160 | Oktober 1967

SCHRIFTENREIHE SCHIFFBAU

B. Wagner

Windkanalversuche mit Schiffssilhouetten und Rechteckplatten zur Prüfung des Versperrungseinflusses in einem Rechteckstrahl

INSTITUT FÜR SCHIFFBAU DER UNIVERSITÄT HAMBURG

Bericht Nr. 160

Windkanalversuche mit Schiffssilhouetten und Rechteckplatten zur Prüfung des Versperrungseinflusses in einem Rechteckstrahl

von

B. Wagner

Hamburg, Oktober 1967

and the second second

Windkanalversuche mit Schiffssilhouetten und Rechteckplatten zur Prüfung des Versperrungseinflusses in einem Rechteckstrahl.

Übersicht

- 1. Einführung
- 2. Versuchsanordnung und Modelle

- 2.2. Versuchanordnung
- 2.2. Modelle
- 3. Versuche und Versuchsergebnisse
 - 3.1. Versuche
 - 3.2. Erläuterung der Versuchsergebnisse
- 4. Zusammenfassung des Ergebnisses
- 5. Folgerungen
- 6. Symbolübersicht
- 7. Schrifttum

1. Einführung

Seit dem Herbst des Jahres 1964 steht der neue Windkanal des IfS für Messungen zur Verfügung. Der Austrittsquerschnitt des Windkanals hat einen Durchmesser von 2 m, der aber für Meßzwecke durch eine Düse auf einen Kreisquerschnitt von 1,20 m Durchmesser umgeformt wird.

Für die durchzuführenden Windkanalversuche mit Überwasserschiffsund Takelagemodellen im Rahmen des vom Hamburger Forschungsrat geförderten Vorhabens "Luftkräfte an Schiffen" sollte dieser Strahlquerschnitt möglichst optimal genutzt werden. Aus verschiedenen Gründen, z.B. zur Erzielung großer Reynoldszahlen sowie zur Herstellung und Handhabung der Modelle im Windkanal, sollten die Modelle möglichst groß sein. Es schien auch aus diesem Grunde nicht ratsam, an der WL gespiegelte Doppelmodelle in Strahlmitte zu untersuchen. Man würde dann nur den halben Strahlquerschnitt nutzen.

Die zusätzlich angeschaffte Rechteckübergangsdüse formt bei der benutzten Versuchsanordnung den Strahl von einem Kreisquerschnitt von 2 m Durchmesser auf einen Rechteckquerschnitt von 1,75 m x 1,05 m um_T In diesem Falle werden die Modelle auf einer an die Düse anschließenden Bodenplatte gemessen.

Die Modelle sollen andererseits auch nicht so groß sein, daß unzulässig hohe Korrekturen für den Einfluß der Strahlversperrung auf den Staudruck und die effektive Schräganströmung entstehen. Die in diesem Bericht vorgelegten Versuchsergebnisse sollen dazu dienen, die zulässige Strahlversperrung zu ermitteln und die Größe der Strahlkorrektur abzuschätzen. Mit Silhouettenmodellen sind solche Versuche nicht nur wirksam und ohne Kennzahlempfindlichkeit, sondern auch wirtschaftlich* durchzuführen.

Die bekannten Windkanalkorrekturverfahren (vgl. z.B. [1], [2], [3]) beziehen sich auf den Bereich kleiner Anströmwinkel, und zwar für Körper mit geringem Druckabfall. Sie sind deshalb für Modellversuche mit Schiffsmodellen, die auch bei großen Anströmwinkeln untersucht werden, nicht ohne weiteres anwendbar [8].

- 2 -

^{*} Der Begriff "Silhouette" birgt den Doppelsinn "Schattenriss" und "mode å la Silhouette" nach dem stets auf Wirtschaftlichkeit – auch in der Bildnisherstellung – bedachten französischen Finanzminister Etienne de Silhouette (1709-1769).

2. Versuchsanordnung und Modelle

2.1. Versuchsanordnung

Eine eingehendere Beschreibung sowie eine Skizze der Versuchsanordnung befindet sich in den Institutsberichten Nr. 153 und 172 [4] und [5]. An den Austrittsquerschnitt der Rechteckübergangsdüse von 1,75 m Breite und 1,05 m Höhe schließt sich eine Bodenplatte an, in deren Mitte eine Drehscheibe von 1,70 m Durchmesser mit dem erforderlichen Spiel eingelassen ist. Die Silhouettenmodelle delle wurden auf Mitte Drehscheibe eingespannt; die Schräganstellung der Modelle erfolgte durch Drehen der Drehscheibe. Die Drehscheibe ist über einen Konsolstern mit der Dreikomponenten-Federgelenkwaage verbunden, die durch einen Styropor-Schwimmer in einem Schwimmergefäß mit Wasser von der Vertikalbelastung durch Drehscheibe und Modell entlastet wird. Die Meßwerte der drei Aufnehmerdosen von je 10 kp Maximalbelastung werden auf den Skalen der Trägerfrequenz-Meßverstärker abgelesen.

Die Bodenplatte wurde zur Ableitung der unteren Kanalgrenzschicht 50 mm über dem unteren Düsenrand angebracht. Dadurch war es mögläch, die Modelle in einem nahezu homogenen Geschwindigkeitsfeld zu untersuchen, da auf Mitte Drehscheibe praktisch nur die unvermeidliche Anlaufgrenzschicht von Bodenplatte und Drehscheibe (ca. 20 mm) vorhanden war. Der Verlauf der Grenzschichtdicke wurde in die Abbildungen Fig. 3 bis 9 mit eingetragen.

2.2. Modelle (vgl. Fig.2)

Es wurden sowohl Rechtecksilhouetten als auch Schiffssilhouetten untersucht.

Die Rechtecksilhouetten wurden so ausgewählt, daß sich sowohl eine dem Strahlquerschnitt ähnliche (Silh. Nr. 1 bis 4) als auch unähnliche Versperrung ergab. Die Rechtecksilhouetten entsprachen außerdem in ihrem Seitenverhältnis den infrage kommenden Überwasserschiffs- und Takelagemodellen.

Es wurden weging gegliederte (Fährschiff), "normal" gegliederte (Kümo) und stark gegliederte (Segelschiff) Schiffssilhouetten untersucht.

Die für die Schiffssilhouetten gewählten Schiffstypen sind bei ähnlicher Strahlversperrung auch als räumliche Modelle untersucht worden (vgl. IfS-Berichte Nr. 172, 188, 189 [5], [6], [7]). Die Silhouetten wurden aus S**St**ahlblech von 1,5 bis 3 mm Dicke gefertigt.

Die folgende Tabelle gibt einen Überblick über die untersuchten Silhouettenmodelle:

			Abmes	sungen	[m]	[m ²] ^V	rung	Erge	bn.
Nr.	Bezeichnung	٨	\mathbf{L}	H	đ	A	A/A _S	Tab.	Fig.
1 22 23 4	Rechteck " "	2x0,575	0,392 0,554 0,784 1,108	0,225 0,318 0,450 0,635	0,0015 0,002 0,003 0,003	0,0882 0,1762 0,3528 0,7036	0,0501 0,1001 0,2006 0,4016	1 2 3 4	10 11 12 13
 5 6 7	Rechteck "	2x0,100	0,958 1,354 1,660	0,09 58 0,1354 0,1660	30,0009 0,002 0,003	1 6 ,0918 0,1833 0,2756	0,0522 0,1042 0,1566	5 6 7	14 15 16
8 9 10 11	Rechteck " "	2x1,200	0,277 0,392 0,554 0,784	0,332 0,470 0,664 0,940	0,002 0,002 0,003 0,003	0,0920 0,1842 0,3679 0,7370	0,0523 0,1047 0,2094 0,4190	8 9 10 11	17 18 19 20
12 13 14	Viermastbar seitl, "	x, 0,575 [*] Proj, "	0,80 1,132 1,600	0,355 0,502 0,705	0,002 0,003 0,003	0,1838 0,3676 0,7352	0,1045 0,2090 0,4180	12 13 14	21 22 23
15 16 17	Rahsegler v. "	.vorn2,32*	*0,290 0,410 0,580	0,466 0,660 0,932	0,002 0,003 0,003	0,0919 0,1838 0,3676	0,0523 0,1045 0,2090	15 16 17	24 25 26
18 19	Kümo "	0,1838*	1,000 1,414	0,094 0,134	0,002 0,003	0,0919 0,1838	0,0523 0,1045	18 19	27 28
20 21 22	Fährschiff "	0,225*	0,944 1,334 1,634	0,121 0,172 0,210	0,002 0,002 0,003	0,0919 0,1838 0,2757	0,0523 0,1045 0,1568	20 21 22	29 30 31
	*) <u>2A</u> L _{OA} ≈	**) / ;	$\frac{2H^2}{A}$	ε Λ					

3. Versuche und Versuchsergebnisse

3.1. Versuche

Bei den Messungen wurde der Vorkammerdruck konstant gehalten. Gemessen wurde die Gesamtkraft auf Modell und Drehscheibe. Die Teil-

- 4 -

3. Versuche und Bersuchsergebnisse

3.1. Versuche

Bei den Messungen wurde der Vorkammerdruck konstant gehalten. Gemessen wurde die Gesamtkraft auf Modell und Drehscheibe. Die Teilkräfte auf die Drehscheibe wurden gesondert bestimmt, indem die Silhouetten dicht über der Drehscheibe gehaltert wurden.

The second s

Die Ergebnisse wurden für die Teilkräfte auf die Drehscheibe kor rigiert. Nicht korrigiert wurde jedoch der Einfluß der Strahlversperrung auf den Staudruck und auf die effektive Schräganströmung. Dieser Effekt sollte ja gerade in den Meßergebnissen zum Ausdruck kommen.

Wichtigste Versuchsdaten: Austrittsöffnung der Düse: 1,75 m x 1,00 m (Rechteck) Strahlquerschnitt A_S : 1,750 m² Strahlgeschwindigkeiten: (9,0) 12,70 bzw. 18,0 m/s Reynoldszahlen R_n : $\frac{V \cdot L}{v} = 0,235$ bis 1,99 $\cdot 10^6$ Strahlversperrungen $\frac{A}{A_S}$: 0,05 bis 0,420

Die Ergebnisse wurden auf den Staudruck der Anströmgeschwindigkeit und die Lateralfläche der Silhouetten (Kraftkomponenten) bzw. auf Staudruck der Anströmgeschwindigkeit, Lateralfläche und Länge der Modelle (Giermoment) begogen. In dimensionsloser Form sind die Ergebnisse in den Tabellen 1ff. und Abbildungen Fig. 10ff. enthalten. In der unter Punkt 3 gegebenen tabellarischen Übersicht über die Modelle sind die zugehörigen Ergebnistabellen und Abbildungen mit aufgeführt.

3.2. Erläuterung der Versuchsergebnisse

Nachfolgend soll der Einfluß des Versperrungsverhältnisses auf die Kraft- und Momentenbeiwerte der untersuchten Silhouetten besprochen werden.

Nachteilig wirkt sich bei einem Vergleich die im Verhältnis zur Modellgröße unterschiedliche Grenzschichtdicke aus. Da der Versperrungseinfluß u.U. dadurch verf**äßs**cht bzw. nicht erkennbar wird, wurden für den Vergleich Kkorrigierte" Kraftbeiwerte hinzugezogen: d.h., die Beiwerte wurden mit einem **F**aktor multipliziert, der das Verhältnis des Staudrucks außerhalb der Grenzschicht zum durchschnittlichen Staudruck bis zur mittleren Modellhöhe $H_{\underline{H}} = A/L_{OA}$ angibt. Bei diesem auf den durchschnittlichen Staudruck bis zur Modellhöhe bzw. mittleren Modellhöhe bezogenen Beiwert dürfte der Grenzschichteinfluß nahezu eliminiert sein. Das niedrigste untersuchte Versperrungsverhältnis betrug etwa 5% bzw. 10%. Eine Extrapolation auf $A/A_{\underline{S}} = 0$ ist nicht möglich. Als Vergleichsbasis für die Werte bei größeren Versperrungsverhältnissen wurden die Werte des geringsten Versperrungsverhältnisses her-**EARE**gezogen, bzw. des nächsthöheren, wenn die Messung für kleinstes $A/A_{\underline{S}}$ zu ungenau erschien.

1. Rechtecksilhouetten Nr. 1 bis 4 ("symmetrische Strahlversperrung" vgl. Fig. 3 und 10 bis 13)

Vor dem Abreißpunkt gilt: mit wachsendem Versperrungsverhältnis nehmen die Querkraft- und die Widerstandsbeiwerte ab.

Querkraft und Querkraftanstieg vermindern sich um 4-5% (A/A_S = 0,10),11-12% (A/A_S = 0,20) bzw. 23% (A/A_S = 0,40) (im Vergleich zu den Werten bei A/A_S = 0,05). Der Einfluß auf den Widerstand ist noch größer: die Verminderungen betragen 16% (A/A_S = 0,10), 22% (A/A_S = 0,20) bzw. 30% (A/A_S = 0,40). Die Strömung liegt bei größer werdender Strahlversperrung länger an, dadurch werden entsprechend höhere Querkraftmaxima erreicht, trotz geringerem Querkraftanstieg.

Bei voll abgelöster Strömung ($\epsilon = 90^{\circ}$) ist die Widerstandsverminderung bei stärkerer Strahlversperrung geringer (A/A_S = 0,40-7%), bei kleineren Versperrungen liegt die Differenz schon im Rahmen der vorliegenden Meßgenauigkeit.

Der Druckpunkt wandert bei Strahlversperrung über 0,10 na**v**h vorn, was sich in erhöhten Momentenbeiwerten äußert.

- 6 -

2. Rechtecksilhouetten Nr. 5 bis 7 ($\Lambda = 2 \times 0,100$, vgl. Fig. 4 und 14 bis 16)

Wie aus Figut hervorgeht, ragen die Silhouetten 6 und 7 seitlich in die dickere Grenzschicht am Rande des Rechteckstrahls. Dadurch ist eine Beurteilung des Versperrungseinflusses bei großen Anströmwinkeln schwierig. Für Anströmwinkel unter 40% gilt: Der Einfluß der Strahlversperrung auf die Kraftbeiwerte ist bei $A/A_S = 0,104$ klein und liegt innerhalb der Meßgenauigkeit, bei $A/A_S = 0,157$ werden die Querkraftbeiwerte um 2 bis 5% kleiner, während die Widerstandsbeiwerte um 5 bis 10% abnehmen.

Für abgelöste Strömung wurden für größere Strahlversperrungen größere Widerstandsbeiwerte gemessen. Der Einfluß der Strahlversperrung auf die Druckpunktlagen ist unbedeutend.

3. Rechtecksilhouetten Nr. 8 bis 11 ($\Lambda = 2 \ge 1,20$, vgl. Fig. 5 und 17 bis 20)

Verglichen mit den Meßwerten für $A/A_S = 0,0523$ tritt bei größeren Strahlversperrungen folgende Änderung der Beiwerte ein: Querkraftbeiwerte und Querkraftanstieg nehmen ab, und zwar um 2-3% $(A/A_S = 0,105)$, 10-17% $(A/A_S = 0,209)$ bzw. 25-30% $(A/A_S = 0,419)$. Der Einfluß der Versperrung auf die Widerstandsbeiwerte ist etwa doppelt so groß wie der Einfluß auf die Querkraftbeiwerte.

Der Druckpunkt beginnt ab $A/A_{\rm S} = 0,209$ nach vorn zu wandern. Der Widerstand bei voll abgelöster Strömung nimmt um 0,8% ($A/A_{\rm S} = 0,209$) bzw. 2,8% ($A/A_{\rm S} = 0,419$) ab, verglichen mit dem Widerstand bei $A/A_{\rm S} = 0,1047$ (der Meßwert für $A/A_{\rm S} = 0,0523$ scheint zu hoch).

4. **Behltfsshilhouetten Nr.** 12 bis 14 (Viermastbark, seitliche Projektion, $2A/L^2 = 0,575$, vgl. Fig. 6 und 21 bis 23)

Diese Segelrißsilhouette einer Viermastbark gilt als Beispiel für eine starkein Einzelflächen gegliederte Schiffssilhouette. Wie aus der Abbildung erkenntlich, ragt Silhouette Nr. 14 bei $\epsilon = 90^{\circ}$ seitl. etwas in die dickere Grenzschicht am Strahlrand. Das würde bedeuten, daß die gemessene Verminderung von $\boldsymbol{\varepsilon}_{\mathrm{D}}$ (für $\boldsymbol{\varepsilon} = 90^{\circ}$) bei $A/A_S = 0,418$ von 4% gegenüber $A/A_S = 0,105$ in Wirklichkeit noch geringer erwartet werden kann.

Querkraft und Querkraftanstieg (für anliegende Strömung) nehmen um 4% (A/A_S = 0,209) bzw. 16 bis 17% (A/A_S = 0,418),ab, die Querkraftmaxima um 3% (A/A_S = 0,209) bzw. 11-12% (A/A_S = 0,410) ab. Die Widerstandsverminderungen betragen im vorderen Bereich 4% (A/A_S = 0,209) bzw. 8% (A/A_S = 0,418) und im hinteren Anströmbereicht 5-10% (A/A_S = 0,209) bzw. 17 bis 20% (A/A_S = 0,418).

Bei ca. 20% Versperrung konnte noch keine Druckpunktänderung festgestellt werden, Bei größeren Versperrungsverhältnissen wandert der Druckpunkt im vorderen Bereich anliegender Strömung nach vorn und im hinteren Bereich anliegender Strömung **nach** hinten.

5. Schiffssilhouetten Nr. 15 bis 17 (Rahsegler von vorn, $2H^2/A = 2,32$, vgl. Fig. 7 und 24 bis 26)

Diese stark gegliederten Silhouetten mit einem großen Seitenverhältnis ($\Lambda = 2H^2/A = 2,32$) konnten nur bis zu einem Versperrungsverhältnis A/A_S = 0,209 untersucht werden.

Die Korrektur für die An**g**aufgrenzschicht der Bodenplatte war gering und wurde nicht ausgeführt.

Der Einfluß der Strahlversperrung auf die Meßwerte war auch bei $A/A_S = 0,209$ noch klein, sie dürfte zumindest teilweise im Bereich der Meßgenauigkeit liegen.

6. Schiffssilhouetten Nr. 18 und 19 (Kümo-Silhouette,
$$2A/L^2 = 0,184$$
, vgl. Fig. 8 und 27 bis 28)

Der Versperrungseinfluß konnte nur bis $A/A_S = 0,1045$ untersucht werden. Dann erreicht die Frachtschiffssilhouette bei Queranströmung seitlich bereits den Randbereich des Rechteckstrahls. Der aus den Meßwerten erkennbare Versperrungseinfluß ist gering. Die Querkraft und Querkraftanstieg nehmen bei $A/A_S = 0,1045$ um ca. 2% ab, der Widerstand bei voll abgelöster Strömung vermindert sich um 3,5%.

- 8 -

7. Schiffssilhouetten Nr. 20 bis 22 (Fährschiff-Silhouette,
$$2A/L^2 = 0,206$$
, vgl. Fig. 9 und 29 bis 31)

Die Silhouetten 21 und 22 ragen bei Queranströmung etwas in die Randzone des Strahls; trotzdem wurde bei $\epsilon = 90^{\circ}$ für alle Ver-sperrungsverhältnisse derselbe Widerstandsbeiwert ermittælt.

Verglichen mit den Werten für $A/A_S = 0,0523$ ergaben sich folgende Änderungen bei größeren Strahlversperrungen: Querkraftverminderungen (anliegende Strömung) um 2 bis 5% ($A/A_S = 0,1045$) bzw. 2 bis $6\%((A/A_S = 0,1568)$, Widerstandsverminderungen um 6 bis 10% ($A/A_S =$ 0,1045) bzw. 7 bis 12% ($A/A_S = 0,1568$). Die geringen Unterschiede der Beiwertänderungen für $A/A_S = 0,1045$ und $A/A_S = 0,1568$ deuten auf fehlerhafte Messung der Beiwerte für $A/A_S = 0,0523$ hin.

Die Druckpunktlage änderte sich nicht bei größerer Strahlversperrung.

4. Zusammenfassung des Ergebnisses

Der Einfluß der Strahlversperrung äußert sich in einer mit größerer Strahlversperrung zunehmenden Verminderung der Querkraftund Widerstandsbeiwerte (bzw. ihres Ansliegs über c), was auf eine Abnahme des effektiven Staudrucks am Modell*zurückzuführen ist. Durchdesse scheinbare Verminderung des effektiven Seitenverhältnisses mit wachsender Strahlversperrung wurde z.T. ein längeres Anliegen der Strömung bewirkt. Das führt in einigen Fällen zu einer Erhöhung des maximalen Querkraftbeiwertes.

Der Versperrungseinfluß ist für anliegende Strömung größer als für abgelöste Strömung, dann entfällt der Effekt aus der Strahlumlenkung. Es ist ferner eine Abhängigkeit des Versperrungseffektes von der Form des zu untersuchenden Körpers zu erkennen: Silhouetten mit großem Seitenverhältnis wiesen einen sehr viel größeren Einfluß des Versperrungsverhältnisses auf als die**f**enigen mit kleinem Seitenverhältnis. Weiter zeigen die Ergebnisse, daß bei ähnlichen Seitenverhältnissen der Versperrungseinfluß umso kleiner ist, je stärker die Gesamtfläche in Teilflächen zergliedert ist, also je "durchlässiger" der Körper ist.

* sowie eine stärkere Strahlumlenkung

- 9 -

5. Folgerungen

Bei Modell**versakhan**e**h**mz**b**etrachteten Rechteckstrahl sind größere Kanalkorrekturen zu berücksichtigen, wenn folgende Versperrungsverhältnisse und Abmessungen überschritten werden:

Rechteckplatten ($\Lambda = 2 \ge 0,60 \text{ und } 2 \ge 1,20$): $A/A_S > 0,10$ Viermastbark von vorn ($2H^2/A = 2,32$): $A/A_S > 0,10$ Viermastbark, seitliche Projektion ($2A/L^2$): $A/A_S > 0,20$

Bei Rechteckplatten kleinen Seitenverhältnisses ($\Lambda = 2 \ge 0,10$) und Schiffssilhouetten (z.B. Frachtschiff und Fährschiff) ist der Einfluß der Strahlversperrung gering. Die Modellängen sollten allerdings nicht so groß gewählt werden, daß die Modelle bei Queranströmung seitlich in die dickere Grenzschicht des Strahlrandes hineinragen.

Allgemein sollten die zu untersuchenden Modelle folgende Abmessungen in Relation zu den Strahlabmessungen nicht überschreiten:

A/A_S < 0,30 L/L_{AS}< 0,75 H/H_{AS}< 0,75

Diese Ergebnisse sind bereits zu einer vorsichtigen Abschätzung des Versperrungseinflusses geeignet. Im übrigen soll das Ergebnis zu einem theoretisch gestützten Korrekturverfahren für Windkanalversuche bei großen Anstellwinkeln mit Körpern großen Druckabfalls verwendet werden.

6. Symbolübersicht (vgl. Fig. 1)

F_T.....resultierende Kraft X.....Kraftkomponente in der Plattenebene, pos.nach vorn Y..... "senkrecht zur Plattenebene C.....kraft), positiv in Anströmrichtung gesehen nach links

D	"Kraftkomponente in Anströmrichtung (Widerstand), positiv in Anströmrichtung
N	Moment um die Hochachse, bezogen auf Mitte der Rechteckplatte bzw. Mitte der Einspannlänge der Schiffssilhouetten (L/2).
c _{FT} , c _X , c _Y , c _C , c _D .	dimensionslose Beiwerte der Kraftkomponenten, be- zogen auf den Staudruck der Anströmgeschwindigkeit und Lateralfläche der Modelle.
с _N	dimensionsloser Beiwert des Momentes, bezogen auf den Staudruck der Anströmgeschwindigkeit, Lateral- fläche A und Bezugslänge L der Modelle.
V	Anströmgeschwindigkeit
ρ 2	Luftdichte unter Versuchsbedingungen
$q = \frac{q \cdot V^{-1}}{2}$	Staudruck der Anströmgeschwindigkeit
^q v	Vorkammerdruck des Windkanals
ν	kinematische Zähigkeit der Luft unter Versuchsbe- dingungen
L	Bezugslänge für Reynoldszahl und Momente (Länge der Rechteckplatten, Einspannlänge der Längsschiffssilhouetten bzw. Länge der größten Rah)
L _{OA} ·····	größte Länge der Längsschiffssilhouetten
H 	Höhe der Rechteckplatten bzw. Höhe der obersten Rah
^H m•••••••••••••••	mittlere Modellhöhe: H _m = A/L _{OA}
L _{AS}	Länge des Strahlquerschnitts
H _{AS}	Höhe des Strahlquerschnitts
A	Projektionsfläche der Rechteckplatten bzw. Schiffs- silhouetten (Lateralfläche)
A _S	Strahlquerschnitt
A/A _S	Versperrungsverhältnis
K	Seitenverhältnis der Rechteckplatten (A = 2 x H/L) Für Schiffssilhouetten wurde eine dem Seitenver- hältnis ähnliche Größe benutzt:
	$2A/L^2 \approx \Lambda$ bzw. $2H^2/A \approx \Lambda$
e	Druckpunktlage, d.h. Entfernung des Schnittpunktes der Resultierenden mit der Plattenebene von vorn
e/L	relative Druckpunktlage
E • • • • • • • • • • • • • • • • • • •	Anströmwinkel des Modells, bezogen auf positive x-Richtung

7. Schrifttum

Pope, A.,

[3]

- [1] Glawert, H.: "Wind Tunnel Interference on Wings, Bodies and Airscrews", Aeronautical Research Committee Reports and Memoranda No. 1566, Sept. 1933.
 [2] Pankhurst, R., Holder, D.: "Wind-Tunnel Technique", London 1952.
- noraci, b.. "ina-ranner reenirgae, bonaon (992.
- Harper, J.: "Low-Speed Wind Tunnel Testing", John Wiley and Sons, Inc., New York 1966.
- [4] Wagner, B.: "Windkanalversuche mit dem Modell des Forschungsschiffes "Meteor", IfS-Bericht Nr. 153, Febr. 1966 Febr. 1966.
- [5] Wagner, B.: "Windkanalversuche mit dem Takelagemodell einer Viermastbark", IfS-Bericht Nr. 172, Okt. 1966.
- [6] Wagner, B.: "Windkanalversuche mit Überwasserschiffsmodellen - Kümo 600 tdw, Frachtschiff 4500 tdw, Kühlschiff, Tanker 50 000 tdw", IfS-Bericht Nr. 188 (in Vorbereitung).
- [7] Wagner, B.: "Windkanalversuche mit Überwasserschiffsmodellen - Fährschiff, Fahrgastschiff, Hecktrawler, Schlepper und Tragflächenboot", IfS-Bericht Nr. 189 (in Vorbereitung).
- [8] Thieme, H.: "Zur Behandlung von Ruderproblemen", Schiff und Hafen, 1955, S. 605/618.

Silhouette Nr. 1: Rechteck 0,225 m x 0,392 m

 $\Lambda = 2 \times 0,575$; $\frac{\Lambda}{\Lambda_S} = 0,0501$

<u>Tab.</u> 1a: $R_n = 0,332.10^6$

C	°c	° _D	°×	° _Y	с _R	с _N	•/L
0	0.022	0.017	-0.017	0.022	0.028	-0.0065	0•788
10	0.371	0.067	-0.002	0.377	0.377	0.0776	0.294
20	0.848	0.281	0.026	0.893	0.894	0.1078	0.379
30	1.208	0.657	0.035	1.375	1.375	0.0884	0.436
32	1.259	0.736	0.043	1.458	1.458	0.1013	0.430
33	1.259	0.787	0.026	1.484	1.484	0.0992	0.433
34	1.259	0.804	0.038	1.493	1.493	0.1013	0.432
35	1.270	0.826	0.052	1.514	1.515	0.1013	0.433
36	1.270	0.871	0.042	1.539	1.540	0.0927	0.440
37	0.820	0.601	0.014	1.017	1.017	0.0668	0•434
40	0•798	0.652	0.014	1.030	1.030	0•0 69 0	0•433
45	0.781	0.753	0.020	1.085	1.085	0.0647	0•440
50	0.759	0.854	0.032	1.142	1.142	0.0604	0.447
60	0.596	0.938	0.047	1.110	1.111	0.0453	0.459
70	0.405	1.040	0.025	1.115	1.116	0.0323	0.471
80	0.230	1.096	0.037	1.119	1.120	0.0108	0.490
85	0.124	1.073	0.030	1.080	1.080	0.0194	0.482
90	0.034	1.090	0.034	1.090	1.091	-0.0129	0.512

<u>Tab.</u> 1b: $R_n = 0,470 \cdot 10^6$

C	°c	с _р	°×	°Y	с _в	CN	·•/L
0	0.022	0.014	-0.014	0.022	0.027	-0.0054	0.740
10	0.385	0.076	-0.008	0•392	0•392	0.0808	0 • 294
20	0.877	0.320	-0.001	0.933	0.933	0.1100	0.382
25	1.062	0.478	0.016	1.164	1.164	0.0927	0.420
30	1.219	0.666	0.033	1.389	1.389	0.0916	0.434
33	1.247	0.764	0.038	1.462	1.463	0.0905	0.438
35	1.270	0.851	0.031	1.529	1.529	0.1046	0.432
36	1.264	0.871	0.038	1.535	1,535	0.0884	0.442
37	0.829	0.596	0.023	1.020	1.021	0.0517	0.449
40	0.804	0.643	0.024	1.029	1.029	0.0571	0.444
45	0.787	0.747	0.028	1.085	1.085	0.0668	0.438
50	0.753	0.826	0.046	1.117	1.118	0.0539	0.452
60	0.576	0.919	0.039	1.084	1.084	0.0420	0.461
70	0.410	1.006	0.041	1.085	1.086	0.0194	0.482
80	0.214	1.101	0.019	1.122	1.122	0.0043	0.496
85	0.101	1.113	0.004	1.117	1.117	0.0043	0.496
90	0.031	1.107	0.031	1.107	1.107	-0.0129	0.512

ł

Silhouette Nr. 2: Rechteck 0,318 m x 0,554 m

 $A = 2 \times 0,575$; $\frac{A}{A_S} = 0,1001$

<u>**Tab. 2a:**</u> $R_n = 0,469$

C	°c	°D	° _X	cy	° _R	° _N	e/L
0	0.011	0.025	-0.025	0.011	0.028	-0.0038	0.839
10	0.379	0.067	-0.001	0.385	0.385	0.0763	0.302
20	0.846	0.267	0.038	0.886	0.887	0.0923	0.396
25	1.028	0.455	0.022	1.124	1.125	0.0824	0.427
30	1.155	0.621	0.040	1.310	1.311	0.0770	0.441
35	1•225	0.815	0.035	1•471	1.471	0.0915	0•438
36	1.236	0.826	0.058	1•486	1•487	0.0763	0•449
37	0.832	0.579	0.038	1.012	1.013	0.0427	0•458
40	0.804	0.621	0.041	1.015	1.015	0.0496	0.451
45	0.747	0.694	0.038	1.019	1.020	0.0435	0•457
50	0.739	0.801	0.051	1.088	1.090	0.0465	0.457
60	0.534	0.882	0.021	1.031	1.031	0.0381	0.463
70	0.393	1.017	0.022	1.090	1.090	0.0229	0.479
80	0.202	1.056	0.016	1.075	1.076	-0.0031	0.503
85	0.112	1.068	0.019	1.073	1.074	-0.0061	0.506
90	0.017	1.079	0.017	1.079	1.079	-0.0198	0.518

<u>Tab. 2b</u>: $R_n = 0,665$

E	° c	c	c _x	c _v	° _R	C N	e/L
	0.017	0.013	-0.013	0.017	0.021	-0.0034	0.704
าด้	0.379	0.059	0.008	0.384	0.384	0.0755	0.303
20	0.848	0.270	0.037	0.890	0•890	0•0992	0•389
20	1.028	0.431	0.044	1.114	1.115	0.0850	0.424
20	1,188	0.646	0.035	1.352	1.353	0.0870	0.436
26	1 270	0.818	0.059	1.509	1.510	0.0969	0.436
22	1 259	0.846	0.056	1,515	1.516	0.0847	0.444
20	1 2 3 1	0 863	0.052	1.502	1.503	0.0801	0.447
20	1.271	0.597	0.044	1.010	1.011	0.0542	0.446
38	0.023	0 6 3 4	0.044	1.023	1.024	0.0534	0.448
4()		0.024	0 033	1.034	1.035	0.0496	0.452
45	0.754	0.708	0.043	1.089	1.090	0.0481	0.456
50	0.133	0.806	0.043	1.059	1.060	0.0374	0.465
60	0 • 556	0.902	0.031	1.059	1.060	0.0225	0.479
70	0•382	0 • 9 9 0	0.020	1.061	1.002	0.0225	0 4 9 9
80	0.214	1.076	0.023	1.097	1.09/	0.0130	0.400
85	0.115	1.107	0.018	1.113	1.113	0.0000	0.00
90	0.020	1.037	0.020	1.037	1.037	-0.0175	0.517

Silhouette Mr. 3: Rechteck 0.450 m x 0.784 m

 $A = 2 \pm 0,575$; $\frac{A}{A_{S}} = 0,2006$

<u>**Tab. 3a:**</u> $R_n = 0,664 \cdot 10^6$

C	°_	°D	°x	°Y	° _R	° _N	•/L
0	-0.003	0.014	-0.014	-0.003	0.014	-0.0027	-0.459
10	0.347	0.051	0.010	0.350	0.351	0.0798	0.272
20	0.798	0.281	0.009	0•846	0.846	0.1105	0.369
25	0.975	0.381	0.067	1.044	1.047	0.1032	0.401
30	1.110	0.584	0.049	1.253	1.254	0.1019	0.419
35	1.231	0.791	0.058	1.462	1.463	0.1307	0.411
36	1.239	0.822	0.063	1.485	1.487	0.1323	0.411
37	1.267	0.886	0.055	1.545	1.546	0.1436	0.407
38	1.267	0.915	0.059	1.562	1.563	0.1490	0.405
39	1.280	0.947	0.070	1.590	1.592	0.1531	0.404
40	1.297	1.003	0.065	1.638	1.639	0.1617	0.401
41	1.311	1.038	0.076	1.670	1.672	0.1647	0.401
42	1.297	1.094	0.054	1.696	1.697	0.1679	0.401
43	1.305	1.128	0.065	1.724	1.725	0.1668	0.403
44	1.299	1.148	0.077	1.732	1.734	0.1630	0.406
45	1.312	1.181	0.092	1.763	1.766	0.1566	0.411
46	0.736	0.707	0.039	1.020	1.020	0.0655	0•436
50	0.694	0.742	0.055	1.014	1.016	0•0609	0•440
60	0.552	0.891	0.033	1.047	1.048	0•0490	0.453
70	0.417	1.030	0.040	1.110	1.111	0.0391	0.465
80	0.232	1.075	0.042	1.099	1.099	0.0251	0.477
85	0.129	1.082	0.034	1.089	1.089	0.0156	0.486
90	0.031	1.065	0.031	1.065	1.065	-0.0011	0.501

<u>**Tab.** 3b</u>: $R_{\rm R} = 0,941 \cdot 10^6$

C	°c	° _D	°x	°y	° _R	° _N	•/L
0	-0.003	0.015	-0.015	-0.003	0.016	-0.0030	-0.555
10	0.340	0.044	0.016	0.342	0.343	0.0779	0.273
20	0.784	0.254	0.029	0.824	0.824	0.1102	0.366
30	1.120	0•589	0.050	1.264	1.265	0.1043	0.417
35	1.247	0.801	0.060	1.481	1.482	0.1358	0.408
40	1.319	1.013	0.072	1.662	1.663	0.1647	0.401
43	1.319	1.138	0.067	1.741	1.742	0.1676	0.404
45	1.285	1,184	0.071	1.746	1.748	0.1560	0.411
46	0.738	0.711	0.037	1.024	1.024	0.0663	0.435
50	0.695	0.768	0.039	1.036	1.036	0.0660	0.436
60	0.558	888.0	0.039	1.048	1.048	0.0547	0.448
70	0•409	1.010	0.039	1.089	1.090	0.0402	0.463
80	0.229	1.076	0.039	1.099	1.100	0.0248	0.477
85	0.126	1.082	0.032	1.089	1.089	0.0146	0.487
90	0.030	1.085	0.030	1.085	1.086	-0.0001	0.500

•

Silhouette Nr. 4: Rechteck 0.635 m x 1.108 m

$$\Lambda = 2 \times 0,575$$
; $\frac{\Lambda}{\Lambda_S} = 0,4016$

<u>**Tab.**</u> 4 : $R_n = 0,938 \cdot 10^6$

C	°c	° _D	°x	° _Y	°R	° _N	•/L
0	-0.020	0.011	-0.011	-0.020	0.023	-0.0013	0.432
10	0 •299	0.051	0.002	0.303	0.303	0.0797	0.237
20	0.686	0.229	0.019	0.723	0.723	0.1123	0.345
25	0.852	0.362	0.032	0.925	0.926	0.1021	0.390
30	0.963	0.522	0.030	1.095	1.095	0.0983	0.410
35	1.043	0.688	0.035	1.249	1.249	0.1162	0.407
40	1.110	0.862	0.054	1.405	1.406	0.1437	0.398
42	1.120	0.934	0.055	1.458	1.459	0•1491	0•398
43	1.113	0.994	0.032	1.492	1.492	0.1504	0.399
44	1.127	1.034	0.039	1.529	1.530	0.1525	0.400
45	1.127	1.063	0.045	1.549	1.550	0.1543	0.400
46	1.106	1.083	0.043	1.548	1.548	0.1571	0.398
47	1.099	1.118	0.041	1.567	1.568	0.1505	0.404
48	1.078	1.089	0.072	1.531	1.533	0.1391	0.409
49	0.720	0.782	0.030	1.063	1.063	0.0707	0.433
50	0.692	0.779	0.029	1.041	1.042	0.0720	0.431
55	0.650	0.853	0.043	1.072	1.073	0.0701	0.435
60	0.559	0.919	0.025	1.075	1.075	0.0643	0.440
70	0.395	1.019	0.022	1.093	1.093	0.0478	0.456
80	0.213	1.050	0.027	1.071	1.071	0.0302	0.472
85	0•119	1.061	0.026	1.068	1.068	0.0195	0.482
90	0.025	1.053	0.025	1.053	1.053	0.0030	0.497

Silhouette Mr. 5: Rechteck 0.0958 m x 0.958 m

 $\Lambda = 2 \times 0,10$; $\frac{\Lambda}{\Lambda_S} = 0,0532$

<u>**Tab.** 5</u>: $R_{n} = 0,811.10^{6}$

•	°c	° _D	° _X	° _Y	° _R	° _N	•/L
0	0.032	0.022	-0.022	0.032	0.039	-0.0017	0.552
10	0.172	0.038	-0.007	0.176	0.176	0.0262	0.351
20	0.436	0.167	-0.008	0.467	0.467	0.0719	0.346
30	0.679	0•388	0.003	0.782	0.782	0.1353	0.327
40	0.792	0.630	0.026	1.012	1.012	0.1818	0.320
45	0.792	0.716	0.053	1.067	1.068	0.1768	0.334
50	0.738	0.781	0.063	1.073	1.075	0.1666	0.345
55	0.673	0.889	0.042	1,114	1.115	0.1598	0.357
60	0.560	0.878	0.046	1.041	1.042	0.1243	0.381
70	0.377	0.910	0.043	0.984	0.985	0.0567	0.442
80	0.210	0.900	0.051	0.922	0.924	0.0262	0.472
85	0.135	0.916	0.054	0.924	0.926	0.0118	0.487
90	0.054	0.910	0.054	0.910	0.912	-0.0161	0.518

Tab. 5b: $R_n = 1,15 \cdot 10^6$

•	• c	° _D	°x	° _Y	° _R	C _N	●/L
0	0.027	0.013	-0.013	0.027	0.030	-0.0004	0.516
10	0•189	0.038	-0.004	0.192	0.192	0.0279	0.355
20	0.442	0.151	0.009	0.467	0.467	0.0727	0.344
30	0.684	0.377	0.015	0.781	0.791	0.121	0.544
40	0.797	0.630	0.030	1 014	1 016	0.1319	0.331
45	0.781	0.698		1.016	1.010	0.1801	0.323
50	0.743	0.0707	0.059	1.046	1.047	0•1814	0.327
50	0.743	0.191	0.057	1.089	1.090	0.1759	0.338
22	0.095	0.862	0.075	1.105	1.107	0.1590	0.356
60	0.560	0.867	0.052	1.031	1.032	0.1260	0.378
70	0.388	0.894	0.059	0.973	0.975	0.0524	0.446
80	0.207	0.927	0.043	0.948	0.949	0 0321	0.440
85	0.129	0.927	0.048	0.934	0 936	0.01521	0.400
90	0.032	0.905	0.032	0.905	0.936	0.0152	0.484
			0.022	0.0909		-0.0068	0.507

Silhouette Hr. 6: Rechteck 0.1354 m x 1.354

 $A = 2 \pm 0,10$; $\frac{A}{A_B} = 0,1042$

<u>Tab.</u> 6a: $R_n = 1,146 \cdot 10^6$

•	°c	°D	°×	٥	° _R	с _N	•/L
0	0.011	0.011	-0.011	0.011	0.015	0.0000	0.500
10	0.170	0.040	-0.010	0.174	0.174	0.0296	0.330
20	0.434	0.145	0.012	0.457	0.457	0.0724	0-342
30	0.690	0.356	0.037	0.775	0.776	0.1292	0.333
40	0.813	0.625	0.044	1.025	1.026	0.1855	0.319
45	0.789	0.727	0.044	1.072	1.073	0.1909	0.322
50	0.760	0.821	0.054	1.118	1.119	0.1816	0.337
55	0•690	0.921	0.036	1.150	1.151	0.1741	0.349
60	0.587	0.932	0.043	1.101	1,101	0.1478	0.366
70	0.385	0.991	0.023	1.063	1.063	0.0736	0.431
80	0.205	1.005	0.027	1.025	1.025	0.0398	0.461
85	0.121	1.032	0.031	1.038	1.039	0.0290	0.472
90	0.024	1.026	0.024	1.026	1.026	-0.0009	0.501

<u>Tab.</u> 6b: R_n = 1,625 · 10⁶

C	° c	°D	°x	° _Y	° _R	° _N	•/L
0	0.016	0.011	-0.011	0.016	0.019	0.0000	0.500
10	0.174	0.039	-0.008	0.178	0.178	0.0292	0.336
20	0.442	0.151	0.009	0.467	0.467	0.0718	0.346
30	0.703	0.366	0.034	0.792	0.793	0.1346	0.330
40	0.811	0.633	0.036	1.028	1.029	0.1867	0.318
45	0.797	0.743	0.038	1.089	1.090	0.1963	0.320
50	0.758	0.839	0.041	1.130	1.131	0.1913	0.331
55	0.695	0.902	0.052	1.138	1.139	0.1804	0.341
60	0.593	0.927	0.050	1.099	1.100	·0.1532	0.361
70	0.397	0.692	0.137	0•786	0.798	0.1074	0.363
80	0.206	1.026	0.025	1.046	1.047	0.0416	0.460
85	0.120	1.005	0.032	1.011	1.012	0.0254	0.475
90	0.024	1.028	0.024	1.028	1.028	-0.0010	0.501

Silhouette Mr. 7: Rechteck 0.166 m x 1.66 m

 $A = 2 \pm 0,10$; $\frac{A}{A_{\rm S}} = 0,1566$

<u>Tab.</u> 7a: $R_n = 1,405 \cdot 10^6$

C	ိင	° _D	°×	٥ _γ	° _R	°N	•/L
0	0.009	0.007	-0.007	0.009	0.011	-0.0016	0.681
10	0.167	0.027	0.002	0.169	0.169	0.0285	0.332
20	0•444	0.135	0.025	0.463	0.464	0.0711	0.346
30	0•686	0.343	0.046	0.766	0.767	0.1280	0.333
40	0•795	0.591	0.059	0•989	0.991	0•1759	0•322
45	0.783	0.693	0.063	1.044	1.046	0.1861	0.322
50	0.742	0.767	0.075	1.064	1.067	0.1817	0.329
55	0.688	0.882	0.058	1.117	1.118	0.1742	0.344
60	0.609	0.925	0.065	1.105	1.107	0.1576	0.357
70	0.417	0.984	0.055	1.067	1.069	0.0839	0.421
80	0.237	1.070	0.048	1.095	1.096	0.0443	0.460
85	0.142	1.032	0.051	1.041	1.042	0.0275	0.474
90	0.036	1.068	0.036	1.068	1.069	-0.0002	0.500

<u>Tab.</u> 7b: $R_{n} = 1,990 \cdot 10^{6}$

¢	e c	° _D	° x	° _Y	° _R	° _N	•/L
0	0.009	0.004	-0.004	0.009	0.010	-0.0014	0.654
10	0.171	0.031	-0.000	0.173	0.173	0.0288	0.334
20	0.433	0.140	0.016	0.455	0.455	0.0719	0.342
30	0.699	0.365	0.033	0.788	0.789	0.1315	0.333
40	0.795	0.616	0.039	1.005	1.005	0.1819	0.319
45	0.777	0.725	0.036	1.062	1.063	0.1908	0.320
50	0.749	0.808	0.054	1.100	1.102	0.1894	0.328
55	0.680	0.854	0.067	1.089	1.091	0.1805	0.334
60	0.598	0.919	0.058	1.095	1.097	0.1578	0.356
70	0.404	0.982	0.044	1.061	1.062	0.0867	0.418
80	0.218	1.045	0.033	1.067	1.068	0.0465	0.456
85	0.124	1.061	0.031	1.068	1.068	0.0311	0.471
90	0.030	1.054	0.030	1.054	1.054	0.0020	0•498

Silhouette Fr. 8: Rechteck 0.332 m x 0.277 m

 $A = 2 \pm 1,20$; $\frac{A}{A_S} = 0,0523$

<u>**Tab.**</u> 8a: $R_n = 0,235 \cdot 10^6$

C	°c	° _D	°×	° Y	° _R	o _N	•/L
0	0.000	0.038	-0.038	0.000	0.038	-0.0029	
10	0.555	0.081	0.017	0.560	0.561	0.0790	0.359
15	0.765	0.210	-0.005	0.793	0.793	0.0556	0.430
18	0.797	0.259	0.000	0.838	0.838	0.0351	0.458
20	0.770	0.286	-0.005	0.822	0.822	0.0263	0•468
21	0.754	0.296	-0.006	0.810	0.810	0.0439	0.446
22	0.722	0.296	-0.004	0.780	0.780	0.0439	0.444
23	0.711	0.302	0.000	0.772	0.772	0.0409	0.447
25	0.706	0.334	-0.004	0.781	0.781	0.0526	0.433
27	0.700	0.339	0.016	0.778	0.778	0.0263	0.466
30	0.700	0.404	0.000	0.808	0 • 808	0 • 0 4 9 7	0•438
32	0.695	0.452	-0.016	0.829	0•829	0 • 0 5 8 5	0•429
35	0.700	0.506	-0.013	0 • 864	0.864	0•0585	0•432
37	0.695	0.512	0.009	0.863	0.863	0.0322	0.463
40	0.695	0.582	0.001	0.906	0.906	0.0526	0.442
45	0.684	0.690	-0.004	0.971	0.971	0.0585	0.440
50	0.652	0.754	0.015	0.997	0.997	0.0526	0.447
60	0.549	0.943	0.004	1.091	1.091	0.0439	0.460
70	0.420	1.072	0.028	1.151	1.151	0.0088	0.492
80	0.226	1.137	0.025	1.159	1.159	0.0205	0.482
85	0.124	1.180	0.021	1.186	1.186	0.0146	0.488
00	0.027	1,190	0.027	1,190	1,191	0.0146	0.488

<u>**Tab.** 8b</u>: $R_n = 0,332 \cdot 10^6$

C	° c	° D	°×	°Y	° _R	° _N	•/L
0	0.005	0.019	-0.019	0.005	0.020	-0.0044	1.314
5	0.259	0.035	-0.012	0.261	0.261	0.0541	0.292
10	0.555	0.108	-0.010	0.565	0.565	0.0877	0.345
15	0.754	0.205	-0.003	0.781	0.781	0.0526	0.433
18	0.813	0.256	0.008	0.853	0.853	0.0395	0.454
20	0•776	0.288	-0.006	0.827	0.828	0.0395	0.452
21	0.743	0.294	-0.008	0.799	0.799	0.0395	0.451
22	0.727	0.302	-0.007	0.787	0.787	0.0409	0.448
25	0.722	0.342	-0.005	0.799	0.799	0.0483	0.440
30	0•695	0•396	0.005	0•800	0.800	0.0483	0.440
35	0.711	0•496	0.002	0.867	0.867	0.0585	0.433
40	0•690	0•584	-0.005	0.904	0.904	0.0541	0.440
50	0.679	0.743	0.042	1.006	1.007	0.0409	0.459
60	0.555	0.929	0.016	1.082	1.082	0.0336	0.469
70	0.412	1.067	0.022	1.143	1.143	0.0292	0.474
80	0.226	1.137	0.025	1,159	1.159	0.0146	0.487
85	0.135	1,185	0.031	1.192	1.193	0.0117	0.490
90	0.032	1.199	0.032	1.199	1.199	-0.0073	0.506

Silhouette Nr. 9: Rechteck 0.470 m x 0.392 m

.

 $\Lambda = 2 \times 1,20$; $\frac{\Lambda}{\Lambda_{S}} = 0,1047$

<u>**Tab.**</u> 9a: $R_n = 0,332 \cdot 10^6$

C	°c	° _D	°×	° _Y	с _R	с _N	€/L
0	0.003	0.024	-0.024	0.003	0.024	-0.0072	3.186
5	0.245	0.030	-0.008	0.247	0.247	0.0486	0.303
10	0.547	0.086	0.010	0.553	0.554	0.0909	0.336
15	0.773	0.197	0.010	0.798	0.798	0.0672	0.416
18	0.811	0.253	0.010	0.849	0.849	0.0455	0.446
20	0•784	0.272	0.012	0 • 8 3 0	0.830	0.0382	0.454
22	0•741	0•291	0.008	0•796	0.796	0.0434	0.445
25	0.714	0.312	0.018	0.779	0.779	0.0413	0.447
30	0.698	0.385	0.015	0.797	0.797	0.0527	0.434
40	0.703	0.566	0.019	0.902	0•902	0.0558	0.438
50	0.654	0.773	0.004	1.013	1.013	0.0527	0.448
60	0.539	0.921	0.006	1.067	1.067	0.0455	0.457
70	0.401	1.048	0.019	1.122	1.122	0.0238	0.479
80	0.221	1.139	0.020	1.160	1.161	0.0176	0.485
85	0.129	1.161	0.028	1.168	1.168	0.0176	0.485
9 0	0.027	1.161	0.027	1,161	1.161	0.0072	0.494

<u>**Tab.** 9b</u>: $R_n = 0,470 \cdot 10^6$

E	° _C	°D	cx	° _Y	c _R	C _N	€/L
0	0.005	0.018	-0.018	0.005	0.018	-0.0047	1.363
5	0.256	0.022	0.001	0.257	0.257	0.0506	0.303
10	0.545	0.090	0.006	0.553	0.553	0.0925	0.333
15	0.784	0.205	0.005	0.810	0.810	0.0682	0.416
18	0.816	0.256	0.009	0.855	0.855	0.0506	0•441
20	0•789	0.272	0.014	0.835	0.835	0.0424	0.449
22	0.751	0.288	0.014	0.805	0.805	0.0444	0.445
25	0.722	0.310	0.024	0.785	0.785	0.0527	0.433
30	0.714	0.412	-0.000	0.824	0.824	0.0465	0.444
40	0.706	0.558	0.026	0.899	0.899	0.0630	0.430
50	0.657	0.768	0.010	1.010	1.011	0.0506	0.450
60	0.545	0.928	0.008	1.076	1.076	0.0388	0•464
70	0.382	1.034	0.006	1.103	1.103	0.0310	0.472
80	0.213	1.118	0.015	1.138	1.138	0.0134	0.488
85	0.119	1.134	0.019	1.140	1.140	0.0072	0.494
90	0.018	1.129	0.017	1.129	1.129	0.0021	0.498

Silhouette Nr. 10: Rechteck 0,664 m x 0.554 m

 $A = 2 \times 1,20$; $\frac{A}{A_{S}} = 0,2094$

<u>Tab. 10a:</u> $\mathbf{I}_{\mathbf{E}} = 0,469 \cdot 10^6$

C	<mark>۰</mark> ر	٥ _D	°x	° _Y	° _R	° _N	e/L
0	-0.019	0.012	-0.012	-0.019	0.022	-0.0121	-0.140
5	0.214	0.011	0.008	0.214	0.214	0.0439	0.295
10	0.475	0.058	0.026	0.478	0.479	0.0874	0.317
15	0.726	0.128	0.064	0.734	0.737	0.0771	0.395
18	0.807	0.228	0.033	0.838	0.838	0.0530	0.437
19	0.796	0.233	0.039	0.828	0.829	0.0501	0•440
20	0.807	0.256	0.035	0.846	0.846	0.0446	0.447
22	0.756	0.264	0.038	0.799	0.800	0.0453	0•443
25	0.723	0.290	0.043	0.778	0.779	0.0486	0.437
30	0.675	0.357	0.028	0.763	0.763	0.0537	0.430
35	0.688	0.431	0.042	0.811	0.812	0.0548	0.432
40	0.673	0.508	0.044	0.842	0.843	0.0559	0.434
50	0.625	0.688	0.036	0.929	0.930	0.0523	0•444
60	0.528	0.857	0.029	1.006	1.006	0.0439	0.456
70	0.392	0.978	0.034	1.053	1.053	0.0329	0.469
80	0.224	1.080	0.033	1.102	1.103	0.0183	0.483
85	0.127	1.120	0.028	1.127	1.128	0.0117	0.490
90	0.019	1.115	0.019	1,115	1,115	-0.0015	0.501

<u>Tab. 10b</u>: R = 0,665.10⁶

C	° _C	°D	°x	° _Y	° _R	° _N	•/L
0	-0.012	0.011	-0.011	-0.012	0.016	-0.0110	-0.405
5	0.218	0.012	0.007	0.218	0.219	0.0457	0.291
10	0•485	0.062	0.023	0.488	0.489	0.0892	0.317
15	0.722	0.156	0.036	0.738	0.739	0.0790	0.393
18	0.809	0.224	0.037	0.839	0.840	0.0563	0.433
19	0.807	0.229	0.046	0.837	0.839	0.0490	0.441
20	0•795	0.244	0.043	0.830	0.831	0.0450	0.446
22	0.747	0.265	0.034	0.792	0.792	0.0464	0.441
25	0.718	0.288	0.042	0.773	0.774	0.0501	0.435
30	0.695	0.354	0.041	0.779	0.780	0.0552	0.429
35	0.680	0.417	0.048	0.797	0.798	0.0578	0.427
40	0.673	0.516	0.038	0.847	0.848	0.0559	0.434
50	0.638	0.696	0.041	0.944	0.945	0.0581	0.438
60	0.548	0.860	0.045	1.019	1.020	0.0448	0.456
70	0.397	0.988	0.035	1.065	1.065	0.0314	0.470
80	0.224	1.088	0.031	1.110	1,111	0.0190	0.483
85	0.124	1,125	0.025	1.131	1,131	0.0135	0.488
90	0.026	1.121	0.026	1.121	1.121	0.0013	0.499

L

Silhouette Nr. 11: Rechteck 0.940 m x 0.784 m

 $\Lambda = 2 \times 1,20$; $\frac{\Lambda}{\Lambda_S} = 0,419$

<u>**Tab. 11a:**</u> $R_n = 0,664 \cdot 10^6$

C	°c	°D	°×	° _Y	° _R	° _N	€/`L
0	-0.014	0.010	-0.010	-0.014	0.017	-0.0068	0.016
5	0•187	0.020	-0.003	0.188	0•188	0•0482	0 • 2 4 3
10	0.413	0.053	0.019	0.416	0.417	0.0908	0.282
15	0.598	0.147	0.012	0.616	0.616	0.0856	0.361
18	0 .688	0.201	0.021	0.717	0.717	0.0701	0.402
19	0•688	0.205	0.030	0.718	0.718	0.0626	0.413
20	0.695	0.230	0.021	0.732	0.732	0.0576	0•421
22	0.708	0.261	0.023	0.755	0.755	0.0527	0.430
25	0.688	0.292	0.027	0.747	0.747	0.0500	0.433
30	0.688	0.362	0.031	0.777	0.777	0.0572	0.426
35	0.679	0.441	0.028	0.809	0.809	0.0611	0.424
40	0.661	0•515	0.030	0.837	0.838	0.0621	0•426
50	0.614	0•685	0.030	0•920	0.920	0.0576	0•437
60	0•529	0•848	0.034	0.999	0•999	0.0492	0.451
70	0.392	0.986	0.031	1.060	1.061	0.0372	0.465
80	0.216	1.065	0.028	1.086	1.086	0.0221	0.480
85	0.123	1.076	0.028	1.083	1.083	0.0119	0•489
90	0.029	1.092	0.029	1.092	1.092	-0.0001	0.500

<u>Tab. 11b</u>: $R_n = 0,891 \cdot 10^6$

C	Do	°D	°x	° y	° _R	°.	•/L
0	-0.011	0.009	-0.009	-0.011	0.014	0.0056	-0.034
- 5	0.189	0.011	0.005	0.190	0.190	-0.0472	0.251
10	0.417	0.056	0.018	0.420	0.420	-0.0907	0.284
15	0.600	0.147	0.013	0.618	0.618	-0.0822	0.367
18	0.675	0.195	0,022	0.702	0.703	-0.0682	0.403
20	0.705	0.233	0.022	0.742	0.742	-0.0586	0.421
22	0.694	0.255	0.023	0.739	0.739	-0.0530	0.428
25	0,682	0.297	0.019	0.744	0.744	-0.0541	0.427
30	0.667	0.359	0.022	0,758	0.758	-0.0593	0.422
35	0,672	0.436	0,028	0,801	0,801	-0.0642	0.420
40	0.669	0.519	0.032	0.846	0.847	-0.0653	0.423
50	0,616	0,697	0,024	0,929	0.930	-0.0610	0.434
60	0.535	0.877	0.025	1.027	1.027	-0.0537	0.448
70	0.395	0.998	0.029	1.072	1.073	-0,0405	0.462
80	0.218	1.072	0.028	1.094	1.094	-0,0217	0.480
85	0.122	1.096	0.026	1.103	1.103	-0.0113	0.490
90	0.026	1.108	0.026	1,108	1.109	-0.0022	0.498

18b. 12 (vel. Pig.

Silbouette Mr. 12: Viermastbark, seitlighe Projektion

$$\frac{2A}{L_{0A}} = 0,575 ; \frac{A}{L_{B}} = 0,1045$$

124: R = 0,678.10⁶

0.003

180

0.022

0.022 -0.003

6 1-

;

e	• _c	° _D	°x	° _Y	° _R	C N	•/L _{DA}
	0.000	0.019	-0.019	0.000	0.019	-0.0018	
10	0.347	0.073	-0.011	0.355	0.355	0.0839	0.263
15	0.549	0.143	0.004	0.568	0.568	0.1238	0.282
20	0.735	0.253	0.014	0.778	0.778	0.1509	0.306
25	0.873	0.388	0.017	0.955	0.955	0.1690	0.323
30	0.889	0.490	0.020	1.015	1.015	0.1582	0.344
35	0.797	0.549	0.007	0.968	0.968	0.1437	0.352
40	0.754	0.611	0.016	0.971	0.971	0.1250	0.371
45	0.765	0.706	0.042	1.040	1.041	0.1159	0.389
50	0.716	0.800	0.035	1.073	1.074	0.1153	0.393
60	0.593	0.956	0.035	1.124	1.125	0.0948	0.416
70	0.426	1.056	0.039	1.138	1.138	0.0845	0.426
80	0.237	1.115	0.040	1.139	1,140	0.0761	0.433
90	0.032	1.174	0.032	1.174	1,175	0.0616	0.448
100	-0.156	1.145	0.045	1.154	1,155	0.0380	0.467
110	-0.350	1.069	0.037	1,125	1,125	0.0103	0.491
120	-0.506	0.959	0.041	1.084	1.084	-0.0024	0.502
130	-0.652	0.819	0.027	1.046	1.047	-0.0072	0.507
140	-0.695	0.636	0.040	0.941	0.942	-0.0217	0.523
145	-0.716	0.555	0.044	0.905	0.906	-0.0266	0.529
150	-0.749	0.477	0.038	0.887	0.888	-0.0356	0.540
155	-0.792	0.412	0.039	0.892	0.893	-0.0537	0.560
160	-0.733	0.312	0.043	0.795	0.706	-0.0507	
165	-0.576	0.189	0.033	0.606	0.606	-0.0592	0.598
170	-0.356	0.100	0.036	0.367	0.369	-0.0441	0.620
180	-0.008	0.035	0.035	0.008	0.036	-0.0018	0.724
12b:	$\mathbf{R} = 0$	960.10	6				
		0	°,	0,	° C _	C N	•/L
0	-0.005	0.011	-0.011	-0.005	0.012	-0.0012	0.276
10	0.350	0.059	0.002	0.355	0.355	0.0821	0.269
15	0.552	0.139	0.009	0.569	0.569	0.1198	0.289
20	0.738	0.256	0.012	0.781	0.781	0.1552	0.301
25	0.873	0.377	0.027	0.950	0.951	0.1642	0.327
30	0.889	0.478	0.030	1.009	1.009	0.1585	0.343
35	0.800	0.544	0.013	0.967	0.967	0.1364	0.359
40	0.754	0.611	0.016	0.971	0.971	0.1201	0.376
50	0.708	0.795	0.032	1.064	1.064	0.1129	0.394
60	0.584	0.964	0.024	1.127	1.128	0.1050	0.407
70	0.417	1.061	0.029	1.140	1.140	0.0906	0.421
80	0.221	1.134	0.021	1,155	1,155	0.0803	0.430
90	0.027	1.142	0.027	1.142	1.142	0.0543	0.452
100	-0.175	1.134	0.024	1.147	1.147	0.0344	0.470
110	-0.372	1.075	0.018	1,137	1,137	0.0199	0.482
120	-0.523	0.948	0.021	1.082	1.083	0.0000	0.500
130			0 015	1.037	1.037	-0.0136	0.513
	-0.654	0.4804					~ ~ ~ ~ ~ ~
140	-0.654	0.636	0.021	0.964	0.964	-0.0241	0.525
140	-0.654 -0.725 -0.733	0.804 0.636 0.539	0.021	0.964	0.964	-0.0241	0.525
140 145 150	-0.654 -0.725 -0.733 -0.765	0.636 0.539 0.475	0.021 0.021 0.029	0.964 0.909 0.900	0.964 0.909 0.901	-0.0241 -0.0266 -0.0353	0•525 0•529 0•539
140 145 150 155	-0.654 -0.725 -0.733 -0.765 -0.816	0.804 0.636 0.539 0.475 0.417	0.021 0.021 0.029 0.033	0.964 0.909 0.900 0.916	0.964 0.909 0.901 0.917	-0.0241 -0.0266 -0.0353 -0.0513	0.525 0.529 0.539 0.556
140 145 150 155 160	-0.654 -0.725 -0.733 -0.765 -0.816 -0.738	0.804 0.636 0.539 0.475 0.417 0.308	0.015 0.021 0.021 0.029 0.033 0.037	0.964 0.909 0.900 0.916 0.799	0.964 0.909 0.901 0.917 0.800	-0.0241 -0.0266 -0.0353 -0.0513 -0.0595	0.525 0.529 0.539 0.556 0.574
140 145 150 155 160 165	-0.654 -0.725 -0.733 -0.765 -0.816 -0.738 -0.560	0.804 0.636 0.539 0.475 0.417 0.308 0.184	0.021 0.021 0.029 0.033 0.037 0.033	0.964 0.909 0.900 0.916 0.799 0.589	0.964 0.909 0.901 0.917 0.800 0.590	-0.0241 -0.0266 -0.0353 -0.0513 -0.0595 -0.0571	0.525 0.529 0.539 0.556 0.574 0.597

シー語の語言で

ŕ,

-

-0.397

0.022 -0.0024

Tab. 13 (vgl. Fig. 22)

Silhouette Hr. 13: Viermastbark, seisliche Projektion

$$\frac{2A}{L_{0A}^{2}} = 0,525 ; \frac{A}{A_{S}} = 0,2090$$

<u>**Tab. 13a:**</u> $R_{a} = 0,960 \cdot 10^{6}$

C	°_	° _D	С. <mark>С</mark> Х	° _Y	° _R	° _N	•/L _{OA}
0	-0.013	0.027	-0.027	-0.013	0.030	0.0000	0.500
10	0.337	0.073	-0.013	0.344	0.344	0.0780	0.273
15	0.531	0.143	-0.001	0.549	0.549	0.1181	0.285
· 20	0.698	0.244	0.010	0.739	0.739	0.1478	0.300
25	0.821	0.373	0.009	0.902	0.902	0.1588	0.324
30	0.867	0.479	0.018	0•991	0•991	0.1527	0.346
35	0.808	0•541	0.020	0•972	0.973	0.1369	0 • 359
40	0.749	0.599	0.022	0.959	0.959	0.1158	0.379
50	0.683	0.769	0.029	1.028	1.028	0.1085	0.394
60	0.576	0.948	0.025	1.109	1.110	0.0972	0.412
70	0.423	1.085	0.026	1.165	1.165	0.0891	0.423
80	0.240	1.154	0.036	1.178	1,179	0.0770	0.435
90	0.024	1.157	0.024	1.157	1.157	0.0510	0.456
100	-0.179	1.146	0.023	1.160	1.160	0.0275	0.476
110	-0.372	1.071	0.017	1.133	1.133	0.0104	0.491
120	-0.517	0.945	0.025	1.077	1.078	-0.0072	0.507
130	-0.633	0.807	0.034	1.025	1.025	-0.0160	0.516
140	-0.703	0.633	0.033	0.945	0•946	-0.0294	0.531
145	-0.719	0•539	0.029	0•898	0•899	-0.0345	0•538
150	-0.741	0.466	0.033	0.874	0.875	-0.0456	0.552
155	-0.797	0.397	0.023	0.890	0.891	-0.0608	0.568
160	-0.719	0.288	0.025	0.774	0.775	-0.0652	0•584
165	-0.555	0.182	0.032	0•583	0•584	-0.0637	0•609
170	-0.364	0.090	0.026	0.374	0.375	-0.0484	0.629
180	-0.008	0.027	0.027	0.008	0.028	-0.0026	0.817

<u>**Tab. 13b:**</u> $R_n = 1,360 \cdot 10^6$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C	° _D	D		c _x		C _Y		° _R		0	•/L04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. (0.014	14		0.014	- (.011		0.018	-	0.0012	0•391
15 0.529 0.144 -0.002 0.549 0.1200 0.281 20 0.715 0.248 0.011 0.757 0.757 0.1540 0.297 25 0.828 0.387 -0.000 0.914 0.914 0.1618 0.323 30 0.869 0.482 0.017 0.993 0.993 0.1569 0.342 35 0.815 0.543 0.023 0.979 0.979 0.1388 0.358 40 0.761 0.603 0.027 0.971 0.971 0.1185 0.378 50 0.707 0.776 0.043 1.049 1.050 0.1057 0.399 60 0.576 0.960 0.019 1.120 1.120 0.0996 0.411 70 0.431 1.114 0.024 1.194 1.940 0.0923 0.423 80 0.237 1.173 0.030 1.196 1.197 0.0804 0.433 90 0.022 1.170 0.022 1.170 1.184 1.184 0.0294 0.475 100 -0.189 1.169 0.017 1.184 1.084 -0.0062 0.506 130 -0.644 0.793 0.016 1.021 1.021 -0.0201 0.520 140 -0.720 0.523 0.015 0.890 0.890 -0.0376 0.547 155 -0.801 0.397 0.021 0.894 0.894 -0.0636 0.577	• (.061	61	-	0.001	(.345		0.345		0.0795	0•269
20 0.715 0.248 0.011 0.757 0.757 0.1540 0.297 25 0.828 0.387 -0.000 0.914 0.914 0.1618 0.323 30 0.869 0.482 0.017 0.993 0.993 0.1569 0.342 35 0.815 0.543 0.023 0.979 0.979 0.1388 0.358 40 0.761 0.603 0.027 0.971 0.971 0.1185 0.378 50 0.707 0.776 0.043 1.049 1.050 0.1057 0.399 60 0.576 0.960 0.019 1.120 1.120 0.9923 0.423 70 0.431 1.114 0.024 1.194 1.194 0.0923 0.423 80 0.237 1.173 0.030 1.196 1.197 0.0804 0.433 90 0.022 1.170 0.022 1.170 1.170 0.0547 0.443 100 -0.189 1.169 0.017 1.184 1.184 0.0294 0.475 110 -0.528 0.947 0.016 1.084 1.084 -0.0062 0.506 130 -0.644 0.793 0.016 1.021 1.021 -0.0322 0.534 145 -0.720 0.523 0.015 0.890 0.890 -0.0376 0.544 150 -0.754 0.457 0.019 0.882 0.882 -0.0636 0.574 155 <	• 1	0.144	44	-	0.002	(.549		0.549		0.1200	0.281
25 0.828 0.387 -0.000 0.914 0.914 0.1618 0.323 30 0.869 0.482 0.017 0.993 0.993 0.1569 0.342 35 0.815 0.543 0.023 0.979 0.979 0.1388 0.358 40 0.761 0.603 0.027 0.971 0.971 0.1185 0.378 50 0.707 0.776 0.043 1.049 1.050 0.1057 0.395 60 0.576 0.960 0.019 1.120 1.120 0.9923 0.423 70 0.431 1.114 0.024 1.194 1.194 0.0923 0.423 80 0.237 1.173 0.030 1.196 1.197 0.0804 0.433 90 0.022 1.170 0.022 1.170 1.170 0.0547 0.453 100 -0.189 1.169 0.017 1.184 1.184 0.0294 0.475 120 -0.528 0.947 0.016 1.084 1.084 -0.0062 0.506 130 -0.644 0.793 0.016 1.021 -0.0376 0.526 140 -0.720 0.523 0.015 0.890 -0.0376 0.534 150 -0.754 0.457 0.019 0.882 0.882 -0.0477 0.554 155 -0.801 0.397 0.021 0.894 0.894 -0.0636 0.573	• 2	.248	48		0.011	(.757		0.757		0.1540	0.297
30 0.869 0.482 0.017 0.993 0.993 0.1569 0.342 35 0.815 0.543 0.023 0.979 0.979 0.1388 0.358 40 0.761 0.603 0.027 0.971 0.971 0.1185 0.378 50 0.707 0.776 0.043 1.049 1.050 0.1057 0.399 60 0.576 0.960 0.019 1.120 1.120 0.0996 0.411 70 0.431 1.114 0.024 1.194 1.94 0.0923 0.423 80 0.237 1.173 0.030 1.196 1.197 0.0804 0.433 90 0.022 1.170 0.022 1.170 1.170 0.0547 0.453 100 -0.189 1.169 0.017 1.184 1.184 0.0294 0.475 110 -0.528 0.947 0.016 1.084 1.084 -0.0062 0.506 130 -0.644 0.793 0.016 1.021 1.021 -0.0201 0.520 140 -0.720 0.523 0.017 0.880 0.890 -0.0376 0.542 150 -0.754 0.457 0.019 0.882 0.882 -0.0477 0.554 155 -0.801 0.397 0.021 0.894 0.894 -0.0636 0.571	. 3	38	87	-	0.000	(914		0.914		0.1618	0.323
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• 4	.482	82		0.017	(.993		0.993		0.1569	0.342
40 0.761 0.603 0.027 0.971 0.971 0.1185 0.376 50 0.707 0.776 0.043 1.049 1.050 0.1057 0.395 60 0.576 0.960 0.019 1.120 1.120 0.0996 0.411 70 0.431 1.114 0.024 1.194 1.194 0.0923 0.423 80 0.237 1.173 0.030 1.196 1.197 0.0804 0.433 90 0.022 1.170 0.022 1.170 1.170 0.0547 0.453 90 0.022 1.170 0.017 1.184 1.184 0.0294 0.475 100 -0.189 1.169 0.017 1.184 1.184 0.0294 0.475 110 -0.377 1.080 0.015 1.144 1.144 0.0124 0.485 120 -0.528 0.947 0.016 1.021 1.021 -0.0201 0.526 130 -0.644 0.793 0.016 1.021 1.021 -0.0322 0.534 140 -0.720 0.523 0.015 0.890 0.890 -0.0376 0.544 150 -0.754 0.457 0.019 0.882 0.882 -0.0477 0.554 155 -0.801 0.397 0.021 0.894 0.894 -0.0636 0.573	• !	0.543	43		0.023	(0.979		0.979		0.1388	0•358
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• (0.603	03		0.027	(0.971		0.971		0.1185	0.378
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	0.77	76		0.043		1.049		1.050		0.1057	0.399
70 0.431 1.114 0.024 1.194 1.194 0.0923 0.423 80 0.237 1.173 0.030 1.196 1.197 0.0804 0.433 90 0.022 1.170 0.022 1.170 1.170 0.0547 0.453 100 -0.189 1.169 0.017 1.184 1.184 0.0294 0.475 100 -0.377 1.080 0.015 1.144 1.144 0.0124 0.489 120 -0.528 0.947 0.016 1.084 1.084 -0.0062 0.506 130 -0.644 0.793 0.016 1.021 1.021 -0.0201 0.526 140 -0.707 0.615 0.017 0.937 -0.0322 0.534 145 -0.720 0.523 0.015 0.890 0.890 -0.0376 0.544 150 -0.754 0.457 0.019 0.882 0.882 -0.0477 0.554 155 -0.801 0.397 0.021 0.894 0.894 -0.0636 0.573	• 9	0.96	60		0.019		1.120		1.120		0.0996	0.411
80 0.237 1.173 0.030 1.196 1.197 0.0804 0.433 90 0.022 1.170 0.022 1.170 1.170 0.0547 0.453 100 -0.189 1.169 0.017 1.184 1.184 0.0294 0.475 110 -0.377 1.080 0.015 1.144 1.144 0.0124 0.485 120 -0.528 0.947 0.016 1.084 1.084 -0.0062 0.506 130 -0.644 0.793 0.016 1.021 1.021 -0.0201 0.526 140 -0.707 0.615 0.017 0.937 0.937 -0.0322 0.534 145 -0.720 0.523 0.015 0.890 0.890 -0.0376 0.544 150 -0.754 0.457 0.019 0.882 0.882 -0.0477 0.554 155 -0.801 0.397 0.021 0.894 0.894 -0.0636 0.573	•	1.11	14		0.024		1.194		1.194		0.0923	0.423
90 0.022 1.170 0.022 1.170 1.170 0.0547 0.453 100 -0.189 1.169 0.017 1.184 1.184 0.0294 0.475 110 -0.377 1.080 0.015 1.144 1.144 0.0124 0.485 120 -0.528 0.947 0.016 1.084 1.084 -0.0062 0.506 130 -0.644 0.793 0.016 1.021 1.021 -0.0201 0.526 140 -0.707 0.615 0.017 0.937 0.937 -0.0322 0.534 145 -0.720 0.523 0.015 0.890 0.890 -0.0376 0.544 150 -0.754 0.457 0.019 0.882 0.882 -0.0477 0.554 155 -0.801 0.397 0.021 0.894 0.894 -0.0636 0.573	•	1.17	73		0.030		1.196		1.197		0.0804	0.433
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	1.170	70		0.022		1.170		1.170		0.0547	0.453
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	1.16	69		0.017		1.184		1.184		0.0294	0.475
120 -0.528 0.947 0.016 1.084 $1.084 -0.0062$ 0.506 $130 -0.644$ 0.793 0.016 1.021 $1.021 -0.0201$ 0.520 $140 -0.707$ 0.615 0.017 0.937 $0.937 -0.0322$ 0.534 $145 -0.720$ 0.523 0.015 0.890 $0.890 -0.0376$ 0.542 $150 -0.754$ 0.457 0.019 0.882 $0.882 -0.0477$ 0.554 $155 -0.801$ 0.397 0.021 0.894 $0.894 -0.0636$ 0.572	•(1.080	0 8 0		0.015		1.144		1.144		0.0124	0.489
130 -0.644 0.793 0.016 1.021 $1.021 -0.0201$ 0.520 $140 -0.707$ 0.615 0.017 0.937 $0.937 -0.0322$ 0.534 $145 -0.720$ 0.523 0.015 0.890 $0.890 -0.0376$ 0.542 $150 -0.754$ 0.457 0.019 0.882 $0.882 -0.0477$ 0.554 $155 -0.801$ 0.397 0.021 0.894 $0.894 -0.0636$ 0.572	• '	0.94)47		0.016		1.084		1.084	•	-0.0062	0.506
140 -0.707 0.615 0.017 0.937 $0.937 -0.0322$ 0.534 $145 -0.720$ 0.523 0.015 0.890 $0.890 -0.0376$ 0.542 $150 -0.754$ 0.457 0.019 0.882 $0.882 -0.0477$ 0.554 $155 -0.801$ 0.397 0.021 0.894 $0.894 -0.0636$ 0.572	•	0.79	93		0.016		1.021		1.021	-	-0.0201	0.520
145 -0.720 0.523 0.015 0.890 0.890 -0.0376 0.542 150 -0.754 0.457 0.019 0.882 0.882 -0.0477 0.554 155 -0.801 0.397 0.021 0.894 0.894 -0.0636 0.573	•	0.61	515		0.017		0.937		0.937	•	-0.0322	0.534
150 -0.754 0.457 0.019 0.882 0.882 -0.0477 0.554 155 -0.801 0.397 0.021 0.894 0.894 -0.0636 0.573	•	0.52	523		0.015		0.890	i.	0.890	•	-0.0376	0.542
155 -0.801 0.397 0.021 0.894 0.894 -0.0636 0.57	•	0.45	•57		0.019		0.882		0.882	•	-0.0477	0•554
	•	0.39	97		0.021		0.894	•	0.894	•	-0.0636	0.571
160 -0.714 0.277 0.017 0.766 0.766 -0.0674 0.588	•	0.27	277	,	0.017		0.766	,	0.766	•	-0.0674	0.588
165 -0.552 0.168 0.019 0.577 0.577 -0.0645 0.612	•	0.16	68	,	0.019		0.577		0.577	•	-0.0645	0.612
170 -0.357 0.085 0.022 0.366 0.367 -0.0490 0.634	•	0.08	85	,	0.022		0.366	,	0.367	•	-0.0490	0•634
180 -0.013 0.024 0.024 0.013 0.027 -0.0026 0.700	•	0.02	24	,	0.024		0.013	,	0.027	•	-0.0026	0•700

Silhouette Nr. 14: Viermastbark, seitliche Projektion

$$\frac{2A}{L_{0A}^{2}} = 0,575 ; \frac{A}{A_{S}} = 0,418$$

<u>**Tab.** 14a</u>: $R_{n} = 0,960 \cdot 10^{6}$

C	° c	° _D	St C _X	° c _y	с _R	° _N	•/L
0	-0.016	0.016	-0.016	-0.016	0.023	-0.0039	0.257
10	0.288	0.070	-0.019	0.296	0.297	0.0715	0.258
15	0.463	0.121	0.003	0.479	0.479	0.1081	0.274
20	0.614	0.226	-0.003	0.654	0.654	0.1467	0.276
25	0.738	0.331	0.012	0.809	0.809	0.1549	0.309
30	0.800	0.444	0.015	0.915	0.915	0.1573	0.328
35	0.743	0.521	-0.001	0.908	0•908	0.1375	0.349
40	0.706	0.580	0.009	0.914	0.914	0.1179	0.371
50	0•640	0•753	0.006	0•988	0•988	0•1088	0.390
60	0 .558	0.921	0.022	1.077	1.077	0.1008	0•406
.70	0•396	1.030	0.020	1.104	1.104	0.0880	0•420
80	0.213	1.054	0.026	1.075	1.076	0.0690	0.436
90	0.030	1.108	0.030	1.108	1.109	0.0487	0.456
100	-0.154	1.071	0.035	1.081	1.082	0.0270	0.475
105	-0.241	1.054	0.040	1.081	1.082	0.0183	0.483
110	-0.329	0.998	0.032	1.050	1.051	0.0089	0.492
120	-0.463	0.875	0.036	0.990	0•990	-0.0066	0.507
130	-0.598	0.764	0.033	0.969	0.970	-0.0210	0.522
140	-0.663	0.575	0.015	0.877	0.877	-0.0309	0.535
145	-0.668	0.474	0.005	0.819	0.819	-0.0350	0.543
150	-0.695	0•415	0.012	0.809	0.809	-0.0471	0•558
155	-0.727	0•342	0.003	0.804	0.804	-0.0649	0•581
160	-0.657	0.242	0.003	0.700	0.700	-0.0688	0•598
165	-0.509	0.148	0.011	0.530	0.530	-0.0643	0.621
170	-0.337	0.074	0.014	0.344	0.345	-0.0469	0.636
180	-0.018	0.022	0.022	0.018	0.028	-0.0015	0•586

Tab. 14b: $R_{1} = 1,360 \cdot 10^{6}$

C	~ °c	°D	°×	° _Y	° _R	° _N	•/L _{OA}
Ò	-0.019	0.015	-0.015	-0.019	0.024	-0.0043	0 • 272
10	0.294	0.062	-0.010	0.300	0.300	0.0700	0.266
15	0.463	0.123	0.002	0.479	0.479	0.1106	0.269
20	0.622	0.240	-0.012	0.667	0.667	0•1441	0.284
25	0.733	0.333	0.008	0.805	0.805	0.1564	0.306
30	0.788	0.446	0.007	0.905	0.906	0.1555	0.328
35	0.746	0.508	0.011	0.903	0.903	0.1395	0.345
40	0.704	0.578	0.010	0.911	0.911	0.1197	0.369
50	0.652	0.749	0.018	0.993	0.993	0.1114	0.388
60	0•548	0•929	0.010	1.079	1.079	0.1028	0•405
70	0.404	1.050	0.021	1.125	1.125	0•0899	0.420
80	0.214	1.083	0.023	1.104	1.104	0.0704	0.436
9 0	0.026	1.111	0.026	1.111	1.111	0.0518	0.453
100	-0.164	1.094	0.028	1.106	1.106	0.0295	0•473
110	-0.341	1.009	0.025	1.064	1.065	0•0089	0•492
120	-0.466	0.859	0.026	0•976	0 •977	-0.0090	0.509
130	-0.594	0.731	0.015	0.941	0.942	-0.0229	0.524
140	-0.657	0.573	0.016	0.872	0.872	-0.0319	0.537
145	-0.680	0•494	0.015	0.841	0.841	-0.0388	0.546
150	-0.707	0.419	0.010	0.822	0.822	-0.0505	0.561
155	-0.734	0.349	0.006	0.813	0.813	-0.0664	0•582
160	-0.653	0.243	0.005	0.697	0.697	-0.0706	0.601
165	-0.501	0.136	0.002	0.519	0.519	-0.0640	0.623
170	-0.335	0.065	0.006	0.342	0.342	-0.0473	0•639
180	-0.022	0.020	0.020	0.022	0.030	-0.0015	0•570

Silhouette Nr. 15: Viermastbark von vorn

$$\frac{2H^2}{A} = 2,32 ; \frac{A}{A_S} = 0,0523$$

<u>Tab. 15a:</u> $R_n = 0,245 \cdot 10^6$

C	°c	° _D	°x	٥ _٧	° _R	C _N	•/L _{QA}
0	-0.065	0.032	-0.032	-0.065	0.072	-0.0056	0.414
5	0.205	0.038	-0.020	0.207	0.208	0.0251	0.379
10	0.501	0.124	-0.035	0.515	0.516	0.0475	0.408
15	0.738	0.199	-0.002	0.764	0.764	0.0754	0.401
17	0.781	0.237	0.002	0.816	0.816	0.0838	0.397
18	0.813	0.259	0.005	0.854	0.854	0.0838	0.402
19	0.835	0.280	0.007	0.881	0.881	0.0782	0.411
20	0 • 857	0.296	0.015	0•906	0•906	0.0810	0•411
22	0•840	0•329	0.010	0•902	0.902	0•0587	0•435
25	0.835	0•382	0.006	0•918	0.918	0.0587	0•436
27	0.851	0•426	0.007	0.952	0.952	0.0531	0•444
30	0.851	0•458	0.029	0.966	0.966	0.0419	0.457
35	0.819	0.539	0.028	0•980	0.980	0.0503	0.449
40	0.792	0.614	0.039	1.001	1.002	0.0447	0.455
45	0.765	0.722	0.030	1.051	1.052	0.0447	0.457
50	0.722	0.813	0.030	1.087	1.088	0.0363	0.467
55	0.663	0.916	0.017	1.130	1.130	0.0391	0.465
60	0.603	0•986	0.030	1.155	1.156	0.0363	0.469
70	0.463	1.126	0.050	1.216	1.217	0.0251	0.479
80	0.269	1.234	0.051	1.262	1.263	0.0140	0.489
85	0.162	1.250	0.052	1.259	1.260	0.0168	0.487
90	0.054	1.255	0.054	1.255	1.256	0.0196	0.484

<u>**Tab.**</u> 15b: $R_n = 0,348 \cdot 10^6$

C	د ر	° _D	°×	° _Y	° _R	° _N	•/L _{OA}
0	-0.059	0.019	-0.019	-0.059	0.062	-0.0042	0.429
5	0.205	0.038	-0.020	0 • 207	0.208	0.0251	0.379
10	0.512	0.097	-0.007	0.521	0.521	0.0670	0.371
15	0.749	0.202	-0.001	0.776	0.776	0.0824	0.394
18	0.846	0.256	0.018	0.883	0.884	0.0852	0•404
20	0.867	0.312	0.003	0.922	0.922	0.0838	0.409
21	0.867	0.323	0.009	0•926	0.926	0.0782	0•415
22	0.851	0.329	0.014	0.912	0.912	0.0754	0.417
25	0.851	0.380	0.016	0.932	0.932	0.0629	0.433
30	0.857	0.461	0.029	0.972	0.972	0.0629	0.435
35	0•840	0.549	0.032	1.004	1.004	0.0559	0•444
40	0.808	0.638	0.030	1.029	1.030	0.0517	0.450
50	0.727	0.808	0.038	1.086	1.087	0.0475	0•456
60	0.603	0.964	0.040	1.137	1.137	0.0419	0.463
70	0.442	1.137	0.026	1.219	1.219	0.0196	0.484
80	0.242	1.244	0.023	1.268	1.268	0.0028	0.498
85	0.145	1.250	0.036	1.258	1.258	0.0056	0.496
90	0.040	1.261	0.040	1.261	1.261	-0.0056	0.504

Silhouette Mr. 16: Viermastbark von vorm

2

$$\frac{2\pi^2}{A} = 2,32 ; \frac{A}{A_{\rm B}} = 0,1045$$

<u>Tab. 16a:</u> $R_{n} = 0,347 \cdot 10^{6}$

C	. ° _C	° _D	° _X	° _Y	° _R	° _N	•/L ₀₄
0	-0.075	0.035	-0.035	-0.075	0.083	-0.0030	0.461
5	0.178	0.046	-0.030	0.181	0.184	0.0385	0.287
10	0.479	0.097	-0.012	0•489	0.489	0.0692	0.359
15	0.727	0.202	-0.007	0.755	0.755	0.1018	0.365
18	0.813	0.264	0.000	0.855	0.855	0.0949	0•389
20	0 • 835	0 • 2 9 6	0.007	0•886	0.886	0•0850	0•404
21	0.824	0.315	0.001	0.882	0.882	0•0879	0•400
22	0.824	0.323	0.009	0.885	0.885	0.0771	0•413
25	0.835	0.369	0.018	0.913	0.913	0.0761	0.417
30	0.846	0.450	0.033	0•957	0.958	0.0642	0.433
35	0.813	0.533	0.030	0•972	0.973	0•0 692	0•429
40	0.776	0.628	0.018	0.998	0.998	0.0622	0.438
50	0.700	0.819	0.010	1.077	1.077	0.0454	0.458
60	0.587	1.013	0.002	1.171	1.171	0.0454	0.461
70	0.428	1.169	0.003	1.245	1.245	0.0316	0.475
80	0.240	1,263	0.017	1.286	1,286	0.0267	0.479
85	0.140	1.290	0.027	1.297	1.298	0.0287	0.478
٥A	0.038	1.304	0.038	1.304	1.304	0.0119	0-491

<u>Teb. 160</u>: <u>R</u> = 0,492.10⁶

C	°c	°D	°x	° _Y	° _R	° _N	•/L _{OA}
0	-0.081	0.031	-0.031	-0.081	0.087	-0.0005	0.494
5	0.186	0.040	-0.024	0•189	0.190	0.0366	0•306
10	0.482	0.100	-0.014	0•492	0.492	0.0741	0.349
15	0.741	0.193	0.006	0.765	0.765	0.0963	0.374
18	0.813	0.255	0.009	0.852	0.852	0.0944	0.389
20	0.843	0.292	0.014	0.892	0.892	0.0865	0.403
21	0 • 838	0.300	0.020	0 • 890	0.890	0.0776	0.413
22	0.830	0.329	0.006	0 • 892	0 • 892	0.0830	0•407
25	0.843	0.370	0.021	0.921	0.921	0.0716	0.422
30	0.854	0.463	0.026	0.971	0.971	0.0672	0.431
35	0.813	0•540	0.024	0•976	0•976	0•0608	0•438
40	0.781	0.628	0.021	1.002	1.002	0.0583	0.442
50	0.706	0.805	0.023	1.071	1.071	0.0504	0.453
60	0.587	0.991	0.013	1.152	1.152	0.0395	0.466
70	0.439	1.142	0.022	1.223	1.223	0.0316	0.474
80	0.234	1.252	0.013	1.274	1.274	0.0227	0.482
85	0.140	1.261	0.030	1.268	1.268	0.0198	0.484
90	0.038	1.273	0.038	1.273	1.273	0.0094	0.493

Silhouette Hr. 17: Viermastbark von vorn

$$\frac{2H^2}{A} = 2,32$$
; $\frac{A}{A_8} = 0,209$

<u>Tab. 17a:</u> $R_n = 0,491 \cdot 10^6$

C	°c	°D	°x	٩	° R	° _N	•/L_04
0	-0.040	0.024	-0.024	-0.040	0.047	-0.0028	0.431
5	0.214	0.032	-0.014	0.216	0.217	0.0314	0 • 355
10	0.496	0.086	0.001	0.503	0.503	0.0670	0.367
15	0.714	0.180	0.010	0.736	0.736	0.0936	0.373
18	0.821	0.249	0.017	0.858	0.858	0.0981	0•386
20	0.846	0.281	0.025	0.891	0.891	0.0925	0•396
21	0•848	0.300	0.024	0.900	0.900	0•0890	0•401
22	0.851	0.321	0.022	0.909	0.909	0.0845	0.407
25	0 • 84 0	0.370	0.019	0.918	0.918	0.0702	0.424
30	0.840	0.459	0.022	0.957	0.958	0.0653	0•432
35	0.786	0.521	0.024	0.943	0.943	0.0562	0.440
40	0.762	0.610	0.023	0.976	0.976	0.0534	0.445
50	0.708	0.804	0.026	1.071	1.072	0.0437	0.459
60	0.601	0.978	0.031	1.147	1.147	0.0384	0.467
70	0.439	1•142	0.022	1.223	1.223	0.0293	0.476
80	0.250	1.230	0.033	1.254	1.255	0.0178	0•486
85	0.137	1.262	0.027	1.269	1.269	0.0094	0.493
90	0.028	1.289	0.028	1.289	1.289	0.0017	0.499

<u>Tab.</u> 17b: $R_{\rm R} = 0,696 \cdot 10^6$

A F

d e

C	°c	° _D	°×	° _Y	° _R	° _N	
0	-0.039	0.024	-0.024	-0.039	0.046	-0.0033	0.415
5	0.215	0.034	-0.015	0.218	0.218	0.0332	0.348
10	0.505	0.090	-0.001	0.513	0.513	0.0674	0.369
15	0.734	0.183	0.013	0.756	0.756	0.0936	0.376
18	0.812	0.255	0.009	0.851	0.851	0.0974	0.386
20	0.842	0•295	0.011	0•892	0.892	0.0925	0.396
22	0.848	0.331	0.011	0•911	0.911	0.0852	0.406
25	0.835	0.365	0.022	0.911	0.911	0.0688	0.424
30	0.842	0.422	0.056	0.940	0.941	0.0569	0.439
35	0•788	0•529	0.018	0.949	0•949	0.0590	0.438
40	0.768	0.617	0.020	0.985	0.985	0.0581	0.441
50	0.708	0.815	0.018	1.079	1.079	0.0513	0.452
60	0.599	0.993	0.023	1.159	1.159	0.0444	0.462
70	0.439	1.135	0.024	1.217	1.217	0.0304	0.475
80	0.245	1.244	0.025	1.268	1.268	0.0189	0.485
85	0.139	1.269	0.028	1.277	1.277	0.0127	0.490
90	0.030	1.276	0.030	1.276	1.276	0.0040	0.497

Ł

Silhouette Mr. 18: Kumo

$$\frac{2A}{L_{0A}} = 0,1838 ; \frac{A}{A_{S}} = 0,0523$$

<u>Tab.</u> 18a: $R_n = 0,848 \cdot 10^6$

C	°c	° _D	°×	° _Y	° _R	° _N	●/L _{OA}
· 0	0.027	0.027	-0.027	0.027	0.038	-0.0048	0.677
10	0.237	0.075	-0.033	0.247	0.249	0.0019	0.492
20	0.517	0.210	-0.021	0•558	0.558	-0.0048	0.509
30	0•765	0.442	-0.000	0•883	0.883	-0.0095	0•511
40	0.889	0.716	0.022	1,141	1.142	0.0124	0.489
45	0.857	0.819	0.027	1.185	1,185	0.0343	0.471
50	0.813	0.916	0.034	1.224	1.225	0.0476	0.461
60	0.646	1.023	0.048	1.210	1.211	0.0400	0.467
70	0.420	1.007	0.050	1.090	1.091	0.0029	0.497
80	0.242	1.023	0.061	1.050	1.052	-0.0362	0.534
90	0.054	1.077	0.054	1.077	1.079	-0.0609	0.557
100	-0.183	1.029	-0.002	1.045	1.045	-0.0904	0•587
110	-0.382	0.997	-0.019	1.067	1.067	-0.1152	0.608
120	-0.555	1.002	0.020	1.145	1.145	-0.1885	0.665
130	-0.711	0.873	0.016	1.126	1.126	-0.2266	0.701
140	-0.797	0.679	0.007	1.047	1.047	-0.2018	0.693
150	-0.668	0.431	0.039	0.794	0.795	-0.1523	0•692
160	-0.517	0.242	0.051	0.569	0.571	-0.1228	0.716
170	-0.253	0.081	0.036	0.263	0.266	-0.0619	0.735
180	-0.011	0.043	0.043	0.011	0.044	-0.0038	0.853

<u>**Tab.**</u> 18b: $R_{\rm R} = 1,20 \cdot 10^6$

C	°c	° _D	°x	° _Y	° _R	° _N	•/L ₀₄
0	0.030	0.013	-0.013	0.030	0.033	-0.0024	0.580
10	0.240	0.059	-0.017	0.246	0.247	-0.0010	0.504
20	0.528	0.199	-0.007	0.564	0.564	-0.0067	0.512
30	0.781	0.434	0.015	0.893	0.893	-0.0119	0.513
40	0.916	0.700	0.052	1.152	1.153	0.0038	0.497
45	0.878	0.808	0.050	1.192	1.193	0.0286	0.476
50	0.824	0.894	0.057	1.215	1.216	0.0419	0.466
60	0.652	1.018	0.055	1.208	1.209	0.0371	0.469
70	0.436	1.029	0.058	1.116	1.118	0.0048	0.496
80	0.237	1.023	0.056	1.049	1.051	-0.0438	0 • 542
90	0.054	1.059	0.054	1.059	1.060	-0.0662	0.563
100	-0.172	1.040	0.011	1.054	1.054	-0.0943	0.589
110	-0.366	1.013	0.002	1.077	1.077	-0.1200	0.611
120	-0.560	1.002	0.016	1.148	1.148	-0.1942	0.669
130	-0.727	0.873	0.004	1.136	1.136	-0.2247	0•698
140	-0.797	0 • 6 9 5	0.020	1.057	1.058	-0.2028	0.692
150	-0.690	0.431	0.028	0.813	0.813	-0.1542	0.690
160	-0.533	0.226	0.030	0.579	0.579	-0.1219	0.711
170	-0.259	0.089	0.043	0.270	0.273	-0.0614	0.727
180	-0.005	0.038	0.038	0.005	0.038	-0.0010	0•677

Silbouette Mr. 19: Kumo

$$\frac{2A}{L_{0A}} = 0,1838 ; \frac{A}{A_{B}} = 0,1045$$

.

<u>Tab. 19a:</u> $R_n = 1,20 \cdot 10^6$

C	°c	°D	°×	° _Y	° _R	° _N	•/L ₀₄
0	0.003	0.024	-0.024	0.003	0.024	-0.0030	1.625
10	0.226	0.051	-0.011	0.232	0.232	-0.0003	0.501
20	0.517	0.189	-0.000	0.550	0.550	-0.0074	0.513
30	0•762	0.431	0.008	0.876	0.876	-0.0108	0.512
4 0	0.894	0.708	0.032	1.140	1.141	0.0084	0.493
45	0.859	0.824	0.025	1.190	1.191	0.0330	0.472
50	0.813	0.900	0.045	1.212	1.213	0.0438	0.464
60	0.652	1.034	0.047	1.222	1.223	0.0485	0•460
70	0.434	1.069	0.042	1.153	1.154	0.0266	0.477
80	0.232	1.064	0.043	1.088	1.089	-0.0273	0.525
90	0.008	1.069	0.008	1.069	1.069	-0.0515	0•548
100	-0.170	1.013	0.009	1.027	1.027	-0.0929	0•591
110	-0.385	1.015	-0.015	1.086	1.086	-0.1620	0.649
120	-0.593	0.972	-0.027	1.138	1.139	-0.2145	0•688
-130	-0.749	0.862	-0.020	1•142	1•142	-0.2330	0•704
140	-0.805	0.652	-0.018	1.036	1.036	-0.2027	0•696
150	-0.706	0.385	-0.019	0.804	0.804	-0.1546	0•692
160	-0.541	0.218	0.020	0•583	0.584	-0.1236	0•712
170	-0.256	0.067	0.022	0.264	0.265	-0.0677	0.757
180	-0.008	0.027	0.027	0.008	0.028	0.0000	0.500

<u>Tab.</u> 19b: $R_{n} = 1,70 \cdot 10^{6}$

¢	°c	° _D	° _X	° _Y	° _R	° _N	•/L _{OA}
0	0.005	0.019	-0.019	0.005	0.020	-0.0024	0.938
10	0.241	0.048	-0.006	0.246	0.246	0.0007	0.497
20	0.528	0.184	0.007	0.559	0.559	-0.0069	0.512
30	0.776	0.426	0.019	0.885	0.885	-0.0114	0.513
40	0.913	0.698	0.053	1.148	1.149	0.0057	0.495
45	0.883	0.816	0.048	1.202	1.203	0.0293	0•476
50	0.821	0.897	0.053	1.215	1.216	0.0461	0.462
60	0.657	1.045	0.047	1.234	. 1.235	0.0485	0.461
70	0•426	1.067	0.035	1.148	1.148	0.0283	0.475
80	0.221	1.077	0.030	1.099	1.100	-0.0310	0.528
90	0.009	1.040	0.009	1.040	1.040	-0.0606	0.558
100	-0.191	1.048	-0.006	1.065	1.065	-0.0926	0.587
110	-0.409	1.034	-0.031	1.112	1.112	-0.1583	0.642
120	-0.595	0.98 0	-0.025	1.147	1.147	-0.2142	0.687
130	-0.778	0.875	-0.034	1.171	1.171	-0.2300	0.696
140	-0.824	0.690	-0.002	1.075	1.075	-0.2027	0.689
150	-0.716	0.396	-0.015	0.818	0.819	-0.1525	0.686
160	-0.525	0.197	0.005	0.561	0.561	-0.1243	0.722
170	-0.267	0.062	0.015	0.273	0.274	-0.0663	0.743
180	-0.016	0.024	0.024	0.016	0.029	0.0010	0.437

Silhouette Mr. 20; Führschiff

. .

$$\frac{2A}{L_{0A}} = 0,206 ; \frac{A}{A_{S}} = 0,0523$$

C	° c	° _D	° _x	° _Y	° _R	° _N	•/L _{OA}
0	0.027	0.000	0.000	0.027	0.027	0.0000	0.500
10	0.226	0.038	0.002	0.229	0.229	0.0475	0 • 293
20	0.549	0.183	0.016	0.579	0.579	0.1093	0.311
30	0.851	0•436	0.048	0.955	0.956	0.1837	0.308
40	1.002	0.786	0.042	1.273	1.274	0.2491	0.304
45	0.937	0.862	0.053	1.272	1.273	0.2474	0.306
50	0.840	0.916	0.055	1.242	1.243	0.2169	0.325
60	0.571	0.932	0.029	1.093	1.093	0.1300	0.381
70	0.388	0.943	0.042	1.018	1.019	0.0995	0.402
80	0.210	0.916	0.048	0.938	0.940	0.0735	0.422
90	0.027	0.927	0.027	0.927	0.927	0.0358	0.461
100	-0.151	0.900	0.008	0.912	0.912	0.0117	0.487
110	-0.334	0.927	0.003	0.985	0•985	-0.0161	0.516
120	-0.517	0.921	0.013	1.056	1.056	-0.0385	0 • 536
130	-0.770	0.937	0.012	1.213	1,213	-0.1147	0.595
140	-0.980	0.840	0.013	1.291	1.291	-0.1380	0.607
150	-0.857	0.539	0.038	1.011	1.012	-0.1022	0.601
160	-0.549	0 • 2 4 8	0.045	0.601	0.603	-0.0556	0•592
170	-0.221	0.081	0.041	0.232	0.235	-0.0170	0.574
180	-0.011	0.038	0.038	0.011	0.039	-0-0009	0.583

26b. 20b: $R_n = 1,133 \cdot 10^6$

C	°c	°D	° x	°Y	° _R	°N	•/L _{OA}
0	0.027	0.000	0.000	0.027	0.027	0.0000	0.500
10	0.237	0.035	0.007	0.239	0.240	0.0417	0.326
20	0.555	0.178	0.023	0.582	0.583	0.1093	0.312
30	0.857	0.452	0.036	0•968	0.969	0.1864	0.307
40	1.007	0.765	0.062	1.263	1.265	0.2420	0.308
45	0.970	0.862	0.076	1.295	1.297	0.2366	0.317
50	0.851	0.900	0.074	1.236	1.238	0.2124	0.328
60	0.593	0•921	0.053	1.094	1.095	0.1228	0.388
70	0.393	0.943	0.047	1.020	1.021	0.0995	0.403
80	0.226	0.943	0.059	0•968	0.969	0.0672	0.431
90	0.024	0.945	0.024	0.945	0.946	0.0417	0.456
100	-0.162	0.908	-0.002	0.922	0.922	0.0013	0.499
110	-0•345	0•932	-0.005	0.994	0.994	-0.0170	0.517
120	-0.533	0.927	0.001	1.069	1.069	-0.0430	0.540
130	-0.781	0.956	0.016	1.235	1.235	-0.1179	0.595
140	-0.991	0.854	0.017	1.308	1.308	-0.1438	0.610
150	-0.878	0.539	0.027	1.030	1.030	-0.1022	0.599
160	-0.566	0.232	0.024	0.611	0.611	-0.0547	0.590
170	-0.237	0.078	0.036	0.247	0.250	-0.0184	0.574
180	-0.013	0.022	0.022	0.013	0.025	0.0000	0.500

Silhemette Mr. 21: Pährechiff

 $\frac{2A}{L_{0A}} = 0,206 ; \frac{A}{A_{S}} = 0,1045$

<u>Tab. 21a</u>: $R_n = 1,133 \cdot 10^6$

•	°c	°D	° x	° _Y	° _R	° _N	•/L _{OA}
0	0.003	0.008	-0.008	0.003	0.009	-0.0010	0+853
10	0 • 205	0•040	-0.004	0 • 209	0•209	0•0460	0 • 280
20	0•544	0.151	0.044	0.563	0.565	0.1040	0.315
30	0.843	0.417	0.060	0.939	0.941	0.1823	0.306
40	1.002	0.746	0.072	1.247	1.249	0.2444	0.304
45	0.956	0.857	0.070	1.282	1.284	0.2403	0.313
50	0.830	0.883	0.068	1.210	1.212	0.2181	0.320
60	0.614	0.889	0.087	1.077	1.080	0.1338	0.376
70	0.391	0.894	0.061	0.974	0.976	0.1008	0.396
80	0.221	0.918	0.058	0.943	0.945	0.0688	0.427
90	0.048	0•902	0.048	0•902	0.904	0.0314	0.465
100	-0.143	0.956	0.025	0•966	0.967	-0.0022	0.502
110	-0.307	0.910	0.023	0•960	0.961	-0.0209	0.522
120	-0.523	0•916	0.005	1.054	1.054	-0.0431	0.541
130	-0.776	0.929	0.003	1.210	1.210	-0.1170	0.597
140	-0.962	0.797	-0.007	1.249	1.249	-0.1445	0.616
150	-0.873	0.614	0.095	1.063	1.067	-0.1198	0.613
160	-0.568	0.221	0.013	0.610	0.610	-0.0590	0.597
170	-0.234	0.070	0.028	0.243	0.245	-0.0241	0.599
180	0.000	0.022	0.022	0.000	0.022	-0.0006	559.264

<u>Tab.</u> 21b: $R_n = 1,600.10^6$

	C	с с	° _D	۵ _X	°Y	° _R	C N	•/L _{OA}
	0	0.003	0.008	-0.008	0.003	0.009	-0.0010	0.853
	10	0.222	0.028	0.011	0.224	0.224	0.0449	0.300
	20	0.549	0.164	0.034	0.573	0.573	0.1062	0.315
	30	0.865	0.431	0.059	0.964	0.966	0.1832	0.310
	40	1.002	0.733	0.083	1.238	1.241	0.2510	0.297
	45	0.945	0.854	0.065	1.272	1.274	0.2431	0.309
	50	0.832	0.940	0.033	1.255	1.255	0.2171	0.327
	60	0.601	0.897	0.072	1.077	1.079	0.1379	0.372
	70	0•396	0.927	0.055	1.006	1.008	0.1033	0.397
	80	0•210	0•964	0.039	0•986	0•987	0•0729	0.426
	90	0•031	0•964	0.031	0•964	0.965	0•0409	0•458
	100	-0.145	0.925	0.017	0.936	0.937	-0.0017	0.502
	110	-0.334	0.933	0.005	0•991	0.991	-0.0217	0.522
	120	-0.531	0.916	-0.002	1.058	1.058	-0.0418	0•540
	130	-0.754	0.914	0.010	1.185	1.185	-0.1165	0.598
-	140	-0.959	0.797	-0.006	1.247	1.247	-0.1483	0.619
	150	-0.875	0.493	-0.011	1.005	1.005	-0.1087	0.608
	160	-0•558	0.221	0.017	0•599	0.600	-0.0599	0.600
	170	-0.222	0.058	0.018	0.229	0.230	-0.0233	0.602
	180	0.000	0.016	0.016	0.000	0.016	-0.0006	745•519

Silhouette Mr. 22: Fährschiff

 $\frac{2A}{L_{0A}} = 0,206 ; \frac{A}{A_{S}} = 0,1568$

<u>**Tab.**</u> 22a: $R_n = 1,385 \cdot 10^6$

C	°c	°D	°×	° _Y	° _R	° _N	•/L _{0A}
0	0.002	0.013	-0.013	0.002	0.013	-0.0005	0.788
10	0.205	0.041	-0.005	0.209	0.209	0.0464	0.278
20	0.535	0.165	0.028	0.559	0.560	0.1084	0.306
30	0.833	0.445	0.031	0.944	0.945	0.1867	0.302
40	0.971	0.711	0.080	1.201	1.204	0.2447	0.296
45	0.919	0.835	0.060	1.240	1.242	0.2459	0.302
50	0.812	0.873	0.061	1.190	1.192	0.2219	0.314
60	0.576	0.912	0.043	1.078	1.079	0.1484	0.362
70	0.379	0.932	0.037	1.005	1.006	0.1034	0.397
80	0.206	0.989	0.032	1.010	1.011	0.0713	0.429
90	0.036	0•953	0.036	0.953	0•954	0•0343	0•464
100	-0•145	0•995	0.029	1.005	1.005	-0.0031	0•503
110	-0.338	0.970	0.014	1.027	1.027	-0.0224	0.522
120	-0.519	0.882	-0.009	1.023	1.023	-0.0423	0•541
130	-0.747	0.871	-0.012	1.147	1.147	-0.1186	0.603
140	-0.939	0.767	-0.016	1.212	1.212	-0.1458	0.620
150	-0.855	0.465	-0.025	0.973	0.973	-0.1079	0.611
160	-0.585	0.217	0.004	0.624	0.624	-0.0644	0.603
170	-0.228	0.059	0.019	0.235	0.236	-0.0257	0.609
180	0.000	0.023	0.023	0.000	0.023	-0.0002	140.898

<u>Tab.</u> 22b: $R_n = 1,960 \cdot 10^6$

E	°c	°D	°x	° _Y	° _R	° _N	•/L _{OA}
0	0.002	0.007	-0.007	0.002	0.007	-0.0007	0.884
10	0.212	0.025	0.012	0.213	0.213	0.0456	0.286
20	0.533	0.165	0.027	0.558	0.558	0.1101	0.303
30	0.839	0.443	0.036	0.948	0.948	0.1882	0.301
40	0•966	0.728	0.063	1.208	1.210	0 • 2475	0.295
45	0.919	0.826	0.066	1.234	1.236	0 • 2457	0.301
50	0.801	0.907	0.031	1.209	1.210	0.2259	0.313
60	0.603	0.925	0.060	1.103	1.104	0.1503	0.364
70	0.383	0.964	0.030	1.037	1.038	0.1075	0•396
80	0.203	0.979	0.030	0.999	0.999	0.0742	0•426
90	0.028	0.962	0.028	0.962	0.963	0.0407	0•458
100	-0.150	0.989	0.024	1.000	1.001	-0.0016	0•502
110	-0.341	0.961	0.008	1.019	1.019	-0.0257	0.525
120	-0.533	0.896	-0.014	1.043	1.043	-0.0450	0.543
130	-0.747	0.874	-0.010	1.150	1.150	-0.1168	0.602
140	-0.961	0.770	-0.027	1.231	1.231	-0.1451	0.618
150	-0.883	0.494	-0.014	1.011	1.011	-0.1106	0.609
160	-0.566	0.217	0.011	0.606	0.606	-0.0637	0.605
170	-0.235	0.061	0.019	0 • 2 4 2	0.243	-0.0262	0•608
180	-0.002	0.016	0.016	0.002	0.016	-0.0012	1.172

Definitionsskizze

(dargestellt für gleiche Lateralfläche)

	Silh. Nr. 1	2	3	4
	A/A _S 0,0501	0,1001	0,2006	0,4016
$c_{C}(\epsilon=20^{\circ})$	0,877(0,902)	0,848(0,866)	0,784(0,794)	0,686(0,693)
c _D (e=20°)	0,320(0,329)	0,270(0,275)	0,254(0,257)	0,229(0,231)
^C Cmax € bei c _{Cmax}	1,270(1,305) 35 ⁰	1,270(1,295) 35 ⁰	1,319(1,336) 40 ⁰	1,127(1,139) 44 ⁰
$\mathbf{c}_{\mathbf{D}}(\epsilon=90^{\circ})$	1,107(1,138)	1,037(1,058)	1,085(1,100)	1,053(1,063)
Δc _c /Δε (ε=10 ^o bis 20 ^o) Abreißpunkt	2,82(2,90) 36 ⁰	2,69(2,75) 37 ⁰	2,54(2,57) 45⁰	2,22(2,24) 48 ⁰
H/H _{AS}	0,224	0,316	0,447	0,631
L/L _{AS}	0,224	0,316	0,447	0,631

Ŋ

Silhouetten Nr. 5 bis 7 (Rechteckplatten $\Lambda = 2 \times 0,10$)

	Silh. Nr. 5	6	7
	A/A _S 0,0522	0,1042	0,1566
$c_{c}(e=20^{\circ})$	0,442(0,470)	0,442(0,461)	0,433(0,448)
c _D (e=20°)	0,151(0,161)	0,151(0,158)	0,140(0,145)
°°(e=30°)	0,684(0,728)	0,703(0,733)	0,699(0,723)
c _D (e=30°)	0,377(0,401)	0,366(0,382)	0,365(0,378)
$c_{Cmax}(\epsilon=40^{\circ})$	0,797(0,848)	0,811(0,846)	0,795(0,823)
$c_{D}(\epsilon=90^{\circ})$	0,905(0,963)	1,028(1,072)	1,054(1,092)
$\frac{\Delta c_{0}}{(\epsilon=20^{\circ} \text{ bis } 30^{\circ})}$	1,390(1,480)	1,495(1,560)	1,500(1,550)
H/H _{AS}	0,0952	0,1347	0,165
L/L	0,547	0,774	0,948

ŕ

Silhouetten Nr. 8 bis 11 (Rechteckplatten $\Lambda = 2 \times 1,20$)

	Silh. Mr. 8	9	10	11
	A/A _S 0,0523	0,1047	0,2094	0,419
c _c (e=10°)	0,555(0,565)	0,545(0,551)	0,485(0,490)	0,417(0,420)
$c_{\mathbf{D}}(\epsilon=10^{\circ})$	0,108(0,110)	0,090(0,091)	0,062(0,063)	0,055(0,055)
Comax e bei Comax	0,813(0,828) 18 ⁰	0,816(0,825) 18 ⁰	0,809(0,817) 18 ⁰	0,705(0,709) 20 ⁰
c _D (e=90°)	1,199(1,220)	1,129(1,140)	1,121(1,131)	1,108(1,113)
$\Delta c_0 / \Delta \epsilon$ ($\epsilon = 5^{\circ}$ bis 10°)	1,70(1,73)	1,66(1,68)	1,53(1,545)	1,30(1,31)
H/HAS	0,330	0,467	0,660	0,935
L/L _{AS}	0,158	0,224	0,316	0,448

	Silh. Nr. 12	13	14
	A/A _S 0,1045	0,209	0,418
vorn			
$c_{C}(e=20^{\circ})$	0,738(0,755)	0,715(0,727)	0,622(0,629)
$c_{D}(\epsilon=20^{\circ})$	0,256(0,262)	0,248(0,252)	0,240(0,242)
$c_{Cmax}(\epsilon=30^{\circ})$	0,889(0,910)	0,869(0,883)	0,788(0,797)
<u>hinten</u>			
c _C (€=160 ⁰)	-0,738 (0,756)	-0,714(0,725)	-0,653(0,660)
c _D (e=160°)	0,308(0,315)	0,277(0,282)	0,243(0,246)
c _{Cmax} (e=155 ⁰)	-0,816(0,835)	-0,801(0,814)	-0,734(0,742)
o _D (e=90°)	1,142(1,170)	1,170(1,190)	1,111(1,122)
$\frac{\Delta c_{0}}{(e=10^{\circ} \text{ bis } 20^{\circ})}$	2,22(2,27)	2,15(2,185)	1,88(1,910)
L(L _{OA})	0,671(0,800)	0,950(1,132)	1,342(1,600)m
H [*] (H _{max})	0,355()	0,502()	0,709()m
$L/L_{AS}(L_{OA}/L_{AS})$	0,384(0,457)	0,542(0,647)	0,766(0,914)
H/H _{AS}	0,353	0,500	0,705

Silhouetten Nr. 12 bis 14 (Viermastbark, seitl. Projektion)

* oberste Rah

Silhouetten Nr. 15 bis 17 (Rahsegler von vorn)

	Silh. Nr. 15	16	17
	A/A _S 0,0523	0,1045	0,209
c _C (ε=5°)	0,205	0,186	0,215
$\mathbf{c}_{\mathbf{D}}(\mathbf{e}=5^{\circ})$	0,038	0,040	0,034
$c_{C}(e=10^{\circ})$	0,512	0,482	0,505
$c_{D}(\epsilon=10^{\circ})$	0,097	0,100	0,090
$c_{\text{Omax}}(\epsilon=20^{\circ})$	0,867	0,843	0,848
c _D (e=90°)	1,261	1,273	1,276
$\frac{\Delta c_0}{(e=5^{\circ} \text{ bis } 10^{\circ})}$	1,760	1,700	1,660
L [*]	0,290	0,410	0,580m
H**	0,466	0,660	0,932m
L/L _{AS}	0,166	0,234	0,332
H/H _{AS}	0,464	0,656	0,927

*größte Rah **oberste Rah

Silhouetten Nr. 18 und 19 (Kümo)

	Silh. Nr. 18	19
	A/A _S 0,0523	0,1045
$\frac{\text{vorn}}{c_{c}(\epsilon=20^{\circ})}$	0,53(0,56)	0,53(0,55)
$c_{\rm D}(e=20^{\circ})$	0,20(0,21)	0,18(0,19)
$c_{\text{Cmax}}(\epsilon=40^{\circ})$	0,92(0,97)	0,91(0,95)
hinten		
$c_{c}(e=160^{\circ})$	-0,53 (0,56)	-0,53(0,55)
$c_{\rm D}(\epsilon=160^{\rm O})$	0,23(0,24)	0,20(0,20)
$c_{Cmax}(\epsilon=140^{\circ})$	-0,80(0,84)	-0 ,82(0,86)
$c_{D}(\epsilon=90^{\circ})$	1,06(1,12)	1,04(1,08)
$\frac{\Delta c_{\rm C}}{(e=10^{\circ} \text{ bis } 20^{\circ})}$	1,65(1,74)	1,65(1,71)
H _m	0,092	0,130
$\mathbf{L}(\mathbf{L}_{OA})$	0,851(1,00)	1,203(1,414)
H _m /H _{AS}	0,092	0,129
$L/L_{AS}(L_{OA}/L_{AS})$	0,486(0,571)	0,688(0,808)

Fig. 8

P 1	g.	9

Silhouetten Nr. 20 bis 22 (Fährschiff)

	Silh. Nr. 20	21	22
<u></u>	A/A _S 0,0523	0,1045	0,1568
$\frac{\text{vorn}}{c_{\text{C}}(\epsilon=20^{\circ})}$	0,56(0,59)	0,55(0,57)	0,53(0,55)
$c_{\rm D}(e=20^{\rm o})$	0,18(0,19)	0,16(0,17)	0,17(0,17)
$c_{\text{Cmax}}(\epsilon=40^{\circ})$	1,01(1,07)	1,00(1,04)	0,97(1,00)
$\frac{\text{hinten}}{\text{C}_{\text{c}}(\text{c}=160^{\circ})}$	-0.57(0.60)	-0.56(0.58)	-0.57 (0.59)
$c_{\rm D}(\epsilon=160^{\rm o})$	0,23(0,25)	0,22(0,23)	0,22(0,23)
$c_{\text{Cmax}}(\epsilon=140^{\circ})$	-0,99(-1,05)	-0,96(-1,00)	-0,96 (0,99)
$c_{\rm D}(\epsilon=90^{\circ})$	0,95(1,00)	0,96(1,00)	0,96(1,00)
$\frac{\Delta c_{\rm C}}{(e=10^{\circ} \text{ bis } 20^{\circ})}$	1,82(1,93)	1,88(1,95)	1,84(1,91)
H _n	0,097	0,138	0,169m
$\mathbf{L}(\mathbf{L}_{\mathbf{0A}})$	0,904(0,944)	1,278(1,334)	1,565(1,634)m
H_/HAS	0,097	0,137	0,168
$L/L_{AS}(L_{OA}/L_{AS})$	0,516(0,539)	0,730(0,762)	0,895(0,934)

SELECTA A 4 210 - 297 cm 1 4 **

the second se