 4)
solution of the HOS method serves as a reference taking all resonant and non-resonant
effects up to five-wave interactions into account.

The paper is organized as follows. Section 2 presents the theoretical foundation of
this study, starting with the general overview of the potential flow theory and boundary
value problem, then detailing the implementation of the HOS method. Section 3 describes
the numerical setup and parameters whose influences on the accuracy of HOS simulations
of different orders were investigated. The corresponding numerical results are presented
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in Section 4. A semi-experimental approach, based on wave probe data measured in a
physical wave tank and corresponding simulations from its digital twin, is presented in
Section 5 for the validation of the numerical results. The conclusions are drawn in Section 6.

2. Theoretical Foundation

Under the assumption that the Newtonian fluid is incompressible, inviscid, and
irrotational, its velocity potential ¢ satisfies the Laplace equation:

¢ PP %
il AT AR g () 1
Fra dy? taz 0 @
The sea bottom and the unknown free surface represent the boundaries of the fluid
domain. Assuming that the sea bottom is level, rigid, and impermeable at z = —d, the
normal component of the flow velocity disappears:
9¢
a—Z—O onz = —d. 2)

The kinematic boundary condition at the free surface describes that no particle leaves
the free surface:
9 9995 9Pl 9P _ _
§+£$+@@ E_O onz={_(x,y,t). 3)
The dynamic boundary condition defines that the dynamic pressure at the free surface is
constant and equal to the atmospheric pressure:

a3 1/(0p\% [(9p\2 [0g\? _ _
8t+2(<8x> +(ay> +<az) >+g€—0 onz = Z(x,y,t). @

Both kinematic and dynamic boundary conditions must be fulfilled at the unknown free
surface z = {(x,y, t), resulting in a complex boundary value problem.

High-Order Spectral Method

The HOS method was independently introduced by West et al. [28] and Dommermuth
and Yue [29]. This numerical method is based on the Zakharov equation [17] and the
comparable mode-coupling approaches [38,39] and allows capturing a high number of
free wave modes. To solve the nonlinear initial boundary value problem, the Taylor
series of arbitrary nonlinear order is applied to expand the mean water level quantities
to the free surface. The use of global basis functions together with the identity of the
vertical derivatives with the surface Laplacian essentially allows using the fast Fourier
transform for this pseudo-spectral approach and solving the nonlinear wave dynamics
very efficiently [28,29,40]. This method takes, up to a given order, all nonlinear interactions,
resonant and non-resonant, into account and can be applied for long- and short-crested sea
states. Additionally, wave—current, as well as wave-bottom interactions can be considered.

For this paper, the numerical procedure presented in West et al. [28] was used. Imple-
menting this pseudo-spectral method, all derivatives related to the potential and surface
elevation are determined in the Fourier space assuming periodic conditions on the verti-
cal domain boundaries, whereas nonlinear products are calculated in the physical space.
At the beginning, the potential equations are converted to equations at the free surface
Y(x,t) = ¢(x, ¢, t), with x = [x,y]T. Applying chain rules, the kinematic boundary condi-
tion at the free surface (Equation (3)) can be rewritten as :

%:—V‘Y'V€+W(1+|vg|2) onz=(. ®)

The dynamic boundary condition reads:
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with W = 9¢/ az|Z:§ as the vertical velocity at the free surface and V = 9/ax as horizontal
gradient operator.

By using Equations (5) and (6) as free surface boundary conditions, the boundary value
problem is now exclusively related to the vertical velocity W, which can be determined
in terms of { and ¥ by series expansion. The procedure by West et al. [28] starts from the
formal expression that the surface velocity potential ¥ can be represented as the Taylor
series expansion at z = 0 and yields

g"d"¢
Y(x,t) = Z PEE )
Accordingly, the vertical velocity W is obtained by
gn an+1¢
Wix,t) = nt 9z 1| _ ®)

Now, the problem is transformed into the reference function ¢ in order to be solved for the
boundary value problem at z = 0. Assuming that ¥ and { are quantities of O(g"), ¢ and
W are expanded by perturbation series according to

o(x,z,t) = Z¢”>xzt) )
MmﬁZWWwL (10)
n=0

with { as the ordering parameter and M = m + 1 being the order of approximation of
nonlinearity. Using Equation (7), separating the terms of each order O({") gives

o0 (x,0,t) = ¥(x,t) (11)

for the first order. The next higher-order solutions are obtained from the lower-order
solutions as

é'n an(P m—n)
¢ (x,0,1) 2 A S (12)
z=0
The vertical velocity W at the surface { is obtained by
m 1 p(m—n)
g’rl ont 4)
W (x,t) = TR (13)
n=0 2=0

Furthermore, the physical quantities ¢, ¥, and { are expressed by means of basis
functions that satisfy Equations (1) and (2). Assuming periodic conditions on the horizontal
boundaries of the computational domain, basis functions such as the velocity potential can
be derived in the Fourier space by

_ 17 cosh(k|(z+d)) .
Mmﬁ_m/wm)mwwwe dk, (14)

with ¢ (k, t) as Fourier coefficients and k denotes the wave number vector with k = [ky, k; | T
for two-dimensional spatial inputs. Similar expressions without the z-dependency are used
for ¥ and ¢. This formulation allows using a fast Fourier transform algorithm, leading to
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very efficient computations of the spatial derivatives of the physical quantities. This results
in “(near) linear computational effort”, as well as “exponential convergence (...) being
notable characteristics of the computational efficacy of HOS methods” [40].

Generally, the HOS method can be utilized to any order of nonlinearity M due to the
recursive approach for the calculation of the higher-order terms (Equations (12) and (13)).
Practically, the HOS order is limited due to aliasing effects, as well as numerical errors
and instabilities resulting in high-frequency contamination in the Fourier space [28,40,41].
The nonlinear products of the pseudo-spectral approach are performed in the physical
space domain, which is represented by Fourier modes at equally spaced points, resulting
in aliasing errors that become more and more significant with increasing order [28,40]. The
aliasing effect limits the finite Fourier space that can be taken into account for the simulation.
This problem can theoretically be avoided by increasing the number of Fourier modes
with increasing order, i.e., increasing the number of discrete space points by decreasing
the discrete step size Ax in the physical space domain [28]. However, computational
resources and aspects of numerical efficiency limit this approach significantly, particularly
for 2D + 1 simulations.

The numerical error can be quantified in terms of the error in the spectral representa-
tion, as well as truncation error. The numerical error for the spectral representation vanishes
exponentially as the number of component waves goes to infinity [40]. Furthermore, the
truncation error vanishes exponentially with increasing M for mild nonlinearities [40]. The
convergence is theoretically limited to the maximum wave steepness of the free surface,
but practically, the convergence characteristics end at certain wave steepness before the
maximum wave steepness is reached [40]. In addition, Nicholls and Reitich discussed the
stability of high-order perturbative methods for the computation of Dirichlet-Neumann
Operators (DNOs), showing that “the convergence of these algorithms is, quite generally,
limited by numerical instability (...)” and that “these standard perturbative methods for
the calculation of DNO suffer from significant ill-conditioning which is manifest even for
very smooth boundaries, and whose severity increases with boundary roughness” [41].
Consequently, in most applications, the HOS method is limited in terms of nonlinearity or-
der (M < 5), finite Fourier space (in terms of multiples of peak wave period), and maximum
initial wave (spectrum) steepness [37] due to these numerical limitations and constraints.

For this study, a low-pass filter was implemented to avoid Fourier space aliasing for
higher-order terms [28]. Additionally, an exponential damping term was introduced in
the Fourier space to suppress high-frequency contamination that can occur for the highest
waves, causing numerical instabilities. To do so, the Fourier coefficients of {; and ¥; were
damped at a specific wave number kg, after each time step by an exponential term, which
reaches zero at k,;,4. The specific wave number was set to kygp = 6kp and kg = 1.3Kgamp
for this study after systematic investigations of different wave steepness, with k; as the
peak wave number of the considered sea states. This value showed no influence on lower
wave steepness, but stabilized the simulations with the highest wave steepness. However,
the procedure was neither capable of handling wave-breaking effects, nor simulating steep
waves close to breaking: the simulated wave fields presented hereafter all fall into the
applicability domain of nonlinear potential flow solvers, as described in [37]. In this study,
the fourth-order Runge-Kutta—Gill method was applied to advance the evolution equations
in time.

3. Numerical Setup and Program

The following study comprises investigations of irregular sea states based on the
JONSWAP spectrum, evaluating the influence of wave steepness, peak enhancement factor,
directional spreading factor, and simulation time on the accuracy of the wave simulations
of different complexity.

Different complexity denotes that each of the investigated sea states was simulated
at four different orders of the HOS approach, from the first to the fourth order. The
solutions of the different orders are hereinafter referred to as HOSMX with X labeling the
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respective Xth-order solution. First, the investigations were carried out using the fourth-
order simulation as a reference and comparing the lower-order simulations to this reference
simulation. The numerical setup and parameters were identical for all simulations. The
size of the quadratic domain was chosen to be x = y = 2000 m with a water depth of
d = 5000 m. The domain was discretized by Ny = N,, = 2!° grid points, resulting in a
spatial resolution of Ax = Ay ~ 1.95m. The simulation time was set to t;,, = 250 s with
a temporal resolution of At = 0.05s. For the evaluation of the simulation results, surface
elevation snapshots of the respective simulations were stored at every 2000 time steps
(tsnapshot = 105) for subsequent post-processing.

To evaluate the results quantitatively, the surface similarity parameter (SSP) [42] was
used to compare the surface elevation snapshots of the different orders with the reference
solution (HOSM4). The SSP was chosen as this parameter takes the amplitude, as well as
the phase difference of two signals or surfaces f; and f, into account to quantify the surface
similarity. This normalized error ranges between 0 (perfect agreement) and 1 (perfect
disagreement) and is calculated as

(J IFi (k) = B(k)[2 dk) 2
(IR (k)2 dk)2 + ([ [Fa(k) 2 dk)2

SSP(f1, f2) = / (15)

with F(k) representing the Fourier transform of the signals. The L?-norm of the individual
signals ||f;||* = [ |F;(k)|> dk and their respective L?-error in space domain ||f; — fo||*> =
[ |F1(k) — Fx(k)|* dk depicts the basis of the SSP. Consequently, SSP is calculated in the
complex Fourier space and inherently penalizes amplitude-, frequency-, and phase-errors
at the same time and in a single quantity. If both signals are identical, the L?-error is 0, such
that SSP = 0 denotes perfect agreement among the signals/surfaces. Based on previous
investigations, the accuracy may be assumed to be acceptable for SSP values below 0.1.
Figure 1 presents a comparison of two signals to give a picture of the correlation between
two signals featuring a SSP ~ 0.1.

g(t) [m)

syhihbonso w3

o
S
3

300 400 500 600 700 800 900 1000 1100 1200
tls]

Figure 1. Comparison of two signals as an example of the correlation of SSP =~ 0.1.

As previously mentioned, the JONSWAP spectrum [9] was used to generate the initial
wave field in the space domain:

) (w—w)z}

b 5 swp\t exp{* 202
S;(w)—ai~exp{—4~(cj)]v w ], (16)

with w), the peak wave angular frequency, ¢ the gravitational acceleration, & the Phillips
coefficient, y the peak enhancement factor, and r defines the shape of the spectrum on the
left- and right-hand side of the peak (r = 0.07 for w < wp and r = 0.09 for w > wy). In
order to initialize the three-dimensional wave field, the directional spreading function [43]:

rs+1)
I'(5405)ym
was applied to convert the JONSWAP spectrum into a directional spectrum. I' represents

the Gamma function, and s is the spreading exponent [43]. To ensure that the energy
content of the wave spectrum remains the same, the following equation must be satisfied:

D(w,®) = - cos®(0), (17)
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/ D(w,©)de = 1. (18)
—T7T
Consequently, the directional JONSWAP spectrum can be derived by
Sj(w,®) = §;(w) - D(w,®). (19)

The wave direction was defined for ® € [-%, %] with a discrete directional angular
increment of A® = 7/24.

The JONSWAP spectrum was applied to generate a set of irregular sea states with a
peak period of T, = 10s and systematically varied wave steepness € = k,Hs/2; enhance-
ment factor y. Hs represents the significant wave height, and the wavelength and the
wave period are linked via the linear dispersion relation w = /gktanhkd. Note that
this relationship between k and w is only assumed for the definition of the initial surface
elevation snapshot; the wave field evolution is performed according to the HOS equations
at the considered order of nonlinearity without further assumption.

Table 1 shows the selected sea states. The simulations were carried out for six wave
steepnesses (0.025 < € < 0.125) representing small, moderate, and steep waves and three
different peak enhancement factors. Besides this, the spreading factor was additionally
varied in order to investigate a possible influence of the directionality on the different
HOS orders. For this purpose, the initial spatial wave field was calculated for spreading
factors of s = [300, 30, 4] representing sea states from almost long- to short-crested wave
distributions. In addition, a fully long-crested wave field (® = 0) was also initialized, i.e.,
constant wave height in the y-direction, to cover the classical 2D application and to put it
into relation with the directional wave field simulations.

Table 1. Overview of the numerically investigated characteristic sea state parameters.

Sea State T, H; (e) Y
1 1
2 1.24'm (0.025) 3
3 6
4 1
5 1.86 m (0.0375) 3
6 6
7 1
8 2.48m (0.05) 3
9 6

10 10s 1
1 3.73m (0.075) 3
12 6
13 1
14 497m (0.1) 3
15 6
16 1
17 6.21m (0.125) 3
18 6

Consequently, 72 different parameter combinations were used for the determination of
the initial wave fields. Hereby, it must be noted that this only applies to the wave spectrum
as the phase distribution was only generated once randomly and afterwards used for all sea
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state realizations. Thus, an influence of the phase distribution on the simulation results of
the different parameter combinations and HOS orders can be excluded, i.e., the difference
can be directly related to the different input parameters. The initialized wave fields were
used to simulate the wave propagation for the four different HOS orders, and the HOSM4
served as a reference solution to evaluate the lower orders.

4. Numerical Results

Figure 2 presents the results of the investigated sea states shown in Table 1. Each dia-
gram shows the SSP of the three lower orders HOSM1 (blue curves), HOSM2 (red curves),
and HOSM3 (green curves) over time, where HOSM4 served as the reference solution.
Each diagram shows the SSP of the investigated sea states with varying directionality:
long-crested waves (solid lines) and short-crested waves with spreading factors of 300
(dashed lines), 30 (dashed-dotted lines), and 4 (dotted lines). For a better overview, the
curves are displayed with slightly varying colors. The rows depict sea states with constant
wave steepness and increasing enhancement factor from left to right. For sea states in one
column, the enhancement factor is kept constant and the wave steepness increases from top
to bottom. For a better comparison, the y-axis has a limit of 0.4. The curves that were cut off
show an approximately linear increase. As previously mentioned, the accuracy is assumed
to be acceptable in the following discussion for SSP values below 0.1 (cf. Figure 1).

It can be seen that for sea states with a small wave steepness of € < 0.0375, the ac-
curacy of HOSM3, HOSM2, and HOSM1 remains high over the total simulation time of
tsim = 250s. This is due to the low impact of nonlinear effects for small wave steepness.
With increasing nonlinear effects for increasing wave steepness, the accuracy of HOSM1
and HOSM?2 decreases significantly. In this context, the first-order solution (M = 1) of the
HOS method is equivalent to linear wave theory in terms of wave-wave interaction and
the dispersion of waves. For the second-order solution (M = 2), quadratic nonlinear effects
(three-wave interaction) are taken into account, which results in a better performance with
increasing wave steepness, which is clearly evident when considering the increasing dis-
crepancy between the first- and second-order simulation results with increasing steepness.
Consequently, the application area for the first- and second-order solutions is limited to
small wave steepness. With increasing steepness, the application area in terms of accuracy
over simulation time decreases fast to only five peak periods or less for € > 0.075 with
HOSM1 and for € > 0.1 with HOSM2. Nevertheless, this low level of complexity (i.e., high
numerical efficiency) may still be relevant for very short-term predictions, i.e., in terms of
forecast distance and horizon, such as needed for the control of marine energy devices such
as wave energy converters or floating offshore wind turbines.

The HOSM3 simulations show significantly better accuracy for all investigated wave
steepnesses. The reason for this lies in the fact that the step from second to third order
denotes significant improvements from a physical point of view. For M = 3, cubic nonlinear
effects (four-wave interaction including modulational instability) yielding nonlinear cor-
rections of the dispersion relation are taken into account. The discrepancy to the reference
solution (HOSM4-quartic nonlinear effects) even for the highest investigated steepness
shows that the relevant physics is already captured by HOSM3. However, it can be ex-
pected that the discrepancy increases for steeper sea states, i.e., the fourth-order solution
of the HOS method may be the right choice for steeper sea states having in mind the
aforementioned limitations regarding wave breaking, numerical efficiency, and instabilities.
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Figure 2. Numerical results: SSP for the investigated sea states (Table 1) for HOSM1 (blue), HOSM2
(red), and HOSM3 (green) with long-crested waves (solid lines) and short-crested waves with
spreading factors 300 (dashed lines), 30 (dashed-dotted lines), and 4 (dotted lines).
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Evaluating the influence of the peak enhancement factor reveals a strong influence
on the accuracy of the simulation as with increasing -, the accuracy increases for the same
steepness and all investigated orders of the HOS method. This effect is more pronounced
for the first- and second-order solutions, as well as increasing wave steepness. Detailed
investigation on this question could not conclusively clarify the reasons for this, but a
reasonable explanation may be that the wider energy distribution for smaller enhancement
factors triggers more nonlinear dynamics in terms of wave-wave interaction, as well
as the dispersion of waves: there are more short waves riding long waves, leading to
a higher number of local steep events (i.e., high slope) and locally triggering nonlinear
physical phenomena. On the other hand, this explanation may contradict the identified
influence of the large Benjamin-Feir Index (BFI) on nonlinear wave propagation processes,
e.g., [44], which is related to large wave steepness and narrow bandwidth spectra (i.e., high
enhancement factor). Thus, additional investigations need to be addressed to this question.
In this context, it is interesting to see in Figure 2 that the directional spreading factor has
nearly no effect on the accuracy of the simulation.

So far, the numerical results show that for the same sea state, i.e., in terms of the phase
distribution of the initial wave field, the wave steepness, in particular, plays a major role in
terms of the accuracy of the different orders. However, the question of the influence of the
random phase distribution is still unanswered: Are the differences identified in Figure 2
generally valid and thus independent of the initial phase distribution, or do the results only
represent a specific individual case (i.e., other initial phase distributions yield significantly
different results)?

To investigate whether the initial phase distribution has a significant influence, sim-
ulations with 30 different random phase distributions were performed for one sea state
(T, = 10s, € = 0.075, v = 6, s = 4). Figure 3 shows the mean value of the SSP for all
30 simulations for HOSM1 (blue curve), HOSM2 (red curve), and HOSM3 (green curve).
The Standard Deviation (SD) is shown as a transparent area of the same color. It can be
seen that SSP does not vary much for the different phase distributions. Therefore, it can be
concluded that the results obtained are generally valid.

0.3

0.25

5 10 15 20 25
t/Ty
Figure 3. Numerical results: mean value and standard deviation of the SSP of 30 independent sea

state realizations (initial random phase distributions)—the basis is Sea State 12 with spreading factor
s = 4 (see Table 1).

Finally, long-term simulations were performed in order to evaluate if a simulation
time of t,;,, = 25T, provides a sufficient conclusion about the applicability of the different
orders or if longer simulation times yield significantly different results due to the nonlinear
effects of a larger time scale. For this purpose, long-term simulations (t,;,, = 150T,) were
performed for selected sea states. Hereby, the spreading factor (s = 4) and enhancement
factor (y = 3) were kept constant, whereas the four largest wave steepnesses were selected.
In addition, all orders of nonlinearity were investigated.
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Figure 4 presents the results for the selected sea states. Again, the results for HOSM1
are shown as a blue dotted line, for HOSM?2 as a red dotted line, and for HOSM3 as a
green dotted line. In addition, the respective results shown in Figure 2 are illustrated
for comparison as grey lines. The results show that the course of SSP does not change
significantly at later simulation times. Generally, the course of SSP follows a somewhat
linear rate of increase for all sea states. Later on, at higher absolute SSP values, this linear
rate of increase tends to reach an asymptotic horizontal course for very large SSP values
(SSP > 0.7). This asymptotic behavior does not correspond to any physical mechanism
within the simulations nor simulation time, and the reason lies solely in the way in which
the SSP is calculated (“perfect disagreement” results in a SSP = 1). However, for this study,
SSP values above SSP > 0.2 already represent an unacceptable inaccuracy, which is below
the SSP values at which the asymptotic behavior starts. Thus, the curves in Figure 4 show
that the results of the short-term simulations are confirmed by the long-term simulations,
i.e., a linear rate of increase for longer simulation times can be assumed.

sea state 8 sea state 11

o H, =248m (¢ = 0.05), v =3 H, =3.73m (¢ = 0.075), y=3

0 50 t/T, 100 150

50 f/T,, 100 50
sea state 14 sea state 17
H;=497m (e=0.1), y=3 H; =6.21m (e = 0.125), v =3

.'/“

0 50 t/Tl, 100 150 0 50 t/T, 100 150

‘ SSP SSP SSP SSP SSP SSP

HOSM1,4, long simulation HOSM2,4, long simulation HOSM3,4, long simulation HOSM1,4 HOSM2,4 HOSMB.A‘

Figure 4. Numerical results: Course of the SSP of long-term simulations for selected sea states
(Table 1) for HOSM1 (blue dotted line), HOSM2 (red dotted line), and HOSM3 (green dotted line)
and a spreading factors of s = 4. In addition, the respective results shown in Figure 2 are illustrated
for comparison as grey lines.

5. Experiments

Following, the numerical findings are examined by experiments. For this purpose,
experiments on irregular sea states were conducted in a wave tank and the measurement
results were compared to the numerical simulations of the different HOS orders. The
experiments were carried out in the seakeeping basin of the Ocean Engineering Division at
Technische Universitit Berlin (TUB). The basin is 110 m long, 8 m wide, and 1 m deep, with
a 90 m measuring range. The long-crested waves are generated by an electrically driven,
fully computer-controlled wave generator that can operate in both piston and flap-type
mode. The wave generation software enables the generation of regular waves, transient
wave packets, and irregular waves. A wave damping slope is installed on the opposite side
to suppress disturbing wave reflections.

Table 2 shows the characteristic parameters of the investigated irregular sea states. As
with the numerical studies, the basis for the wave generation was the JONSWAP spectrum,
and the wave steepness and enhancement factor were varied.
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Table 2. Overview of the experimentally investigated characteristic sea state parameters.

Sea State T, H; (e) 0%
1 1
2 1.83m (0.05) 3
3 6
4 1

8.58's
5 3.66m (0.1) 3
6 6
7 1
8 5.48 m (0.15) 3
9 6

Generally, the experimental validation of the HOS method is almost impossible with
classical experimental equipment. In contrast to the HOS approach, which needs the
surface elevation in the space domain as the initial condition, the surface elevation is
normally measured at a distinct position in space over time during the experiments. Thus,
measuring the surface elevation in the space domain would require multiple, continuous
point-by-point measurements (with a reasonable calm-down time in between) to obtain a
snapshot. To overcome this problem, the experimental validation was performed by using
a semi-experimental approach. The semi-experimental approach has been introduced to
create input snapshots based on the irregular waves generated during the experiment [27].
The nonlinear numerical wave tank waveTUB [45-47] served as a digital twin to determine
the input snapshots of the experimentally generated irregular waves. Besides identical
main dimensions, the main feature is the capability to model the exact geometry of the wave
maker so that the boundary conditions are identical at the wave board, i.e., providing an
identical starting point of the wave evolution for both tanks. Thus, in order to generate the
input wave snapshots, the physical wave board motion is used to reproduce the irregular
sea states in the numerical wave tank waveTUB.

Figure 5 shows a side view of the wave tank (all data in full scale) and the general
scheme of the procedure. On the left is the wave maker and on the right a wave-damping
beach. A snapshot of the surface elevation at a given point in time is also displayed,
indicating the initial condition for the HOS simulations. For the experiments, four wave
gauges were installed to validate the waveTUB input snapshots pointwise (wave gauge 1)
and to compare the simulation results with the measurements in the time domain at three
fixed positions (Wave Gauges 2—4).

wave gauge 1 wave propagation wave gauge 2 wave gauge 3 wave gauge 4
—_—

>
>

wavetub snapshot

d=75m

x=3375m x=4125m x=4875m

<
<€

Figure 5. Scheme of the semi-experimental procedure including validation locations—all data full
scale [27].

The measuring principle of the applied wave gauges is based on surface-piercing
resistance-type wires. The surface-piercing wires feature a very small diameter so that
the wave system is not affected by the presence of the wave gauge. The advantage of the
applied wave gauges over non-contact measurement systems (such as ultrasound or down-
looking radar measurement systems) is the fact that very steep waves and wave breaking
can be measured very accurately. Altogether, the applied wave gauges represented an
established measurement technique that enables accurate detection of the waves. Once
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accurately calibrated, the wave probes serve a sub-millimeter precision. The calibration
process followed a standardized procedure that ensures an accurate setup of the measuring
system. Based on this procedure, the overall calibration error is known to be less than 1%.
Such calibration error denotes that the measured surface elevation features a constant offset
in the water column compared to the expected value, i.e., the amplitudes are affected, but
not the phases of the signal. In terms of investigated sea states (cf. Table 2), this error affects
SSP theoretically by SSP < £0.01.

For each reproduced sea state, eight consecutive snapshots (Atggpsnor = 43 s ~ 5T))
were extracted from the waveTUB simulations, and each snapshot was used as the initial
condition for the HOS simulations of different orders. The simulation results of the different
HOS orders, in turn, were compared with the measurements at Wave Gauges 2—4. The
comparison was made in the time domain with the SSP introduced above. In contrast to
the numerical investigations, the HOSM4 simulations were also experimentally validated
as the measurements served as a reference. A detailed description of the semi-experimental
procedure can be found in [27].

Figure 6 shows the accuracy of the HOS simulations compared to the measurements
for irregular sea states (cf. Table 2). It presents the SSP of the waveTUB input snapshot
(black plus), as well as simulations with HOSM1 (blue curves), HOSM2 (red curves),
HOSMS3 (green curves), and HOSM4 (yellow curves). The points on the curves indicate the
positions of the three wave gauges (cf. Figure 5). The SSP shown is the average of the eight
consecutive snapshots per sea state, and the transparent area around each curve (of the
same color) represents the variance corresponding to the eight simulations. The SSP for the
waveTUB input snapshot was calculated for the whole time trace at Wave Gauge 1. Again,
the horizontal diagrams depict sea states with constant wave steepness and increasing
enhancement factor from left to right. For sea states vertically aligned, the enhancement
factor is kept constant and the wave steepness increases from top to bottom.

It can be seen that the basic findings from the numerical investigations (Figure 2)
are mainly verified by the experimental results—the accuracy of HOSM1 and HOSM2
decreases with increasing wave steepness, and the accuracy of HOSM3 is almost identical
to that of HOSM4.

However, for the wave steepness € = 0.05, the results of the numerical investigations
differ from the experimental ones. In contrast to the numerical results, in which significant
differences between the different orders can already be seen at this steepness (cf. Figure 2),
all orders show approximately the same accuracy compared to the experimental results
(cf. Figure 6). This is most likely due to the fact that the input snapshot already has a certain
inaccuracy, which is why simulating with a low order makes comparatively less difference.
Overall, experiments of this kind are important, but individual effects of different sea state
parameters become more apparent in the controlled environment of numerical simulations.
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Figure 6. Experimental results: SSP for the investigated sea states (see Table 2) at the three wave
gauges for the HOSM1 (blue curves), HOSM2 (red curves), HOSM3 (green curves), and HOSM4
(yellow curves) simulations in the space domain. The dots on the curves illustrate the positions of
the three wave gauges. The transparent areas around the respective curves (with the same color)
represent the corresponding variance, and the SSP of the waveTUB input snapshots is illustrated as a
black plus.

6. Conclusions

In this paper, the influence of characteristic sea state parameters of the JONSWAP
spectrum on the accuracy of simulations with varying complexity was investigated. For
this purpose, both purely numerical and experimental data were used to systematically
assess the accuracy of HOS simulations of different orders up to the fourth one. In the case
of numerical data, the fourth-order solution HOSM4 served as the reference to evaluate
the accuracy of the lower-order solutions. In the semi-experimental configuration, probe
measurements from wave tank experiments were used as the reference solution. In both
cases, the comparison was made by means of the SSP calculated between the reference
solution and the HOS solutions at different orders.

The numerical investigation showed that for small wave steepnesses (¢ < 0.0375),
the first- and second-order solutions (HOSM1 and HOSM2, respectively) had a sufficient
accuracy. When the steepness increased, however, the nonlinear effects became dominant,
resulting in a significantly decreased accuracy for both orders. On the other hand, the third-
order solution HOSM3 remained almost similar to the reference over the entire parameter
space, with an SSP value far below the threshold SSP < 0.1 even in the most unfavorable
configuration of € = 0.125 and y = 1, and after 25 peak periods of propagation. Longer
simulation times validated the trends obtained for 25 peak periods of propagation by
showing an almost linear increase of SSP. This confirms that most of the relevant nonlinear
effects pertain to third-order terms. Although the peak enhancement factor appeared to
influence the simulations” accuracy (i.e., higher SSP for lower 7), the directional spreading
factor had almost no effect on the results.
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The experimental investigation generally confirmed the numerical observations: the
higher the wave steepness, the higher the SSP and the larger the difference between each
HOS solution, except for HOSM3 and HOSM4, which led to almost identical results.

Overall, it was shown that for certain irregular sea state parameters, i.e., less steep
wave systems, low-order solutions provide sufficient accuracy. Due to the lower numerical
effort associated with less complex solutions, time can be saved by choosing the order of
complexity depending on the sea state parameters.

Future work on this topic should focus on the water depth and possible influences on
the accuracy of the different orders. In addition, the influence of the peak enhancement
factor, in particular the underlying physics for the observed influence, should also be
addressed in future studies.
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