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Šk ≡ S−Tk ∈ Kk×k special matrix of left eigenvectors of Ck
JΘ Jordan normal form of C
Θ,Θk ∈ Kk×k eigenvalue matrix of C, Ck
Y ≡ QS matrix of right Ritz vectors of C
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Chapter 1

Preliminaries

The first chapter consists of a short introduction, defines notation and motivates
why Krylov methods are, and will be, a necessary tool to accomplish the computa-
tional tasks of the 21st century. The lacking of simple error analyses of perturbed
Krylov methods will become obvious in Chapter 4. This is compared to the state
of the art in direct methods. To grasp the perfection that has been achieved in this
area, we give an extensive listing of backward analyses, backward errors, condition
numbers and expansions related to the solution process of linear systems of equa-
tions and to the algebraic eigenproblem. We give the basic results along with some
generalizations.

We intend to show how the approach used in this thesis fits into the framework
developed over the last five decades by a variety of authors to access the intrinsic
properties of Krylov methods. We stress that it seems impossible to apply stan-
dard error analysis to understand the finite precision behaviour of Krylov subspace
methods.

1.1 Introduction

Solving mathematical problems is the major area of scientific computation. Many
of these mathematical problems arise in the engineering disciplines when modeling
physical behaviour. Of particular interest are ever more precise models, increasing
computational amount.

The solution process of nonlinear problems frequently is composed of iterated
solution of linearized problems. Other linear problems arise as such. The two main
tasks are the computation of

a) the solution of a linear system of equations and of

b) eigenvalues and eigenvectors of a linear transformation.

In other words, matrices play a star role in numerical computations.
There are two ways to solve problems of this type, direct approaches and iter-

ative approaches. Even though the computation of eigenvalues has to be iterative,
previous reductions to simpler form are mostly based on direct approaches. Di-
rect approaches are more natural and have been used for a long time. Most direct
methods used nowadays are stable and reliable.

Large matrix computations are often based on iterative approaches. A broad
class of iterative methods is given by the class of Krylov subspace methods. Krylov
subspace methods have a variety of favourable characteristics, at least in exact
arithmetic:

1



2 CHAPTER 1. PRELIMINARIES

Krylov methods are direct methods. To be more precise, they are coordinate free
variants of some well-known matrix reduction and matrix decomposition algorithms.

Krylov methods are optimal methods. They compute the optimal solution in a
subspace subject to method dependent constraints.

Krylov methods are cheap methods. When considered as iterative methods,
Krylov methods tend to converge fast with mostly linear operation count and stor-
age amount per step to the solution.

Krylov methods are at the heart of numerical analysis. Krylov methods are
related to structured eigenvalue problems, to orthogonal polynomials, to rational
approximation theory. Amongst others, this enables detailed convergence analysis.

Krylov methods are closely related to each other. In particular, a linear system
solver can be used to extract eigenvalues, and vice versa.

This was the infinite precision part. This was the good news.

Now we switch to bad news. The bad news is the finite precision behaviour of
Krylov methods. One main problem is the lack of useful error analyses, like results
on backward stability. Another problem is the lack of generality of existing error
analyses.

In finite precision, Krylov methods do not terminate after a finite number of
steps. The solutions are not optimal in the subspace constructed. The connection
to related areas used in the convergence analysis is lost. Nevertheless the methods
compute useful results. Solely part of the matrix relations defining the methods in
infinite precision have a finite precision counterpart. Error analysis has to be based
on these relations. Convergence analysis has to be based on these relations.

A unified error analysis has to explain the behaviour of the finite precision Krylov
methods and to include the results derived thus far. Our approach is considered
with the understanding of the behaviour. Error bounds resulting from the analysis
have to be based on the characteristics of the methods. For this reason we will not
consider error bounds. The main result is that a detoriation is always the result of
a convergence of a part of the computed quantities.

1.2 Notation

“The important thing for an error analyst is to settle on a comfortable
notation that does not hinder the thinking process.”

Nicholas J. Higham,

Accuracy and Stability of Numerical Algorithms.

Notation becomes an important topic in any broad approach like ours. The presen-
tation has to be understandable and self-explanatory, at the same time in a familiar
and appropriate style. We use standard notation as developed by Wilkinson et.al.
([Wil65, Hou75, Par98, HJ85, HJ94]). A small portion is close to Matlab style
pseudo-code notation.

Notation will be mainly introduced in the context. For better readability we
collect the part of notation valid for the complete thesis or very important for our
approach in this section. The notational conventions are violated sometimes, for
instance when denoting matrix and vector entries. We tried to keep use of one
symbol in different contexts at a minimum.
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The Basics

Capital roman letters stand for matrices, small roman letters stand for vectors, and
small greek letters stand for scalars. Subspaces are denoted by capital calligraphic
letters. Polynomials are denoted by small greek or roman letters. The letters R,C
are used to denote the real and complex fields. The letters N,Z are used to denote
the natural numbers and integers. The letter K is used to denote one of R,C.

Indices are denoted by small roman letters, starting with i, j, k, . . .. For n ∈ N
we define the set n ≡ {1, . . . , n}. For z ∈ C the complex conjugate is denoted by
z. The letter I ≡ In denotes the identity matrix of dimension n ∈ N. The columns
of I are denoted by ei, i ∈ n. The elements of I are denoted by δij , i, j ∈ n.
The columns of I are termed standard unit vectors. Whenever the notation ej (or
similar) appears, the dimension should be obvious from the context.

The set of matrices of size n with entries in K is denoted by Kn×n. The set of
rectangular matrices is denoted by Kn×k. The set of vectors of length n is denoted
by Kn. The sets Kn×n,Kn form an algebra and a vector space, respectively. The
subset of unitary matrices will be denoted by U . The set of unitary matrices of size
n is denoted by U(n).

Problem Related

The letter A is reserved for the system matrix of the eigenproblem and the linear
system of equations. The dimension of A is given by n ∈ N. We suppose A ∈ Kn×n.
The matrix A is large and sparse. Further structure is introduced in the context.
The matrix of right eigenvectors of A is denoted by V , the diagonal matrix of
eigenvalues is denoted by Λ and the Jordan matrix is denoted by JΛ. With this
notation AV = V JΛ. We need to access the right eigenvectors separately. For this
reason we define the columns of V to be vi, i ∈ n. Note that some vi are principal
vectors and no eigenvectors. The elements of V are denoted by vji, j, i ∈ n. We
remark that the vector vi consists of the elements vji, j ∈ n. We need to access the

left eigenvectors. Since V −1 is a matrix of left eigenvectors, we define V̂ H ≡ V −1,
i.e., V̂ ≡ V −H . With this notation

V̂ HA = JΛV̂
H and V̂ HV = V H V̂ = I.

In order to access the entries of V̂ H we define V̌ ≡ V̂ . With this notation

V̌ TA = JΛV̌
T and V̌ TV = V T V̌ = I.

This convention can be memorised as reflection on the real axis, turning hat to vee
and vice versa. These notations are extended to any bi-orthogonal set.

We need to access some classes of submatrices of a given matrix. For given
A ∈ Kn×n we denote by Aij , i, j ∈ n the matrix with ith row and jth column
deleted. The notation Aij must not be confused with the element aij in ith row
and jth column,

aij , element of A in ith row, jth column,

Aij , A with ith row, jth column deleted.

The short-hand notation Ai is used to denote Aii.

Method Related

Krylov methods compute smaller matrices, denoted by Cm ∈ Km×m, m ∈ N. The
computed matrices form a sequence of principal submatrices. For this reason we
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label the leading principal submatrices by size, Ck ∈ Kk×k, k ∈ m. With this
notation

Cm =

(
Ck ?
? ?

)

.

The matrix Cm is structured. Mostly Hm ≡ Cm is Hessenberg or even Tm ≡ Cm
tridiagonal. The set of all unreduced Hessenberg matrices is denoted by H. The
subset of unreduced Hessenberg matrices of size m is denoted by H(m). Krylov
methods compute the matrix Cm using a basis expanded in every step. We denote
the rectangular matrix whose columns span the basis by Qm, Qm ∈ Kn×m. The
submatrices of Qm consisting of the first k columns are denoted by Qk, Qk ∈ Kn×k,
k ∈ m. The columns of Qk are denoted by qj , j ∈ k.

Polynomial Related

We use the letter P to denote the vector space of all polynomials. The eigenvalues
of any matrix A are zeros of the characteristic polynomial χA(λ) ≡ det(λI − A).
This definition ensures that the term λn has the factor plus one. The minimal
polynomial will be denoted by µ(λ) = µA(λ).

The elements in Krylov subspaces are often described in terms of polynomials
of degree less than the dimension of the space. The subspace of polynomials of
degree less equal k will be denoted by Pk. Depending on the context, we need to
distinguish two different normalisations. In the context of the eigenproblem we need
monic polynomials, denoted by P k

k . With our definition χA ∈ Pn
n . In the context of

linear systems we need polynomials with constant term equal one, denoted by P 0k .
For a more complete overview of the notation used we refer the reader to the

list of symbols in the beginning of this thesis.

1.3 Motivation and History

This thesis is concerned with two problems of linear algebra:
a) find the solution of a linear system of equations

Ax = b,

and
b) find (partial) solutions to the algebraic eigenproblem

Av = vλ, v̂HA = λv̂H .

From an numerical analyst point of view it shows up to be very important to
distinguish between dense and sparse systems. For dense systems the state of the
art almost seems to have reached its final destination. Both roblems mentioned
above are solved in a backward stable manner by a variety of well-known, well-
understood algorithms.

Recent changes, modifications and enhancements are due to a better under-
standing, i.e., due to new results in componentwise structured and relative error
analysis. Examples of such enhancements are Demmel’s results on Cauchy matrices
([Dem00]) and Dhillon’s Relatively Robust Representations ([Dhi97]).

Most of the methods for dense systems are included as black-box solvers in
(freely) available software libraries like BLAS/LAPACK. A general start may be
NETLIB ([Net]) and the overview of freely available software for linear algebra that
has been compiled by Dongarra ([Don]).

The picture is not that rosy when we are looking at sparse systems. Most direct
methods lead to storage problems due to fill-in and numerical instabilities due to
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restrictions on the pivoting strategies. We stress that no entirely direct method
for the eigenproblem can exist. Nevertheless we name a method that applies to
the eigenproblem a direct method, when it is based on the iterated application of a
direct method. An example of such a method is the QR-iteration.

The so-called classical iterative methods like Jacobi, Gauß–Seidel and SOR in
general are converging to slowly to the solution to be of practical use. Krylov
subspace methods are direct methods (they terminate after a finite number of steps,
at least in theory) and improve over the classical iterative methods in the sense of
being optimal. Krylov methods are frequently the method of choice for large sparse
problems.

Past

Krylov methods were developed in the early fifties. The first papers were Lanczos’
papers published in 1950 and 1952 on hismethod of minimised iterations (cf. [Lan50,
Lan52]), Arnoldi’s paper published in 1951 based on Lanczos’ ideas (cf. [Arn51])
and the joint paper by Hestenes and Stiefel published in 1952 (cf. [HS52]).

It was realized soon that the methods where not competitive to the other direct
methods in terms of accuracy and stability. Due to a lack of better understanding
they were abandoned, or only used in conjunction with complete reorthogonalisa-
tion, which made them less competitive. Nevertheless, the methods appeared in
textbooks for the first time (cf. [Wil65, Hou75]).

In the seventies Reid was among the first to realize that CG interpreted as
iterative method was superior to direct approaches for certain matrices, especially
when used with preconditioning (cf. [Rei71]). At roughly the same time Paige gave
the first detailed error analysis for the symmetric Lanczos method (cf. [Pai71]). The
first public available code for Lanczos methods by Cullum and Willoughby dates
back to the the end of the seventies (cf. [CW85a, CW85b]).

During the eighties a group consisting mainly of researchers around Parlett
made use of Paige’s results to obtain new error analyses and to develop more stable
algorithms. This progress came in form of a series of Ph.D. theses (cf. [Sco78, Gre81,
Grc81, Sim82, Day93]). Bai’s analysis of the nonsymmetric Lanczos method (cf.
[Bai94]) and Strakoš’ work dates also to this period. Paige’s analysis was contained
for the first time in the republished version of Parlett’s book (cf. [Par98]). Also
contained is part of the work that builds upon this analysis.

The release of a textbook touching error analysis for Krylov subspace methods
for the first time paved way for similar results to occur in a variety of textbooks
(cf. [Gre97, Dem97, TB97, Meu99]). The topics covered are mainly results.

State of the Art

Nowadays, Krylov methods have gained widespread recognition. They have even
been elected one of the ten best algorithms ever, see ([TTA00]). In this list (ordered
by date) they appear as third item,

3. 1950: Krylov Subspace Iteration Method. A technique for rapidly
solving the linear equations that abound in scientific computation.

Nevertheless, up to now, no black-box solver based on Krylov subspace methods
exists. Packages for the solution of real-world problems refuse to contain Krylov
methods, the reasons for this being the non-predictable behaviour with respect to
success and, more seriously, time.

We think that the area of Krylov methods is approaching a state where it be-
comes useful to collect the results known to form a basis for future examination.
This, in turn, might help to reach a state where the understanding and development
of algorithms based on Krylov subspaces will also be satisfactory.
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Active Research and Future Work

There are several areas of active research in the development and understanding of
Krylov methods. In the authors opinion the main areas are given as follows:

Preconditioning. Krylov methods are only competitive when used with precon-
ditioning. Since Reid published his paper (cf. [Rei71]) this is, maybe by far,
the most important area.

Restart, Truncation, Look-Ahead. These new types of methods are introduced
to fill the gap between fast and controllable Krylov methods. In the field of
eigenproblem methods, implicit restart has become state of the art, as example
we mention Lehoucq’s and Sorensen’s ARPACK (cf. [LSY98]).

Generalisation. New methods have been introduced recently that are very close to
Krylov methods. These methods include the rational Krylov method, inner-
outer iterations (which itself are just a form of preconditioning) and Galerkin
approaches like Jacobi-Davidson (cf. [SvdV95, FSvdV96, SvdV95]).

Inexact Methods. In some applications accurate matrix vector products are very
costly. It is currently an active line of research to find out how accurate the
matrix vector products have to be in which stage of the algorithm to achieve
the result up to a specified accuracy.

Error Analysis. The usual definition of a backward error is not appropriate for
all Krylov methods. Backward error analysis has been applied successfully
to GMRES by Rozložńık (cf. [Roz97]). Progress towards a different type
of backward error analysis has only been made for the symmetric Lanczos
method and CG (cf. [Gre89, GS92]).

Unification. Approaches are seldom as general as they might have been. Many
methods, their convergence theory, their error analysis, can be understood
from a broader point of view.

This thesis is mainly concerned with the last two areas. The first two areas are
developing too rapidly to be included. The major problem of error analysis lies in
the non-normality of the matrices. The approaches that are the most promising are
pseudospectra, the field of values and the degree of normality [TT94, TT96, Tre93,
Tre99, Tre97].

Recent publications concerned with the last topic are the paper by Cullum and
Greenbaum ([CG96]) on similarities of GMRES/FOM with BiCG/QMR, the paper
by Hochbruck and Lubich ([HL98]) on Krylov methods in a nutshell and the work
of Eiermann and Ernst ([EE99]) on the relations between MR and OR approaches.
Another approach using an engineering viewpoint is the work of Schönauer and
Weiss [SW95].

To our knowledge, no unified approach has been considered for the error analysis
of Krylov subspace methods in finite precision. This will be our main concern.

1.4 Finite Precision and Error Analysis

We distinguish between three categories of error:

Data Errors. These types of error are due to imprecise measurement of the data
or due to simplified models.

Method Errors. These types of error are due to discretisations and finite termi-
nation of infinite representations.
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Rounding Errors. These types of error are due to the finite precision nature of
computer arithmetic.

We consider only rounding errors as source of error, i.e., we assume that all calcu-
lations apart from the rounding errors occurring in the application of the methods
are exact.

1.4.1 Floating Point Models

Computer arithmetic can only represent a finite subset of the natural, real and
complex numbers. The representation of N and Z by Nn ≡ N/nN and Zn ≡
Z/nZ introduces only one type of error, the so-called wrap-around . The computer
representation inherits most algebraic properties of N and Z.

The representation of R has been standardised in the eighties and is ruled by the
ANSI/IEEE standards 754 and 854 ([IEE85b, IEE85c, IEE87]). The set F used to
represent R consists of so-called floating point numbers. The field C is a subdivision
algebra over R and is usually modelled by F2. A number in F consists of an array of
fixed bit-length. One bit is reserved for the sign, a fixed number of bits represents
the mantissa and the remaining bits are used to encode the exponent.

The mathematical result of an operation on floating point numbers only in trivial
cases is part of F. The computer implementation of the mathematical operations
introduces new types of errors. When the true result is not part of F, it has to
be rounded to a number in F. Numbers that are too small and too large to be
representable are said to underflow and overflow , respectively.

To distinguish the true mathematical result form the computed floating point
result we use the notation already used by Wilkinson (cf. [Wil63], section 7, page
4, equation (7.1)). Wilkinson used the notation fl(<term>) to denote the result of
the floating point evaluation of <term>. Evaluation is assumed to be from left to
right.

One part of theory is to develop rounding error models capturing the important
features of the computer arithmetic in use, the other is to have models at hand that
predict how solutions change when the data is perturbed according to these models.
The very complicated behaviour of finite precision computations is modelled by
making some assumptions on the distribution and size of absolute and relative
errors.

ANSI/IEEE arithmetic

The ANSI/IEEE standards 754 and 854 define two formats of floating point num-
bers, four rounding modes and the return value of the four basic machine operations
{+,-,*,/} and the square root. Furthermore, they introduce Inf and NaN (Not a
Number) and exception handling to deal with the implications of underflow and
overflow.

The formats are single precision with 32 bits and double precision with 64 bits.
The rounding modes are round to nearest (nearest), round toward plus infinity
(upward), round toward minus infinity (downward) and round to zero (chop). The
four basic operations and the square root are defined to deliver the floating point
number that is closest to the true result relative to the rounding mode.

The largest and smallest floating point number and the maximal relative distance
between two floating point numbers are used to describe the behaviour of the floating
point arithmetic. The smallest (denormalised) floating point number ν is given by

νsingle = 2−149 ≈ 1.40130 · 10−45,
νdouble = 2−1074 ≈ 4.94066 · 10−324,



8 CHAPTER 1. PRELIMINARIES

respectively. The relative distance is the distance between one and its floating point
successor. This number is labelled unit roundoff and has a last bit in the mantissa
equal to one, all other bits except the implicit one are equal to zero. The unit
roundoff u is given by

usingle = 2−23 ≈ 1.19209 · 10−7,
udouble = 2−52 ≈ 2.22045 · 10−16.

In standard mode the rounding is set to nearest. With this rounding mode half the
unit roundoff u is the maximal relative error that can occur in a rounding operation.
The resulting number

εsingle = 2−24 ≈ 5.96046 · 10−8,
εdouble = 2−53 ≈ 1.11022 · 10−16,

is called the machine precision. When any other rounding mode is used, the result-
ing machine precision is equal to the unit roundoff.

Attention: in the open literature several contradictory definitions can be found.
We use two of the most popular to give an example of the loss of the algebraic
properties when computing in floating point:

Example 1.1 (Loss of Algebraic Properties) In floating point computations
the usual algebraic properties no longer hold. As an example, consider the quantities
defined as follows:

ε̃ ≡ max
x∈F
{fl(1 + x) = 1}

ε = min
x∈F
{fl(1 + x− 1) = x}.

With the above definitions ε̃ 6= ε.

Model accounting for underflow

The ANSI/IEEE standard is also an error model. This model is hard to use, since
the complexity of the model and the arithmetic is essentially the same. Furthermore,
the model consists of discrete points and is thus non-continuous. In order to get rid
of this non-continuous character we consider the errors as unknowns and simply use
the bounds on the basic operations that are implied by the ANSI/IEEE standard.

Let ◦ denote one of the five basic operations. The rounding errors fulfil the
following:

fl(a ◦ b) = (a ◦ b)(1 + δ) + µ, |δ| ≤ ε, |µ| ≤ ν.
The additive term µ is only relevant in case an underflow occurs and is not neces-
sary in case of addition and subtraction when considering ANSI/IEEE arithmetic,
because the gradual underflow prevents the results in the denormalised range from
being incorrect. This model is seldom used because of the additive term.

Model not accounting for underflow

The model above is correct and useful, but not accounting for underflow makes it
far more easy to develop error bounds, and underflow can be taken care of using
exception handling. The new model looks as follows:

Let ◦ denote one of the five basic operations. As long as no underflow occurs,
the rounding errors fulfil the following:

fl(a ◦ b) = (a ◦ b)(1 + δ1) =
(a ◦ b)
(1 + δ2)

, |δi| ≤ ε.
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This model is the one that is mainly used in error analyses. In the following we act
as if we have an extension valid also for complex arithmetic. Given an example of
complex arithmetic it is easy to find such (slightly larger) constants.

Using the error model

Wilkinson is the main source of inspiration to numerical analysts. Wilkinson used a
straight, problem dependent notation. Often he assumes that nε < 1.01 or similar.
His style of error analysis gives very sharp results that very much depend on the
actual algorithm and the machine used.

Another style of error analysis uses Landau’s O–notation. This analysis is easier
to follow and better to enhance in order to apply to different algorithms and ma-
chines. The drawback is that the hidden constants may become important. When
a new type of algorithm or more sophisticated analysis is used, it may become
necessary to redo any prior analysis.

Recent approaches to error analysis use different classes of bounded variables.
A nice example of such an error analysis is given in Higham (cf. [Hig96]). From
this three major styles that are used to capture the distribution of errors in more
complex formula we chose the notation used in Higham.

Higham uses δ, δi to denote quantities bounded by the machine precision, |δi| ≤ ε.
From the error model it is obvious that many expressions involving products of sums
of one and δ occur. To bound the distance of the result from one, a new class of
variables is defined by

n∏

i=1

(1 + δi)
±1 ≡ 1 + θn.

As long as nε < 1, the variables constructed this manner fulfil

|θn| ≤
nε

1− nε ≡ γn.

The class of variables is extended to all variables with this bound. Variables with
this new bound that occur in expressions can be handled easily and fulfil simple
algebraic rules:

Lemma 1.2 ([Hig96], Lemma 3.3, page 74) For any positive integer k let θk
denote a quantity bounded according to |θk| ≤ γk = kε/(1 − kε). The following
relations hold:

(1 + θk)(1 + θj) = 1 + θk+j ,

1 + θk
1 + θj

=

{
1 + θk+j , j ≤ k,
1 + θk+2j , j > k,

γkγj ≤ γmin(k,j),

iγk ≤ γik,

γk + γj + γkγj ≤ γk+j .

The above results are an excerpt from Higham’s book [Hig96].

1.4.2 Error Analysis

Suppose we want to compute f(p) = x, where p is a given set of parameters. Instead
of the true solution x we compute x̃ = x +∆x. The quantity ∆x is known as the
forward error . The goal is to show that ∆x is small. The error models describe the
errors in the atomic steps

x0 = p, fi(x0, . . . , xi−1) = xi, f(p) = xk = x
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every algorithm is composed of. These atomic steps are supposed to be given by
the five standard operations.

There are essentially two approaches to determine a bound on the overall error
∆x, namely forward error analysis and backward error analysis combined with
perturbation theory. The advantage of splitting the error analysis into two parts
is that the backward error analysis is independent of the sensitivity on the data,
and the perturbation theoretic part is independent of the algorithm and has to be
carried out only once for all algorithms.

Forward Error Analysis

Forward error analysis tries to keep track of the intermediate (local) errors ∆xi,

fi(x̃0, . . . , x̃i−1) = xi +∆xi,

to obtain a bound on the overall (global) error ∆x. First-order forward error anal-
ysis is closely linked to bounding products of Jacobians of the composing functions
fi (cf. [Hig96], pp. 82). The bounds obtained are usually pessimistic. An example of
successful application of forward error analysis is the application to matrix inversion
by von Neumann and Goldstine (cf. [vNG47]).

Backward Error Analysis

Backward error analysis takes another approach. Backward error analysis was intro-
duced by Wilkinson and tries to change the data such that the computed solution is
exact for the modified problem. The numerical analyst has to modify the parameters
p of the problem, that is, given ∆x, determine any or all ∆p with

f(p+∆p) = x+∆x.

Mostly we seek ∆p with special structure, for example with minimal norm. The
quantity ∆p is a backward error . First-order backward error analysis is closely
linked to solve large (under-determined) systems (cf. [Hig96], pp. 82). Backward
error analysis gives very successful results in the context of dense linear systems.

Stability of Algorithms

Closely linked to error analysis is the stability of the algorithm. An algorithm is
forward stable, when it computes solutions that are close to the exact solution, i.e.,
when the forward error is small. An algorithm is backward stable, when it computes
solutions that are exact solutions of a nearby problem, i.e., when the backward error
is small. There are examples of algorithms that are forward stable without being
backward stable.

We already noted that backward error analysis is independent of data sensitivity.
In turn, backward error analysis gives no information directly on the forward error.
This has to be done using perturbation theory.

1.4.3 Perturbation Theory

Perturbation theory tries to determine how the solution changes when the param-
eters are perturbed. The question we are interested in is the following: Given ∆p,
how does the deviation

∆x = f(p+∆p)− f(p)

look like?
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In general, the task is the computation of measures when the perturbations
stem from a prescribed set. We are interested in measuring the change in data,
when we are perturbing the parameter according to a given set. The question is,
given a set of parameter variations P = {∆p} how does the set of solution variations
X = {∆x : f(p+∆p) = x+∆x} look like? There are two main approaches.

a) Algebra.
The idea is to insert a generic perturbation ∆p and then to determine resulting
conditions on

∆x ≡ f(p+∆p)− f(p).
If this approach works, we usually obtain sharp bounds.

b) Calculus.
The idea is to use a parameterisation p(t) of p, such that

p(0) = p, p(ε) = p+∆p = p(0) + εṗ(0) +O(ε2).

We define the variation on x as ∆x = ∆x(ε) = f(p(ε)) − f(p(0)). Computing
derivatives with respect to t gives the linearisation at zero,

d

dt
∆x(t) =

d

dt
f(p(t)).

We estimate the variation ∆x = ∆x(ε) by the first term in the Taylor expansion,
ε∆ẋ(0). The approach based on calculus is more often applicable, but naturally
delivers only first-order bounds.

We are often only interested in bounding the amplification factor between a
change in parameter and resulting change in the solution. This task is accomplished
by condition numbers.

Condition Numbers

A condition number is a bound on the set of changes computed using perturbation
theory. A variety of useful condition numbers can be defined, see Wilkinson (cf.
[Wil63], section 37, p.29). We define the normwise condition number with respect
to scalar z to be

κz(x) = inf
ε>0

sup

{‖∆x‖
‖x‖ ε : f(p+∆p) = x+∆x, ‖∆p‖ ≤ εz

}

.

Accordingly we define the componentwise condition number with respect to non-
negative z to be

condz(x) = inf
ε>0

sup

{

max
i

|∆x|i
|x|i

ε : f(p+∆p) = x+∆x, |∆p| ≤ εz
}

.

A condition number is called absolute, when z = 1, and relative, when z = ‖p‖,
z = |p|. If f is differentiable, a condition number can be obtained from its derivative.
Combining backward error analysis with perturbation theory gives information on
the forward error ∆x. This relation is usually stated in informal manner as a rule
of thumb:

forward error ≤ condition number × backward error.

When the condition number is small, backward stable algorithms are also forward
stable. A problem is termed ill-conditioned when the condition number is large,
and ill-posed when the condition number is infinite. Ill-posed problems can not be
solved in finite precision.
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1.5 Solution of Linear Systems

In this section, the linear system under consideration will be denoted by

Ax = b,

where we assume that A ∈ Kn×n and b ∈ Kn are given and we seek a solution
x ∈ Kn. This solution is unique when A is regular. For regular A, the entries xi
of the solution x depend analytically on the entries of A and b. This is known as
Cramer’s rule,

xi =
det(a1, . . . , ai−1, b, ai+1, . . . , an)

det(A)
.

This relation is merely of theoretical interest.
The error analysis for linear systems of equations splits up into backward error

analysis and application of results from perturbation theory, i.e., derivation of con-
dition numbers. We start with stating the main results from perturbation theory.
The results presented can be found in the textbook of Chaitin-Chatelin and Frayssé
and in the textbook of Higham (cf. [CCF96, Hig96]).

1.5.1 Perturbation Theory

The linear system and the related perturbed system will be denoted by

Ax = b and Ãx̃ = b̃,

respectively. We suppose again that A ∈ Kn×n and b ∈ Kn are given, and we seek
x ∈ Kn. For notational purposes we define the differences

∆A = Ã−A, ∆x = x̃− x and ∆b = b̃− b.

We interpret x̃ as an approximate solution of Ax = b and denote the corresponding
residual by r = b − Ax̃. With these notations established, we are enabled to state
a sequence of well-known results:

Lemma 1.3 (Rigal, Gaches) The normwise backward error of an approximate
solution x̃ of a linear system Ax = b can be expressed as

ηα,β(x̃) ≡ min {ε : (A+∆A)x̃ = b+∆b, ‖∆A‖ ≤ εα, ‖∆b‖ ≤ εβ}

=
‖b−Ax̃‖
α‖x̃‖+ β

.

A perturbation that achieves equality is given by

∆A =
−α

α‖x‖+ β
rvH , ∆b =

β

α‖x‖+ β
r,

where v is a vector dual to x̃, i.e., chosen such that vH x̃ = ‖x̃‖ and ‖v‖d = 1.

Proof. The proof can be found in the original paper of Rigal and Gaches, dating
back to 1967 (cf. [RG67]), and in the textbook of Chaitin-Chatelin and Frayssé (cf.
[CCF96], p. 74). Here ‖ · ‖d is the dual norm to ‖ · ‖, defined by

‖x‖d = max
v 6=0

|vHx|
‖v‖ .

¤

For the particular choice α = ‖A‖ and β = ‖b‖ we obtain the normwise relative
backward error.
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Lemma 1.4 (Turing) The normwise condition number of the linear system Ax =
b can be expressed as

κα,β (A, x) ≡ inf
ε>0

sup

{‖∆x‖
‖x‖ ε : Ãx̃ = b̃, ‖∆A‖ ≤ εα, ‖∆b‖ ≤ εβ

}

=
‖A−1‖ (α‖x‖+ β)

‖x‖ .

Proof. This condition number has its origins in the works of Turing. The proof
of the lemma can be found in the textbook of Chaitin-Chatelin and Frayssé (cf.
[CCF96], p. 50). ¤

The same approach works componentwise. Here, we suppose that we are given a
nonnegative matrix E ∈ R and a nonnegative vector f ∈ R that are the entrywise
bounds for the perturbations in A and b, respectively. Then the following can be
shown to hold true:

Lemma 1.5 (Oettli, Prager) The componentwise backward error of an approxi-
mate solution x̃ of a linear system Ax = b can be expressed as

ωE,f (x) ≡ min {ε : (A+∆A)x̃ = b+∆b, |∆A| ≤ εE, |∆b| ≤ εf}

= max
i

|b−Ax|i
(E |x|+ f)i

A perturbation that achieves equality is given by

∆A = diag

(
(E|x̃|+ f)i

ri

)

E diag

(
x̃i
|x|i

)

,

∆b = −diag
(
(E|x̃|+ f)i

ri

)

f.

Proof. This result is due to Oettli and Prager and dates back to 1964 (cf. [OP64]).
The proof again may be found in the textbook of Chaitin-Chatelin and Frayssé (cf.
[CCF96], p. 74). ¤

Similar to the normwise analysis we define

ω|A|,|b|(x) = max
i

|b−Ax|i
(|A| |x|+ |b|)i

as the componentwise relative backward error.

Lemma 1.6 (Rohn) The componentwise condition number of the linear system
Ax = b can be expressed as

condE,f (A, x) ≡ inf
ε>0

sup

{

max
i

|∆xi|
|xi|

ε : Ãx̃ = b̃, |∆A| ≤ εE, |∆b| ≤ εf
}

= max
i

(∣
∣A−1

∣
∣ (E |x|+ f)

)

i

|x|i
.

Proof. For a proof we refer the reader to the textbook of Chaitin-Chatelin and
Frayssé (cf. [CCF96], p. 50). ¤

The componentwise condition number originates from work by Rohn. All backward
errors and condition numbers do not depend on any structure. We briefly remark
that the condition number and the backward error with respect to structured per-
turbations may be significantly smaller than indicated by the general results.
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1.5.2 Decompositions and Error Analysis

The näıve solution of a linear system Ax = b by application of Cramer’s rule
directly to the matrix A and the left-hand side b involves too much work. As
preceeding, or better, pre-processing step the linear system is transformed to a
couple of linear systems which are simpler to solve, i.e., we first reformulate the
equation Ax = b. The idea that turned out to be very successful is to decompose
or factor the matrix A. Whenever determinants are cheaply computable, Cramer’s
rule becomes applicable. We seek a factorisation as a sequence of triangular or
mixed triangular and orthogonal (unitary) matrices.

Triangular Decompositions

The oldest idea for the solution of a linear system consists of replacing A by a
product of triangular matrices. The decompositional approach with triangular or
block triangular matrices is known as Gaussian elimination. We distinguish be-
tween Gaussian elimination (GE), GE with partial pivoting (GEPP) and GE with
complete pivoting (GECP),

A = LU, PA = LU, PAQ = LU.

The matrix L is lower triangular, the matrix U is upper triangular, P and Q are
permutation matrices. To fix the number of equations and the number of unknowns,
usually the diagonal elements of L are set to one.

All results on decompositions are based on the following lemma:

Lemma 1.7 ([Hig96], Lemma 8.4, page 154) If y = (c−
∑k−1

i=1 aibi)/bk is eval-
uated in floating point arithmetic, then, no matter what the order of evaluation,

bkỹ(1 + θ
(k)
k ) = c−

k−1∑

i=1

aibi(1 + θ
(i)
k ),

where ỹ is the computed solution and |θ(i)k | ≤ γk for all i. If bk = 1, so there is no

division, then |θ(i)k | ≤ γk−1 for all i.

The backward error analysis is the same for all forms of GE. First, permute the
system matrix Â ← PAQ. Then suppose we have already permuted A, such that
A = LU holds true. We have the following bound regardless of the GE variant
used. The following holds true:

Lemma 1.8 ([Hig96], Theorem 9.3, page 175) Suppose we have computed tri-
angular factors L̃ and Ũ . Then the following backward bound holds true:

A+∆A = L̃Ũ , |∆A| ≤ γn|L̃||Ũ |.

For the solution of linear systems by GE one can prove the following bound:

Lemma 1.9 ([Hig96], Theorem 9.4, page 175) Suppose we have computed tri-
angular factors L̃ and Ũ . Suppose further that we have used forward and backward
substitution to compute an approximate solution x̃. Then we obtain the backward
bound

(A+∆A)x̃ = b, |∆A| ≤ γ3n|L̃||Ũ |.
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How are these a posteriori bounds that involve the a priori unknown quantities L̃
and Ũ related to the original data? When the computed triangular factors satisfy

|L̃||Ũ | ≈ |L̃Ũ | ≈ |A| ,

the algorithm is backward stable. When the LU decomposition is carried out in
infinite precision, we can measure the so-called growth factor, defined as

ρn(A) ≡
maxi,j,k |a(k)ij |
maxi,j |aij |

.

The upper index k in a
(k)
ij is used to denote the elements of A in the kth step of the

LU decomposition. Using the definition of the growth factor, Wilkinson proved the
following theorem:

Lemma 1.10 ([Hig96], Theorem 9.5, page 176) Let the growth factor be de-
fined as above. Then the approximate solution x̃ to the linear system Ax = b
obtained by GE and forward and backward substitution satisfies

(A+∆A)x̃ = b, ‖∆A‖∞ ≤ 2n2γnρn‖A‖∞.

This lemma uses the element growth in an exact computation to bound the errors
in a finite precision computation. We refer to the comment in Higham’s book (cf.
[Hig96], page 176).

GE, GEPP and GECP applied to a general matrix have growth factors with

ρGEn ≤ ∞, ρGEPPn ≤ 2n−1, ρGECPn ≤ n1/2(2 · 31/2 · · ·n1/n−1),

respectively. The first two bounds are sharp.

Special Forms of Triangular Decomposition

If the LU decomposition of A without pivoting exists, i.e., when all leading principal
minors are nonzero, we define the LDMT and LDMH decompositions

A = LDMT , A = LDMH ,

where L and M are lower triangular matrices with unit diagonal, D is a diagonal
matrix. When A is symmetric or Hermitian, this decomposition reduces to the
LDLT or LDLH decomposition,

A = LDLT , A = LDLH .

When A is symmetric positive definite (SPD) or Hermitian positive definite (HPD),
we can choose C = L

√
D resulting in the Cholesky decomposition, given by

A = CCT , A = CCH .

The LDLT decomposition can be interpreted as a generalisation of the Cholesky
decomposition. This decomposition is sometimes termed the rational Cholesky
decomposition because of its suitability in fields other than R or C.

When A is symmetric indefinite, there exist at least two well-known methods
that compute a generalised LDLT decomposition, namely Aasen’s method and the
Bunch-Kaufmann decomposition. The error analysis for these decompositions is
similar to the error analysis of GE. We only state one well-known backward result:
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Theorem 1.11 ([Hig96], Theorem 10.3, page 206) If Cholesky factorisation ap-
plied to the symmetric positive definite matrix A ∈ Rn×n runs to completion then
the computed factor C̃ satisfies

C̃C̃T = A+∆A, |∆A| ≤ γn+1|C̃||C̃T |.

Furthermore, the right-hand side can be bounded normwise using

‖ |C̃||C̃T | ‖ ≤ n(1− nγn+1)−1‖A‖

and componentwise using

|C̃||C̃T | ≤ (1− γn+1)−1ddT , di =
√
aii.

Proof. All results can be found in Higham’s book. The normwise bound can be
found on page 206, the componentwise bound in the proof of Theorem 10.5, page
207. ¤

Bounds similar to the corresponding ones in the analysis of GE hold true for the
solution of linear systems using Cholesky decomposition. We note that the growth
factor in GE for A SPD is one.

Triangular Decomposition for Matrices with Special Structure

Special structure has impacts on the bounds of the growth factor. This may be the
non-zero pattern of the matrix or other properties. The matrices we are mainly
concerned with are Hessenberg and tridiagonal matrices. We collect some useful
results in the following lemma:

Lemma 1.12 Let A ∈ Cn×n be diagonally dominant by rows or columns. Then
GE works and the growth factor is bounded by ρn ≤ 2. GEPP requires no row
interchanges.

Let H ∈ Cn×n be an upper Hessenberg matrix. Then for the growth factor ρpn in
GEPP ρpn ≤ n holds true.

Let T ∈ Rn×n be a nonsingular tridiagonal matrix. If any of the following
conditions holds, then T has an LU factorisation and |L||U | = |LU |:

(a) T is symmetric positive definite;
(b) T is totally nonnegative, or equivalently, L ≥ 0 and U ≥ 0;
(c) T is an M-matrix, or equivalently, L and U have positive diagonal elements

and nonpositive off-diagonal elements;
(d) T is sign equivalent to a matrix of type (a)–(c), that is, T = S1T̃ S2, where

|S1| = |S2| = I.
Suppose further that the unit roundoff u is sufficiently small. Then GE for

solving Tx = b succeeds and the computed solution x̃ satisfies

(T +∆T )x̃ = b, |∆T | ≤ 4u+ 3u2 + u3

1− u
|T |.

Proof. These results are an excerpt of theorems in Higham’s book ([Hig96]). The
result on diagonal dominance is Theorem 9.8, page 181, the Hessenberg result is
Theorem 9.9, page 182, the conditions for |L||U | = |LU | for tridiagonals are collected
in Theorem 9.11, page 184 and the bound on the computed solution is Theorem
9.13, page 185. ¤

LR decomposition is very stable for so-called M-matrices. M-matrices enjoy very
special properties. These properties can, to some extent, generalised from the set
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of M-matrices to the so-called H-matrices. H-matrices are defined with the aid of
Ostrowski’s comparison matrixM(A),

M(A) ≡ abs(D)− abs(A−D), D ≡ diag(A).

A matrix A is an H-matrix when M(A) is an M-matrix. The set of equimodular
matrices ω(A) to a given M-matrix A is defined by

ω(A) ≡ {H, M(H) = A}.

For H-matrices special bounds for the growth factor exist.

Orthogonal Decompositions

We can write any matrix as product of an orthogonal or unitary matrix and a
triangular matrix, i.e.,

A = QR or A = LQ.

The matrix R is upper triangular, L is lower triangular, Q is unitary. The first
is known as QR decomposition, the latter as LQ decomposition. The first Q in
general is not equal to the second Q. There is no need for A to be square, so in the
following we assume A ∈ Km×n, m ≥ n. The formerly triangular matrices L and R
are sometimes termed trapezoidal matrices.

There are several ways to obtain the QR decomposition of a given matrix A.
The QR decomposition can be computed by means of Householder reflectors (House-
holder QR), by means of Givens rotators (Givens QR), by means of Givens-Kahan
rotators or by means of classical or modified Gram-Schmidt on the columns of A.

We state some results along the lines of Higham (cf. [Hig96]). First we state the
result on the stability of the QR decomposition using Householder reflectors and
the backward error analysis of a subsequent solution of a linear system.

Lemma 1.13 ([Hig96], Theorem 18.4, page 368) Let R̃ ∈ Rm×n be the com-
puted upper trapezoidal QR factor of A ∈ Rm×n obtained via the Householder QR
algorithm. Then there exists an orthogonal Q ∈ Rm×m such that

A+∆A = QR̃,

where ‖∆A‖F ≤ nγcm‖A‖F and |∆A| ≤ mnγcmG|A|, with ‖G‖F = 1. The matrix
Q is given explicitly as Q = (PnPn−1 . . . P1)

T , where Pk is the Householder matrix
that corresponds to the exact application of the kth step of the algorithm to Ãk.

Lemma 1.14 ([Hig96], Theorem 18.5, page 369) Let A ∈ Rn×n be nonsingu-
lar. Suppose we solve the system Ax = b with the aid of a QR factorisation computed
by the Householder algorithm. The computed x̃ satisfies

(A+∆A)x̃ = b+∆b,

where
|∆A| ≤ n2γcnG|A|, |∆b| ≤ n2γcnG|b|, ‖G‖F = 1.

Very similar bounds hold true, when the Givens QR variant is used.

Lemma 1.15 ([Hig96], Theorem 18.9, page 375) Let R̃ ∈ Rm×n be the com-
puted upper trapezoidal QR factor of A ∈ Rm×n obtained via the Givens QR al-
gorithm, with any standard choice and ordering of rotations. Then there exists an
orthogonal Q ∈ Rm×m such that

A+∆A = QR̃,
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where ‖∆A‖F ≤ γc(m+n)‖A‖F and |∆A| ≤ mγc(m+n)G|A|, with ‖G‖F = 1. The
matrix Q is a product of Givens rotations, the kth of which corresponds to the exact
application of the kth step of the algorithm to Ãk.

QR decomposition via Householder reflections or Givens rotations is normwise back-
ward stable. These methods usually fail to be componentwise backward stable, be-
cause of the occurring matrices G with ‖G‖F = 1. Classical Gram–Schmidt, short
CGS, is numerically unstable. The only thing one can prove is that the computed
QR decomposition has a small backward error:

Lemma 1.16 ([Hig96], page 381) Let Q̃ and R̃ be the computed factors of the
QR decomposition. For CGS the following bound holds:

A+∆A = Q̃R̃, ‖∆A‖2 ≤ cu‖A‖2,

where c depends only on the dimensions m,n.

Paige and Björk worked on the correspondence of MGS-QR to Householder-QR for
an augmented matrix (cf. [BP92]). The correspondence holds in infinite as well as
in finite precision and is given by

A = QR, P T

(
0
A

)

=

(
R
0

)

,

where the Householder reflectors are given by the matrices

I − pkpTk , pk =

(
−ek
qk

)

.

This result can be used to obtain a backward error result on MGS-QR, which
shows that the R factor is as stable as the R factor in a Householder or Givens
computation, only the computed Q factor deviates. In this paper, also an example
how to obtain a better Q factor from the computed Q factor is given.

Lemma 1.17 ([Hig96], Theorem 18.12, page 379) Suppose that the MGS method
is applied to A ∈ Rm×n of rank n, yielding computed matrices Q̃ ∈ Rm×n and
R̃ ∈ Rn×n. Then there are constants ci ≡ ci(m,n) such that

A+∆A1 = Q̃R̃, ‖∆A1‖2 ≤ c1u‖A‖2,
‖Q̃T Q̃− I‖2 ≤ c2uκ2(A) +O((uκ2(A))

2),

and there exists an orthonormal matrix Q such that

A+∆A2 = QR̃, |∆A2| ≤ c3uG|A|, ‖G‖F = 1.

As already mentioned, for some methods the computation of QR decomposition is
normwise backward stable, but not componentwise. To better understand the sensi-
tivity of QR decompositions, Stewart considered normwise, Zha and Sun considered
componentwise sensitivity analysis of perturbed QR decompositions,

A = QR, A+∆A = (Q+∆Q)(R+∆R).

In the normwise case, for sufficiently small ∆A,

max

{

‖∆Q‖F ,
‖∆R‖F
‖R‖F

}

≤ cnκF (A)
‖∆A‖F
‖A‖F



1.5. SOLUTION OF LINEAR SYSTEMS 19

holds true, where cn is a constant. In the componentwise case the perturbation
∆A is assumed to be bounded by |∆A| ≤ εG|A|, G ≥ 0, ‖G‖∞ = 1. Then, for
sufficiently small ε,

max

{

‖∆Q‖∞,
‖∆R‖∞
‖R‖∞

}

≤ cm,ncond(R
−1) +O(ε2)

holds true, where cm,n is a constant depending onm and n and cond(A) = ‖ |A−1||A| ‖∞.
The componentwise condition number of the factors of the QR decomposition is de-
fined to be

φ(A) ≡ cond(R−1) = ‖ |R||R−1| ‖∞.
These results are stated in [Hig96], pages 382–383.

Structured Error Analysis

Many algorithms make extensive use of known structure, simply to perform better.
This introduces only errors that are of the same structure. But the preceeding
analyses only took the norm or the componentwise absolute value into account. We
remark that for many classes of matrices like symmetric, skew-symmetric, Toeplitz,
Hankel, Bezout, banded matrices suitable condition numbers and backward errors
can be defined and bounded or even explicitly computed.

Generalised Inverses

The inverse of a matrix is only defined as long the matrix is regular. This regularity
necessarily implies that the matrix is moreover square. Under various circumstances
generalisations taking the place of the matrix inverse exist. All these will be termed
generalised inverses. Frequently, given the equation Ax = b, we are interested in a
linear mapping X, such that x = Xb is a solution whenever a solution exists, i.e.,
when b ∈ range(A). This is equivalent to the fulfilment of the condition AXA = A.
The most prominent among all generalised inverses X is the classicalMoore-Penrose
inverse or pseudo-inverse. The pseudo-inverse A† of A ∈ Km×n is given by the
matrix X uniquely defined by the following four axioms:

(I) AXA = A, (III) (AX)H = AX,
(II) XAX = X, (IV) (XA)H = XA.

When the matrix is square, also the following condition is of interest:

(V) XA = AX

Any matrix X that fulfils a subset η of the equations (I–V) is termed an η–
inverse and is denoted by Aη. The Moore-Penrose pseudo-inverse is thus given
by A† = A{I,II,III,IV}. A matrix fulfilling the important condition (I) is also known
as a g–inverse or condition one inverse. Any matrix A{I,III} is a least–squares gener-
alised inverse and any matrix A{II,IV} is a minimum norm generalised inverse. The
so-called group inverse A{I,II,V} exists and is uniquely defined when rank(A2) =
rank(A). The group inverse is denoted by A#.

When A is square, but not necessarily rank(A2) = rank(A), we can still find a
generalised inverse that fulfils the conditions (II), (V) and

(D) Ak+1X = Ak

where k is the index ind(A) of the matrix A, i.e., the smallest non-negative integer
k such that rank(Ak+1) = rank(Ak). This matrix is denoted by AD and is termed
the Drazin inverse of A. The Drazin inverse is uniquely defined by these axioms,
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but in general does not fulfil condition (I), i.e., is not a g–inverse. The group inverse
is merely a special case of the Drazin inverse, where ind(A) = 1. This can be seen
since in this case conditions (D) and (V) imply condition (I). The Drazin inverse is
important in areas where algebraic structure (group structure) has to be taken into
account.

1.6 The Algebraic Eigenproblem

The algebraic eigenvalue problem, or shorter and more precise, the algebraic eigen-
problem, is the following. Given a matrix A ∈ Kn×n, we seek a scalar λ and a
(non-zero) vector v, such that

Av = vλ

holds true. This is a partial eigenproblem. The scalar λ is termed an eigenvalue,
the corresponding vector v is termed the right eigenvector or simply eigenvector.
Sometimes we also seek vectors v̂H or v̌T such that with the value λ as above

v̂HA = λv̂H or v̌TA = λv̌T

holds true. In this case, the vectors v̂H and v̌T are termed right eigenvectors. The
algebraic eigenvalue problem is not a linear problem, since it involves a product
of two unknowns. Nevertheless, it is a linear algebra problem since it clarifies the
properties of a linear operator. Depending on the domain of application, we might
be interested in different quantities. We might want to compute all or only a few
eigenvalues, only the eigenvalues or also the corresponding right, and maybe even
the left eigenvectors.

We start with the properties of the eigenvalues. All eigenvalues are due to

Av = vλ ⇔ (λI −A)v = 0

⇒ χA(λ) ≡ det(λI −A) = 0

roots of the characteristic polynomial χ = χA of A. The eigenvalues depend analyt-
ically on the matrix entries. Counting with multiplicity, every matrix A ∈ Kn×n has
n eigenvalues. If the root of the characteristic polynomial is simple, the eigenvalue
is termed simple, and multiple otherwise. The multiplicity of an eigenvalue inter-
preted as root of the characteristic polynomial is termed its algebraic multiplicity.
The set of all eigenvalues is the spectrum of A and denoted by Λ = Λ(A). The value

ρ(A) ≡ max
λ∈Λ(A)

|λ|

is the spectral radius of the matrix A.
Now we switch to the eigenvectors. When λ is an eigenvalue of A, the preceeding

computations also show that λI −A is rank deficient. Every non-zero vector in the
nullspace is an eigenvector to eigenvalue λ. Since the nullspace is at least one-
dimensional, this implies that for every eigenvalue λ there must exist at least one
right eigenvector v (and one left eigenvector v̂H). The dimension of the nullspace
of λI − A is termed the geometric multiplicity of the eigenvalue λ. The geometric
multiplicity is less or equal to the algebraic multiplicity.

With these definitions at hand, we can classify eigenvalues in more detail. An
eigenvalue λ is termed derogatory when the geometric multiplicity is larger than one
and else non-derogatory. When the geometric multiplicity is strictly less than the
algebraic multiplicity, the eigenvalue is defective. When the geometric multiplicity
is equal to the algebraic multiplicity but greater than one, the eigenvalue is semi-
simple. These terms extend naturally to matrices.
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1.6.1 Related Decompositions and Their Uniqueness

As already mentioned, we may be interested only in eigenvalues, or in both eigen-
values and eigenvectors. We may be interested in eigenvalues and in a stable basis
of the corresponding invariant subspaces. These tasks are solved by the computa-
tion of the Jordan and Schur decompositions. To introduce these normal forms,
we observe that a so-called similarity transformation

Kn×n → Kn×n A 7→ AX ≡ X−1AX

does not alter the characteristic polynomial (and thus the eigenvalues),

det(λI −A) = det(X−1) det(λI −A) det(X) = det(λI −AX)

and changes the eigenvectors in prescribed ways,

AX(X−1v) = X−1Av = λ(X−1v).

By definition of the eigenvalues it is obvious that the eigenvalues of an upper (or
lower) triangular matrix appear on the diagonal. When the matrix is overmore
diagonal, we explicitly know the eigenvectors. So we seek for a similarity transfor-
mation that maps the given matrix to a matrix that is ‘as close as possible’ to a
diagonal matrix. This results in the Jordan decomposition. When we impose the
restriction that the similarity transformation is a unitary one, we obtain the Schur
decomposition.

Jordan Decomposition

This decomposition is for theoretical purposes of eminent interest. As example, it
can be used to express the solutions to some ordinary value problems algebraically.
In contrast, it is almost non-computable numerically because of inherent instability
and thus only of minor interest when it comes to scientific computing. The Jordan
normal form reveals that ‘as close as possible’ to a diagonal matrix in general is a
merely bi-diagonal matrix with ones and zeros on the off-diagonal.

Theorem 1.18 (The Jordan Normal Form) Every matrix A ∈ Kn×n is simi-
lar to a so-called Jordan matrix

JΛ = V −1AV.

This relation can be stated alternatively as

A = V JΛV
−1 ⇔ AV = V JΛ ⇔ V −1A = JΛV

−1.

The Jordan matrix JΛ = Jλ1
⊕ · · · ⊕ Jλl is composed of a direct sum of smaller

Jordan blocks

Jλi =








λ 1

λ
. . .
. . . 1

λ







≡ λiI`i +N`i .

The matrices N`i are nilpotent, where `i is not only the dimension, but also the
smallest integer k such that Nk

`i
= 0.

The Jordan matrix is unique up to permutations of the Jordan blocks. There
may occur multiple Jordan blocks of different sizes to one value λ.
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Proof. The proof can be found in most textbooks on linear algebra, see for instance
the textbook by Horn and Johnson (cf. [HJ85], Theorem 3.1.11, page 126) or the
treatise of the eigenproblem by Chatelin (cf. [Cha93], Theorem 1.6.7, page 25). ¤

By inspection, the scalars λi, i ∈ l are the eigenvalues. To every Jordan block
corresponds one right and one left eigenvector given by a column of V or V̂ , defined
by V̂ ≡ V −1, respectively. The columns of V or V̂ that are no eigenvectors are
termed generalised eigenvectors or principal vectors. Despite this fact we refer to the
matrix V as the matrix of eigenvectors or simply as eigenmatrix. The index of the
matrix N` corresponds to the dimension of the largest Jordan block to eigenvalue
λ and will be termed the ascent of λ.

The Jordan decomposition, when written in the form

A =
∑

`

V`(λ`I` +N`)V̂
H
` ,

where V` and V̂` consist of the columns of V and V̂ corresponding to distinct λ`,
is known as the spectral decomposition of A. Sometimes this notion is used only
in conjunction with Hermitian matrices (cf. [SS90], page 19), sometimes also in the
general case (cf. [Cha93], Theorem 1.7.1, page 27). The matrices N` are nilpotent,
N `
` = 0, where ` is the ascent of the eigenvalue λ, i.e., the size of the largest Jordan

block to eigenvalue λ.

We denote the diagonal of the Jordan matrix by Λ. When A is diagonalisable,
the Jordan matrix is diagonal, i.e., Λ = JΛ. A is diagonalisable when all eigenvalues
are semi-simple, and A is also termed semi-simple. A is not diagonalisable when A
is defective, i.e., when there exists at least one defective eigenvalue. Diagonalisable
matrices are also called non-defective.

The Jordan matrix is determined uniquely up to permutations of the Jordan
blocks. In contrast, the eigenmatrix that transforms A to Jordan normal form is
not uniquely defined. We derive a theorem on the class of transformations that map
a given eigenmatrix to another eigenmatrix.

Theorem 1.19 (Non-Uniqueness of the Eigenmatrix) Eigenmatrices are not
uniquely defined. Let V be an eigenmatrix that maps A to Jordan normal form
V −1AV = JΛ. Denote by T = T (JΛ) the set of regular matrices that commute with
the Jordan normal form JΛ of A. Denote by V the set of eigenmatrices that map A
to the same Jordan matrix.

The set of eigenmatrices V has the representation

V = V T = {V T, T ∈ T }.

The set T can be described explicitly. It is a subset of the set of regular block
matrices partitioned according to the Jordan blocks Ji, i ∈ k in the Jordan matrix
J = JΛ,

J =





J1
. . .

Jk



 , T =





T11 · · · T1k
...

. . .
...

Tk1 · · · Tkk



 .

The matrices Tij on the off-diagonals may be rectangular. The subset is then deter-
mined by choosing the block entry Tij as a zero matrix of appropriate dimensions
when Ji and Jj correspond to different eigenvalues, and upper triangular Toeplitz



1.6. THE ALGEBRAIC EIGENPROBLEM 23

else. When Tij is rectangular, we mean by upper triangular a matrix of type

Tij =





0 · · · 0 ? · · · ?
...

. . .
...

. . .
. . .

...
0 · · · 0 · · · 0 ?



 or Tij =












? · · · ?

0
. . .

...
...

. . . ?
0 · · · 0
...

. . .
...

0 · · · 0












.

Furthermore, we can decompose every matrix T ∈ T using a block LR-type decom-
position with partial pivoting into

PT = LR ⇔ T = P TLR.

Here, L is block lower triangular with identity matrices on the diagonal blocks, R
is block upper triangular. The upper triangular blocks of R and the strict lower
triangular blocks of L are again upper triangular Toeplitz. The matrix P is a block
permutation that mixes only rows corresponding to equal sized Jordan blocks to the
same eigenvalue.

Proof. This theorem is based on some ideas of Zemke (cf. [Zem97]). Two different
eigenmatrices V , Ṽ to the same Jordan matrix must necessarily fulfil

V −1JΛV = Ṽ −1JΛṼ ⇒ JΛV Ṽ
−1 = V Ṽ −1JΛ. (1.1)

This proves that the matrix T ≡ V Ṽ −1 commutes with the Jordan matrix and is
regular. We write a generic T as block matrix. Multiplication by a block-diagonal
matrix from the left is a multiplication of the block columns, multiplication from
the right is a multiplication of the block rows. A typical block equation resulting
from equation (1.1) thus has the form

JiTij = TijJj ⇔ JiTij − TijJj = 0.

The Sylvester equation has a unique zero solution when the eigenvalues of Ji and
Jj are different. In the other case, observe that λIiTij − TijλIj is in the kernel and
can be removed,

(λIi +Ni)Tij = Tij(λIj +Nj) ⇔ NiTij = TijNj .

The matrices Ni and Nj in the remaining part of the equation can be interpreted
as up-shift and right-shift operator, respectively. Thus the matrix Tij has to be
Toeplitz. Since the shifts introduce zeros in the last row and first column, respec-
tively, the lower part is filled with zeros and we have described our set. In this
representation it is not easy to see which block matrices T are regular. This fault
is removed by the LR-type decomposition which we introduce now.

We consider block Gaussian elimination. A block elimination step like

(
I 0

−Ti+1,iT−1ii I

)(
Tii Ti,i+1
Ti+1,i Ti+1,i+1

)

=

(
Tii Ti,i+1
0 Ti+1,i+1 − Ti+1,iT−1ii Ti,i+1

)

is only possible when the diagonal block Tii is regular. Since the blocks are upper
triangular Toeplitz, Tii is regular when the element on the diagonal is non-zero.
When all other blocks to the same eigenvalue are of smaller size, the regularity of
T implies the regularity of Tii. This is best seen with the aid of a little picture.
Figure 1.1 plots a small example of a matrix T of the class T for a Jordan matrix
that has only one eigenvalue λ and four Jordan blocks, one large sized, two equally
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Figure 1.1: A typical member of the class T

sized and one small sized. The matrix T in the figure may be considered a typical
example of one diagonal block occurring in a more general matrix T where all other
blocks in the row and column are zero. When looking at the first column, obviously
T11 has to be regular, since otherwise the matrix T would contain a zero column.
This, in turn, is impossible, since T is regular. When looking at the first columns
of the following block columns, we observe that we can eliminate the entries in the
first row. When the next block would have again been larger in size, this would
imply that also T22 would be regular, and so forth.

Regular matrices can be used in a block elimination step. The rectangular
matrices can be embedded into larger (singular) matrices and are no problem in
the elimination steps. We only have to show that the structure is not destroyed,
i.e., it remains to show that upper triangular Toeplitz matrices form a group. The
sum of two upper triangular Toeplitz matrices is again an upper triangular Toeplitz
matrix. We identify upper triangular Toeplitz matrices with there first row, i.e., we
define a mapping

Kn×n → Kn, T =





t11 · · · t1n
. . .

...
tnn



 7→





t11
...
t1n



 ≡





τ0
...

τn−1



 = τ.

The numbering scheme is chosen such that the matrix entries tij correspond to the
vector entries τj−i. The matrix product Tp = T1T2 of two upper triangular Toeplitz
matrices T1, T2 can be written as

t
(p)
ij =

n∑

k=1

t
(1)
ik t

(2)
kj =

j
∑

k=i

t
(1)
ik t

(2)
kj =

j
∑

k=i

τ
(1)
k−iτ

(2)
j−k =

j−i
∑

k=0

τ
(1)
k τ

(2)
(j−i)−k = τ

(p)
j−i.

Thus, the product again is an upper triangular Toeplitz matrix. As mentioned, the
inverse exists, provided τ0 is non-zero.

Now, it is easy to see that the inverse of an upper triangular matrix contains the
inverses of arbitrary diagonal blocks in the same position. Since a Toeplitz matrix
may be characterised by the property that every diagonal block of the same size
has the same elements, obviously the inverse of an (invertible) upper triangular
Toeplitz matrix is an upper triangular Toeplitz matrix. Thus these matrices form
a group.
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In our example in figure 1.1, there are two Jordan blocks of the same size to the
same eigenvalue. The regularity of T implies that the first column of the second and
third block column are linearly independent. After elimination of the elements in the
first row, we observe that the linear independence is equivalent to the assumption
that the matrix TD, formed out of the elements τ ij0 in the diagonals of the matrices
Tij ,

TD =

(
τ
(22)
0 τ

(23)
0

τ
(32)
0 τ

(33)
0

)

,

has to be regular. When it is regular, it can be decomposed with application of

GEPP. So, at least one of τ
(22)
0 or τ

(32)
0 must be non-zero. This implies that also at

least one of T22 or T32 must be non-singular and can be moved by a block perturba-
tion to take place in the diagonal. This naturally extends to higher dimensions, i.e.,
several equal sized Jordan blocks. In any case, we can block-eliminate the matrices
in the lower triangular and succeed with the next submatrix in the same manner.
This finishes the proof. ¤

When we take a Jordan decomposition, we can easily obtain what we will refer to
as a partial Jordan decomposition by stripping off some columns and corresponding
rows of the Jordan blocks and the corresponding columns of V . The resulting
equation should have the form

AVp = VpJp, (1.2)

where Jp ∈ Km×m is a smaller sized Jordan matrix and Vp ∈ Kn×m spans the
corresponding invariant subspace. We may ask for conditions such that the converse
also holds true. That is, given an equation of type (1.2), is it possible to construct a
matrix V such that equation (1.2) is a corresponding partial Jordan decomposition?
The following example clarifies that this is not possible in every case.

Example 1.20 (Non-Extendable Partial Decomposition) The matrixA, given
explicitly by

A =










λ 1 0 0 0 0
0 λ 0 0 0 1
0 0 λ 1 0 0
0 0 0 λ 1 0
0 0 0 0 λ 1
0 0 0 0 0 λ










,

has a partial Jordan decomposition. Here, the matrix Vp is defined by the first five
standard unit vectors, the Jordan matrix Jp is the leading five by five submatrix of
A. This partial Jordan decomposition can not be extended to a complete Jordan
decomposition without altering some columns of Vp. To see this, assume the con-
trary. Obviously, the complete Jordan decomposition has two Jordan blocks, one
of size two, one of size four. Let the complete Jordan decomposition be given by

A (Vp w ) = (Vp w )

(
J2

J4

)

.

Evaluating the last column, to be more precise, the second entry, we can conclude
that the last entry of w must be zero. The fifth entry shows that the last entry
must be one. This is impossible.

Nevertheless, there exist partial Jordan decompositions in the space spanned by
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Vp. One such partial Jordan decomposition results when we set a new Vp to

Vp ≡ [e1, e2, e3, e4 + e1, e5 + e2] =










1 0 0 1 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0










.

This partial Jordan decomposition can be extended to a complete Jordan decom-
position by adding the sixth standard unit vector e6.

The example clearly reveals that partial Jordan decompositions exist that can not
be extended without altering columns. The second part of the example raises new
questions. Is it always possible to find another basis of Vp such that an extendable
partial Jordan decomposition results? When it is possible, how many columns have
to be altered? The next example will shed some more light on these questions.

Example 1.21 (Non-Extendable Partial Decomposition, II) Let us focus once
again on Example 1.20. We choose the partial Jordan decomposition that is defined
by the third to fifth standard unit vectors.

Then a short computation shows that it is not possible to expand this decompo-
sition to a complete Jordan decomposition without adding information about the
first two standard unit vectors.

Next, we state a theorem on the general case. It will show up that the previous two
examples are precisely the interesting special cases.

Theorem 1.22 Let A ∈ Kn×n. Let Jp, Vp, be a right partial Jordan decomposition

AVp = VpJp, Jp ∈ Km×m, Vp ∈ Kn×m full rank

of A. Then this decomposition can be expanded to form a complete Jordan decom-
position

AV = V J, J ∈ Kn×n, V ∈ Kn×n regular,

such that the columns of Vp form a subset of the columns of V in case:
a) All eigenvalues of Jp are distinct from the remaining eigenvalues of A.
b) All Jordan blocks of Jp to eigenvalues that are also eigenvalues of A are the

largest Jordan blocks of A.
When all Jordan blocks of A are contained in Jp, and all but the maximal one

have already maximal size, a partial Jordan decomposition in the space spanned by
Vp can be found that can be extended. When the non-maximal one is not the largest
Jordan block, a size-drop by one leads to the same conclusion.

In general, the extension to a complete Jordan decomposition is impossible with-
out altering the space spanned by Vp, i.e., without adding information from the
orthogonal complement.

An analogue holds true for a left partial Jordan decomposition.

Proof. Obviously, b) implies a). Nevertheless, we will prove the statements in the
order they occur in the theorem. Let Vz denote a matrix whose columns form a
basis of the orthogonal complement of Vp. The requirement that the pair (Jp, Vp)
is a right partial Jordan decomposition can be stated in the following form:

A (Vp Vz ) = (Vp Vz )

(
Jp X
0 B

)

. (1.3)
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When the eigenvalues of Jp and of B are distinct, the Sylvester equation JpY −Y B =
X has a unique solution Y and the transformation

(Vp V new
z ) = (Vp Vz )

(
I −Y
0 I

)

= (Vp Vz − VpY ) .

results in the new relation

A (Vp V new
z ) = (Vp V new

z )

(
Jp 0
0 B

)

.

This proves statement a). From now on, we assume w.l.o.g. that A has only one
eigenvalue. Let the Jordan decomposition of B be given by Jz = W−1BW . Then
we can go on to transform equation (1.3) via the change of basis

(Vp V new
z ) = (Vp Vz )

(
I 0
0 W

)

= (Vp VzW ) , X new = XW

to the simpler form

A (Vp V new
z ) = (Vp V new

z )

(
Jp X new

0 Jz

)

.

In other words, we may assume that the trailing block matrix B in equation (1.3)
already is in Jordan normal form. The proof of b) is based on adding new columns
to the partial Jordan decomposition without altering previously computed columns
too much.

For sake of simplicity, we assume that J = Jp is only one single Jordan block
and set V = Vp, ṽ = Vz(:, 1) and α = X(:, 1). With this notation,

A (V ṽ ) = (V ṽ )

(
J α
0 λ

)

(1.4)

holds true. When α is identically zero, we have found a second eigenvector to the
eigenvalue λ. This increases the number of Jordan blocks to the same eigenvalue by
one and we split the blocks Xij to deal with this new situation. Otherwise, there is
a unique largest integer j such that αj 6= 0. When we choose V new = V T , where
T is the regular upper triangular Toeplitz matrix

T =














αj · · · α1 0 · · · 0

αj · · · α1
. . .

...
. . .

. . .
. . . 0

αj · · · α1
. . .

...
αj














defined by the entries of the vector α, we obtain the new form

A (V new ṽ ) = (V new ṽ )

(
J ej
0 λ

)

of equation (1.4). When j equals the last entry of α we have expanded the Jordan
block by one. When j is not equal to the last entry, we can form ṽ new = ṽ − v newj+1 ,
which is non-zero because the columns of V and ṽ are linearly independent, and an
eigenvector, since

Aṽ new = A(ṽ − v newj+1 ) = λ(ṽ − v newj+1 ) + v newj − v newj = λṽ new.
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In the first case, we expand the Toeplitz matrix T by one column and row and
invert it to recover the original V , in the second case we simply invert T to recover
the original V . This proves that we can transform equation (1.4) to take the form

A (V ṽ new ) = (V ṽ new )

(
J δjkek
0 λ

)

,

where ek is the kth unit vector of length k, where k is the last entry of α, δjk denotes
Kronecker delta. In a similar manner we can show that in case of several Jordan
blocks in Jp, lets say l Jordan blocks, we can transform the equation

A (V ṽ ) = (V ṽ )

(
Jp α
0 λ

)

(1.5)

by setting

V new = V





T1
. . .

Tl





to take the form

A (V new ṽ ) = (V new ṽ )

(
Jp c
0 λ

)

, (1.6)

where the vector c has at most one non-zero component in the set of entries cor-
responding to the l distinct Jordan blocks. As before, we assume that they are
scaled to equal one. The ones in the last entries of the partitioned vector can be
removed by subtracting a portion of V new from ṽ. We assume w.l.o.g. that these
entries are already removed. We remark that this form is the form that was used
as Example 1.20.

We assume that the Jordan blocks appear sorted by ascending size. This ensures
that the transformation of the class T defined by

V mixed = V new







I(1) E(1,l)

. . .
...

I(l−1) E(l−l,l)

I(l)






, (1.7)

where the matrices E(i,l) are ‘shifted’ identity matrices,

E(i,l) = ( 0 I(i) ) ∈ Kki×kl ,

where ki is the size of the ith Jordan block, maps equation (1.6) to the form

A (V mixed ṽ ) = (V mixed ṽ )

(
Jp ek
0 λ

)

.

This, in turn, implies that the largest Jordan block is extended by one. When we
are in situation b), this is impossible, thus in this case the vector c must be identical
zero. Induction proves that we do not need any transformations of the form (1.7),
i.e., we do not have to mix up invariant subspaces of Jordan blocks.

When we have only one Jordan block that has to be extended, we know that we
only add information from the space we already have constructed. This, of course,
is always the case when we only have to extend the maximal Jordan block. If the
block to be extended is not the maximal one, but we have to extend only once, we
have not gained any information on the orthogonal complement and thus mix only
known information.
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In general, we might have to mix information on the orthogonal complement
gained in such a step with the information in Vp when we construct the next col-
umn. This finishes the proof. ¤

Theorem 1.19 might be of use when one wants to investigate optimal scalings of
the eigenmatrix in the non-diagonalisable case. In the diagonalisable case it is
well-known that a scaling such that left and right eigenvectors have unit length
is nearly optimal. Theorem 1.22 shows that the a partial Jordan decomposition,
i.e., a restriction to a subspace, might result in a different condition number of the
columns of the eigenmatrix.

Theorem 1.22 also shows that the Jordan normal form may be constructed
iteratively by adding columns like in the proof of the theorem. The proof clearly
reveals that the Jordan normal form is by no means continuous. When we use
only unitary (orthogonal) similarity transformations, this fault is removed. The
resulting Schur decomposition is more stable than the Jordan decomposition and
to be preferred in finite precision.

Schur Decomposition

When we restrict the class of similarity transformations to unitary matrices, we still
can find a similar upper triangular matrix. This matrix is known as a Schur normal
form.

Theorem 1.23 (The Schur Normal Form) Any matrix A ∈ Kn×n is similar to
an upper triangular matrix,

A = URU−1 = URUH .

Here, U is unitary. The diagonal elements of R are the eigenvalues of A and may
appear in any given order along the diagonal. A change in the ordering usually
changes the strictly upper triangular part of R and the columns of U , the so-called
Schur vectors. Every such decomposition is known as a Schur decomposition of A.

The Jordan normal form and the Schur normal from are closely related to each
other. In important special cases these normal forms coincide. One such class of
matrices is the class of normal matrices. Normal matrices are matrices that fulfil
AAH = AHA, i.e., they commute with their conjugate transpose (this includes
selfadjoint and Hermitian matrices). The theorem can be used to prove that normal
matrices can be decomposed as

A = V ΛV H

with Λ diagonal and V HV = I, that is, V is unitary. This follows by inserting the
Schur decomposition and using the fact that A and AH commute.

The most prominent members of the class of normal matrices are the Hermitian
matrices, defined by A ∈ Kn×n, A = AH , and the real symmetric matrices, defined
by A ∈ Rn×n, A = AT . These matrices are related to quadratic forms and have
only real eigenvalues. This is the basis for the following theorem, taken from [HJ85]
(page 179, Theorem 4.2.11):

Theorem 1.24 (Courant-Fischer) Let A ∈ Kn×n be a Hermitian matrix with
eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn, and let k ∈ n. Let Sj ⊂ Cn denote a subspace of
Cn of dimension j. Then

λk = minSk maxx∈Sk
xHAx

xHx

= maxSn−k+1
minx∈Sn−k+1

xHAx

xHx

(1.8)
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The cases k = 1 and k = n are also known as the Rayleigh-Ritz theorem.

As already mentioned, the Schur form is more stable than the Jordan normal form
and should be computed when we are interested only in the eigenvalues and the
corresponding invariant subspaces and not explicitely in the eigenvectors. The Jor-
dan normal form has advantages when we wish to express polynomials, e.g. powers
of A in an easy to follow way.

The Schur and Jordan normal forms are shift-invariant, because of the similarity
transformation. When we drop the property of shift-invariance, i.e., the constraint
that the matrix is obtained by the application of a similarity transformation, we can
compute unitary bases for the left and right space such that the matrix is mapped
to a diagonal form. This is known as the singular value decomposition of A.

Singular Value Decomposition

When we force unitary bases of the left and right space and a diagonal matrix in
the middle, we obtain the singular value decomposition.

Theorem 1.25 (Singular value decomposition) Every A ∈ Kn×m can be de-
composed into

A = UΣV H ,

where U and V are unitary and Σ is diagonal. The diagonal elements of Σ are
non-negative and often assumed sorted according to magnitude,

σ1 ≥ σ2 ≥ · · · ≥ σminn,m ≥ 0.

The values σj in the diagonal of Σ are the so-called singular values.

The singular vales contain a lot of information about the matrix. The smallest
singular value, denoted by σmin, is the distance to singularity (in ‖ · ‖2). More
general, the distance to the space of matrices with the same dimensions and rank
less k is given by σk.

When A ∈ Kn×n is symmetric positive definite (SPD) or Hermitian positive
definite (HPD), i.e., when

xHAx > 0 ∀ x 6= 0 ∈ Kn,

the SVD, Schur and Jordan form coincide. When A is symmetric or Hermitian
indefinite, we obtain the SVD from the Schur/Jordan normal form by moving minus
signs from the diagonal to the columns of one side.

In any case, the singular value decomposition is closely connected to the eigen-
decomposition of selfadjoint (and thus normal) matrices, since we have that

AHA = V ΣUHUΣV H = V ΣHΣV H ,
AAH = UΣV HV ΣUH = UΣHΣUH .

The squared singular values (and some additional zeros) are the eigenvalues of the
Hermitian positive semi-definite matrices AHA and AAH , the left and right singular
vectors are the eigenvectors. This interpretation is based on the normal equations
and was first used by Beltrami. Another connection that was noted for the first
time by Jordan is the so-called Jordan-Wielandt form (here only for square A)

(
0 A
AH 0

)
1√
2

(
U U
V −V

)

=
1√
2

(
U U
V −V

)(
Σ 0
0 −Σ

)

.

In this way, the SVD can be interpreted as the generalisation of the spectral de-
composition to general rectangular matrices.

Thus, in view of Theorem 1.24, it appears natural to interpret the singular values
as maximal, respectively, minimal amplification factors on subspaces.
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Theorem 1.26 Let A ∈ Kn×m with singular values σ1 ≥ σ2 ≥ · · · ≥ σp, where
p = min{n,m}. Let k ∈ p. Let Sj ⊂ Cm denote a subspace of Cm of dimension j.
Then the singular values can be characterised by

σk = minSk maxx∈Sk
‖Ax‖2
‖x‖2

= maxSm−k+1
minx∈Sm−k+1

‖Ax‖2
‖x‖2

(1.9)

1.6.2 Necessary Definitions

In this section we introduce the working horses of perturbation theory for the al-
gebraic eigenproblem. The main tools are spectral projectors, the separation of
matrices and the (reduced) resolvent. We start with the definition of the spectral
projectors. They will be of use in the investigation of the stability of the eigenprob-
lem. The investigation is usually based on a splitting of the entire spectrum into
two distinct parts. This parts may consist of one single eigenvalue or a cluster of
close eigenvalues, and the remaining part. Usually both sets have, in some sense,
to be well separated in order to apply perturbation theory. This is where the sepa-
ration of matrices comes into play. Our representation is based to some extent on
the treatise of Chatelin (cf. [Cha93]) and on the joint paper of Bai, Demmel and
McKenney (cf. [BDM91]).

Spectral Projectors

Based on the Jordan normal form we define the spectral projectors onto the subspace
associated with an eigenvalue λ. We assume w.l.o.g. that the eigenvalue λ we are
interested in corresponds to the leading blocks of the Jordan matrix.

Definition 1.27 (Spectral Projector I) The spectral projectors or Frobenius co-
variants are given by the matrices

Pλ ≡ P ≡ V
(
I 0
0 0

)

V̂ H .

More general, we can think of the spectral projector as the matrix A in Jordan
normal form where we replace the Jordan matrix by a diagonal matrix that has
ones in places of the eigenvalue λ and zeros elsewhere. Naturally, the following
holds true:

Lemma 1.28 Let Pλ denote the spectral projector to eigenvalue λ. Then
∑

λ=λ(A)

Pλ = I, P k
λ = Pλ ∀ k, PλiPλj = 0 ∀ λi 6= λj .

We additionally denote by Vλ the subset of the columns of V that spans the right
invariant subspace to λ. The subset of the rows of the inverse of V , V̂ H = V −1

that spans the adjoint basis of the left invariant subspace to λ is denoted by V̂ H
λ .

These notions are extended to the case of a cluster.
The spectral projectors can alternatively be defined using the Schur form. The

Schur form is advantageous when we are interested in actually computing the spec-
tral projectors.

Definition 1.29 (Spectral Projector II) SupposeA has the (partial) Schur form

A = U

(
A11 A12
0 A22

)

UH .
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Here, the desired eigenvalue (or the cluster under investigation) is assumed to be
contained in the block A11. Let R be the solution of the Sylvester equation

A11R−RA22 = A12.

This equation has a unique solution when the spectra of A11 and A22 are disjoint.
The right and left invariant subspace associated with A11 are given by

U

(
I
0

)

, ( I R )UH .

The spectral projector is given by the outer product of left and right invariant
subspace,

P = U

(
I
0

)

( I R )UH = U

(
I R
0 0

)

UH .

Lemma 1.30 Definition 1.27 and Definition 1.29 are equivalent.

Proof. As most textbooks use only one of these definitions we give the short proof
for their equivalence. We can assume that the Jordan normal form of the partial
block Schur form is given by

(
A11 A12
0 A22

)(
X1 Z
0 X2

)

=

(
X1 Z
0 X2

)(
J1 0
0 J2

)

.

This implies that the Jordan normal forms of the diagonal blocks are given by

A11X1 = X1J1, A22X2 = X2J2, ⇒ X−12 A22 = J2X
−1
2 .

This knowledge can be used to derive an explicit expression for the matrix Z in
terms of the matrix R previously defined,

A11Z +A12X2 = ZJ2 ⇒ A11ZX
−1
2 +A12 = ZJ2X

−1
2 = ZX−12 A22.

By comparison with the definition of R we observe that R = −ZX−12 . The inverse
of the block eigenvector matrix is given by

(
X1 Z
0 X2

)−1

=

(
X−11 −X−11 ZX−12
0 X−12

)

=

(
X−11 X−11 R
0 X−12

)

.

Thus, A has the Jordan normal form

A = U

(
X1 Z
0 X2

)(
J1 0
0 J2

)(
X−11 X−11 R
0 X−12

)

UH

and the spectral projector is given by

P = U

(
X1 Z
0 X2

)(
I 0
0 0

)(
X−11 X−11 R
0 X−12

)

UH

= U

(
X1
0

)

(X−11 X−11 R )UH .

This finishes the proof of the equivalence. ¤

Later on, the norm of the spectral projector is used as a measure of the condition
of an eigenvalue (or cluster). In case of the 2-norm we can express this norm by
means of angles between the invariant subspaces and their orthogonal complements.
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Angles between subspaces are defined by choosing orthogonal bases U and V and
computing the singular values of the product UHV .

We denote the right invariant subspace we are interested in byR, its complement
by Rc, the left invariant subspace by L and its complement by Lc. Then, it is easy
to show that the Euclidian norm of the spectral projector may be expressed as

‖P‖2 = csc(θmin(R,Rc)) = csc(θmin(L,Lc))
= sec(θmax(R,L)) = sec(θmax(Rc,Lc)),

where we have defined the angles θ using the singular values σ previously mentioned:

θmax ≡ acos(σmin), θmin ≡ acos(σmax).

The interpretation using angles between subspaces can better be memorised.
Apart from the spectral projectors, we additionally define the matrix

D = (A− λI)P = V

(
J(0) 0
0 0

)

V̂ H .

This matrix may have several Jordan blocks to eigenvalue zero, one for every Jordan
block to eigenvalue λ of the original matrix A. The matrix is nilpotent, where ` is
the smallest integer such that D` = 0. This is the ascent of the eigenvalue λ.

The Separation of Matrices

In the definition of the spectral projector based on the Schur form we already
observed the dependency on the solution of a Sylvester equation. Obviously the
norm of the spectral projector is large, when this solution is a large-normed solution.
For this reason we introduce the separation of matrices:

Definition 1.31 (The Separation of Matrices) Let matrices A ∈ Kn×n, B ∈
Km×m and a norm ‖ · ‖ be given. Then the separation of the matrices A and B in
the norm ‖ · ‖ is defined to be

sep(A,B) ≡ min
X∈Kn×m

‖AX −XB‖
‖X‖ .

In case of the Frobenius norm, ‖ · ‖ = ‖ · ‖F , the separation can be expressed in
terms of singular values of a larger matrix:

sepF (A,B) = σmin(I ⊗A−BT ⊗ I).

Following Chatelin (cf. [Cha93], page 77), we express the solution X of the Sylvester
equation AX −XB = R with right-hand side R by

X = (A,B)−1R.

Using this terminology, the separation might be expressed as sep(A,B) = ‖(A,B)−1‖.
When m = 1 or n = 1, this expression collapses to the so-called resolvent. The re-
solvent has some very interesting features and deserves an extra section.

The Resolvent

The resolvent of A is defined for any z ∈ C, z 6∈ Λ(A) by

R(z) = (zI −A)−1.



34 CHAPTER 1. PRELIMINARIES

The matrix R(z) is also known as spectral transformation. When z comes close to
an eigenvalue, the norm of the resolvent grows. We will show later on that the
norm of the resolvent is closely connected to the backward error of an approximate
eigenvalue.

The resolvent is not defined when we choose z = λ as an eigenvalue. In this
case, we still can compute the Drazin inverse

S = Sλ ≡ (λI −A)D

The resulting matrix is known as the reduced resolvent. When we refrain from the
usage of the Drazin inverse, we can derive the reduced resolvent with the aid of the
spectral decomposition. It is easy to show that

S = Sλ = V

(
0 0
0 (λI − J2)−1

)

V̂ H ≡ V2(λI − J2)−1V̂ H
2 ,

where J2 is the Jordan matrix of the Jordan blocks to the other eigenvalues. The
reduced resolvent has the following properties:

Lemma 1.32 Let S be the reduced resolvent as defined above. Let ‖ · ‖ denote an
operator norm. Then the norm of S can be bounded as follows:

dist(λ,Λ \ {λ})−1 = ρ(S) ≤ ‖S‖ ≤ ‖V2‖‖V̂2‖‖(λI − J2)−1‖. (1.10)

Furthermore, equality holds true when the matrix A is normal and ‖ · ‖ = ‖ · ‖2.

This lemma proves that the norm of S can not be large, when the eigenvalue λ is
well separated form the remaining part of the spectrum and the eigenvector matrix
is not too ill-conditioned.

The resolvent is a holomorphic function in res(A), where res(A) is defined to be
C \ Λ(A). This enables us to expand the resolvent into different series.

Theorem 1.33 (Expansions of the Resolvent) The resolvent has a Taylor ex-
pansion in the circle |z − z0| ≤ ρ(R(z0))−1,

R(z) =
∞∑

k=0

(z0 − z)k [R(z0)]k+1 . (1.11)

The resolvent has a Taylor expansion at ∞ for all |z| > ρ(A),

R(z) =
1

z

∞∑

k=0

[
A

z

]k

. (1.12)

We are putting these expansions together to obtain a Laurent series. In the neigh-
bourhood of an eigenvalue λ the resolvent can be expanded in a Laurent series at
λ,

R(z) =
P

z − λ +
`−1∑

k=1

Dk

(z − λ)k+1 +
∞∑

k=0

(λ− z)kSk+1. (1.13)

As a by-product we obtain that for all z in res(A),

R(z) =
∑

λ

[

Pλ
z − λ +

`λ−1∑

k=1

Dk
λ

(z − λ)k+1

]

. (1.14)
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Proof. Suppose that z, z0 are not contained in the spectrum of A. Then the
identity (z0−z)I = (z0I−A)− (zI−A) proves the so-called first resolvent equation

R(z)−R(z0) = (z0 − z)R(z0)R(z).

By algebraic transformations we arrive at the formal expression

R(z) = R(z0) [I − (z0 − z)R(z0)]−1 .

The use of the (formal) inverse on the right-hand side is justified when |z − z0| ≤
ρ(R(z0))

−1. This enables us to insert a Neumann series for the matrix inverse,
resulting in

R(z) = R(z0)

∞∑

k=0

[(z0 − z)R(z0)]k ,

which is just the Taylor expansion given as equation (1.11). The second expansion
follows by the observation that for any |z| > ρ(A) the series

R̃(z) =
1

z

∞∑

k=0

[
A

z

]k

is convergent, and, furthermore, R̃(z)(zI − A) = I, i.e., R̃(z) = R(z). The other
two expansions follow by a simple re-writing of the resolvent. First, we write the
resolvent as R(z) = R(z)P +R(z)(I − P ). The term R(z)P can be written as

R(z)P = V

(
(zI − J1)−1 0

0 0

)

V̂ H .

We substitute z̃ = z − λ. Then the projected resolvent becomes

R(z)P = V

(

[(z − λ)I − (J1 − λI)]−1 0
0 0

)

V̂ H = (z̃P −D)†.

When |z−λ| = |z̃| > ρ(D) = 0, i.e., when z 6= λ, we can apply the second expansion
and obtain the expression

R(z)P =
1

z − λ

∞∑

k=0

[
D

z − λ

]k

=
P

z − λ +

`−1∑

k=1

Dk

(z − λ)k+1 . (1.15)

The second term R(z)(I − P ) can be expressed in terms of a perturbed reduced
resolvent,

R(z)(I − P ) = V

(
0 0
0 (zI − J2)−1

)

V̂ H ⇒ lim
z→λ

(R(z)(I − P )) = Sλ.

This shows that when |z − λ| ≤ ρ(Sλ)
−1, this term can be handled by the first

expansion,

R(z)(I − P ) =
∞∑

k=0

(λ− z)k [Sλ]k+1 .

The last expansion follows simply by writing the resolvent as a sum of projections
onto the different eigenspaces, R(z) =

∑
R(z)Pλ, and plugging in the result stated

in equation (1.15). This finishes the proof. ¤

All the results and proofs may also be found in the textbook of Chatelin (cf.
[Cha93]). Note that we have defined the resolvent in a slightly different way, thus
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some signs differ. The first expansion is Proposition 2.2.2, page 64. Equation
(1.13) is stated in Theorem 2.2.10, page 70 and equation (1.14) is stated in Corol-
lary 2.2.12, page 71. In Chapter 2 we algebraically prove the expansion stated in
equation (1.14).

Depending on the application we have in mind, different expansions can be used
in different contexts. These expansions can be used to investigate the limiting
behaviour of matrix powers, the behaviour of operators when we are close to an
eigenvalue, or the dependence of the sensitivity of one eigenvalue on the other
eigenvalues, i.e., the cross-sensitivity of the whole spectrum.

The resolvent can be used to express the spectral projectors:

P =
1

2πi

∫

Γ

R(z) dz.

Here, Γ is any closed Jordan curve enclosing the eigenvalue of interest that does
not contain any other points of the spectrum. This integral is known as a Taylor-
Dunford integral. With this notation the last result can be interpreted as the residue
theorem applied to the meromorphic function res(z).

The definition of the spectral projector and the reduced resolvent is based on
knowledge on the right and left invariant subspaces. We can define a partial inverse
that presupposes only knowledge about the right invariant subspace Vp. We only
need an adjoint basis of Vp, denoted by Va. Then the partial inverse with respect
to Va is defined by

Σ = Vp(V
H
a AVp − λI)−1V H

a .

This is of importance when one wishes to explicitely compute condition numbers of
eigenspaces and only a basis for the right invariant subspace is at hand (cf. [Cha93],
page 76).

Most important is the special case of an orthonormal basis. Let (Qp, Qa) be an
orthonormal basis of Kn×n, such that Qp is an orthonormal basis of Vp and Qa is
an orthonormal basis of the orthogonal complement V ⊥p . Then, a superscript ⊥ is
used to denote the partial inverse

Σ⊥ ≡ Qa(Q
H
a AQa − λI)−1QH

a .

This partial inverse occurs in the bound of the variation of an eigenspace.

The notation established thus far allows only a distinction into one eigenvalue
on the one hand and the remaining part of the spectrum on the other. This fault is
removed by a block wise approach. Chatelin defines a block reduced resolvent and
a partial block inverse (cf. [Cha93], pages 76–79). These notions are of importance
in case we are interested in the perturbation of a cluster of eigenvalues.

1.6.3 Perturbation Theory

Perturbation becomes rather complicated, since the problem is non-linear and we
can define several residuals, depending on the quantities we want to turn into exact
solutions of a perturbed problem. Suppose that the unperturbed and the corre-
sponding perturbed system are given by

Av = vλ and Ãṽ = ṽλ̃.

We consider the case that we are given λ̃ as an approximate eigenvalue and ṽ as
corresponding approximate eigenvector to A. We define in analogy to the linear
system case the residual r = ṽλ̃−Aṽ.
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Backward Errors

Expressions for the backward errors can easily be derived. The equation Av = vλ
is nothing but a linear system of equations with a special right-hand side. Thus,
we can apply the backward error theory of linear systems of equations also in the
eigenproblem case. In strict analogy to the linear system of equations case the
following holds true:

Lemma 1.34 Let A ∈ Kn×n. Denote by λ̃ an approximate eigenvalue and by ṽ an
approximate eigenvector.

Then the backward error of an approximate eigenpair (λ̃, ṽ) is given by

η(λ̃, ṽ) ≡ min{ε : (A+∆A)ṽ = ṽλ̃, ‖∆A‖ ≤ εα}

=
‖Aṽ − ṽλ̃‖
α‖ṽ‖ =

‖r‖
α‖ṽ‖ . (1.16)

The backward error of an approximate eigenvector ṽ is given by

η(ṽ) ≡ min{ε : (A+∆A)ṽ = ṽλ, ‖∆A‖ ≤ εα, ∃λ ∈ K}
= η(R(ṽ;A), ṽ). (1.17)

Here, R(ṽ;A) denotes the Rayleigh quotient of the vector ṽ, defined by

R(ṽ) ≡ R(ṽ;A) ≡ ṽHAṽ

ṽH ṽ
.

The backward error of an approximate eigenvalue λ̃ is given by

η(λ̃) ≡ min{ε : (A+∆A)v = vλ̃, ‖∆A‖ ≤ ε, ∃v 6= 0 ∈ Kn}
= ‖(λ̃I −A)−1‖−1 = ‖R(λ̃)‖−1. (1.18)

All expressions involving approximate eigenvectors are easy to compute, the back-
ward error of an approximate eigenvalue involves the inversion of a shifted matrix.
Moreover, when the approximation is fairly close, this shifted matrix is close to a
singular matrix.

Proof. The results may be found in the textbook by Chaitin-Chatelin and Frayssé
(cf. [CCF96]). Equation (1.16) follows upon application of the backward error result
of Lemma 1.3 to the linear system Av = vλ. Here, we have set the perturbation
in the right-hand side equal to zero. The result (1.17) is obvious, since η(ṽ) =
minλ∈K η(λ, ṽ). This minimisation,

R = argmin
λ∈K
‖Aṽ − ṽλ‖,

is solved by the Rayleigh quotient R. The last equation (1.18) holds true, when λ̃
is an eigenvalue of A. Otherwise, we use the property that

η(λ̃) = min
v∈Kn

η(λ̃, v).

Upon inversion of A − λ̃I, the result (1.18) follows by definition of the operator
norm. ¤

We note that when we measure the backward error in the 2-norm, the singular
values of shifted A come into play, because ‖R(λ̃)−1‖−12 = σmin(λ̃I −A).

All of this is not helpful when we ask for the minimal perturbation in case of an
eigentriple. Obviously it is possible to have two perturbations of sizes that can be
measured by application of the lemma, but the perturbations to achieve equality
may not coincide. The backward error for an eigentriple is given by the following
theorem due to Kahan, Parlett and Jiang:
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Lemma 1.35 ([KPJ82], Theorem 2’) Let A and two unit vectors w̃H and ṽ,
with w̃H ṽ 6= 0, be given. For any scalar λ̃ define residual vectors

r = ṽλ̃−Aṽ and r̂H = λ̃w̃H − w̃HA.

Then the 2-norm backward error of the eigentriple is given by

η2(λ̃, ṽ, w̃
H) ≡ min{ε : Ãṽ = ṽλ̃, w̃HÃ = λ̃w̃H , ‖∆A‖2 ≤ ε}

= max{‖r‖2, ‖r̂‖2}

and the Frobenius norm backward error of the eigentriple is given by

ηF (λ̃, ṽ, w̃
H) ≡ min{ε : Ãṽ = ṽλ̃, w̃HÃ = λ̃w̃H , ‖∆A‖F ≤ ε}

=

√

‖r‖2 + ‖r̂‖2 − (λ̃w̃H ṽ − w̃HAṽ)2.

The Frobenius norm backward error is achieved by exactly one perturbation ∆A.

The obvious choice for λ̃ is the Rayleigh quotient

λ̃ = R(ṽ, w̃H) ≡ w̃HAṽ

w̃H ṽ
.

This choice leads to a simple structure of the perturbation that achieves the mini-
mum for both norms, we have that

∆A = rṽH + w̃r̂H .

In contrast to the single-sided (including the Hermitian) case, this perturbation is
not the minimal one. Nevertheless, the authors show that the minimal value is
not far away from the Rayleigh quotient when the vectors ṽ and w̃ are close to
eigenvectors.

A very special case is the formulation of Lemma 1.35 for (nonsymmetric) tridi-
agonal matrices that are leading (or trailing) submatrices of a larger tridiagonal
matrix.

Lemma 1.36 ([KPJ82], Corollary 2) Let (θ, s, ŝH) be an eigentriple of the tridi-
agonal matrix Tj ∈ Kj×j that is the leading block of a tridiagonal matrix Tk ∈ Kk×k,
with ŝHs = 1, where

Tj =








α1 γ1

β1 α2
. . .

. . .
. . . γj−1
βj−1 αj







, Tk =








α1 γ1

β1 α2
. . .

. . .
. . . γk−1
βk−1 αk







.

Then, for all k > j,
(

θ,

(
s
0

)

,

(
ŝ
0

)H
)

is an eigentriple of T̃k ≡ Tk +∆Tk,

T̃k

(
s
0

)

=

(
s
0

)

θ,

(
ŝ
0

)H

T̃k = θ

(
ŝ
0

)H

,

where

−∆Tk ≡
βjsj
‖s‖22

ej+1

(
s
0

)H

+
γj šj
‖ŝ‖22

(
ŝ
0

)

eTj+1.
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Moreover

‖∆Tk‖2 = max

{ |βjsj |
‖s‖2

,
|γj šj |
‖ŝ‖2

}

, ‖∆Tk‖F =

√

|βjsj |2
‖s‖22

+
|γj šj |2
‖ŝ‖22

.

Especially, both norms are independent of k > j.

The lemma shows that eigentriples will persist when the matrix is enlarged whenever
the left and right residual is small.

We shortly mention that it is possible to give an expression for the component-
wise backward error of an approximate eigenpair. This follows by application of the
Oettli-Prager theorem to the eigenequation Av = vλ interpreted as linear system.
Again the perturbation in the right-hand side is zero.

Lemma 1.37 Let A ∈ Kn×n. Denote by λ̃ an approximate eigenvalue and by ṽ an
approximate eigenvector. Let r = ṽλ̃−Aṽ denote the residual.

Then the componentwise backward error of an approximate eigenpair (λ̃, ṽ) is
given by

c(λ̃, ṽ) ≡ min
{

ε : (A+∆A)ṽ = ṽλ̃, |∆A| ≤ εE
}

= max
i

|r|i
(E|ṽ|)i

.

Accordingly, componentwise backward errors c(ṽ) and c(λ̃) for single quantities may
be derived by minimisation of c(λ̃, ṽ) over all λ̃ and ṽ.

Proof. The proof follows by Lemma 1.5, when setting the perturbation in the
right-hand side of Aṽ = ṽλ̃ to zero. ¤

Eigenvalue and Eigenspace Expansions

Well-known examples show that the eigenvalues of a Jordan block of size n subject to
a generic perturbation of size ε move in the worst-case with size comparable to n

√
ε.

For large values of n, this makes perturbation theory unappealing. The situation
changes when we consider the arithmetic mean of the eigenvalues. We remark that
the arithmetic mean of the eigenvalues is given by the trace of the matrix divided
by size. Thus, usually the arithmetic mean of the eigenvalues is to be preferred. A
remarkable exception is the Lidskii–Vishik–Lyusternik perturbation theory, where
the explicit computation of the leading terms of the eigenvalue expansion in terms
of Schur complements of submatrices of the perturbation matrix ∆A is considered.
This perturbation theory may be found in the paper by Moro, Burke and Overton
(cf. [MBO97]).

The non-linearity of the eigenproblem makes it hard to obtain other expres-
sions than expansions of perturbed quantities in terms of known quantities. We set
A(t) = A + t∆A. Then, A(0) = A and A(1) = Ã = A + ∆A holds true. We try
to find expansions in powers of t that describe the variation of invariant subspaces,
(clusters of) eigenvalues and the spectral projector. The most famous amongst
these expansions are the so-called Rellich-Kato and Rayleigh-Schrödinger expan-
sions. The following results are excerpts from the book of Chatelin (cf. [Cha93],
pages 85–89).

The Rellich-Kato expansion expresses the arithmetic mean of a cluster of eigen-
values of a perturbed matrix and the associated spectral projector in terms of the
perturbation, the arithmetic mean of the unperturbed matrix and associated spec-
tral projector. The Rellich-Kato expansion is merely of theoretical interest.
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Lemma 1.38 (Rellich-Kato Expansion) Let P represent the spectral projection
of A ∈ Kn×n associated with the eigenvalue λ of index ` and multiplicity m. Let Γ
be a Jordan curve drawn in res(A) and isolating λ. Define formally

R(t, z) ≡ (zI −A(t))−1 , P (t) =
1

2iπ

∫

Γ

R(t, z) dz.

Then, for every t with |t| < maxz∈Γ ρ(∆AR(z))
−1 we have the expansions

P (t) = P −
∞∑

k=2

tk−1
∑

?

S(p1)∆AS(p2) · · ·∆AS(pk)

and

λc(t) = λ+
1

m

∞∑

k=1

1

k

∑

?

trace
[

∆AS(p1)∆AS(p2) · · ·∆AS(pk)
]

where λc(t) is the arithmetic mean of the perturbed eigenvalues and

? =

{

pi ≥ −`+ 1, i ∈ k,
k∑

i=1

pi = k − 1

}

,

S(0) = P, S(−p) = Dp, S(p) = Sp, when p > 0

D = (A− λI)P and S = lim
z→λ

R(z)(I − P ).

This lemma is included just to show that it is possible to expand the arithmetic
mean and the spectral projector of any perturbed eigenvalue, including even the
derogatory and defective cases. The next expansion is computationally of more use.
It shows how to expand an eigenspace and a corresponding basis. This expansion
is known as the Rayleigh–Schrödinger expansion:

Lemma 1.39 (Rayleigh–Schrödinger Expansion) Let A ∈ Kn×n be given. Let
a subspace relation be given by AV = V B, where B ∈ Km×m. Let (V, Vc) be a basis
for Kn×n. Now, we consider the family of matrices A(t) = A+ t∆A. Suppose that
the eigenspace can be expanded. Let the formal expansion be given by

V (t) =
∞∑

k=0

Zkt
k, B(t) =

∞∑

k=0

Ckt
k.

Then the coefficients fulfil formally the sets of equations

C0 = B, Ck =WH(AZk +∆AZk−1),

Z0 = V, Zk = Σ(
k−1∑

i=1

Zk−iCi −∆AZk−1).

Here, (W,Wc) is an adjoint basis of (V, Vc), where W not necessarily is the left
invariant subspace, and Σ,

Σ = Vc(W
HAV,WH

c AVc)
−1WH

c

is a block partial inverse to the block of eigenvalues we are interested in.

Proof. Let the subspace relation be given by A(t)V (t) = V (t)B(t). We assume
that WHV (t) = I holds true for all t, which is possible for ∆A small enough. Then
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we can set B(t) =WHA(t)V (t). Inserting the expansion gives

(A+ t∆A)

∞∑

k=0

Zkt
k =

(
∞∑

k=0

Zkt
k

)(
∞∑

i=0

Cit
i

)

AZ0 +

∞∑

k=1

(AZk +∆AZk−1) t
k =

∞∑

k=0

(
k∑

i=0

Zk−iCi

)

tk.

The proof proceeds by comparing coefficients of tk. ¤

The two expansions are excerpts form the book of Chatelin. She shows that the
disc |t| ≤ ρ−1 belongs to the domain of analyticity of B(t) and V (t), where ρ is
obtained by

ρ =
|Γ|
π
‖Π‖2‖∆A‖2max

z∈Γ
‖R(z)‖2.

Here, Π = VWH is the (oblique) projector defined by the adjoint spaces V and W .
When W = V̂ spans the right invariant subspace, we obtain the spectral projector,
Π = P . When ρ < 1, i.e., when the perturbation ∆A is sufficiently small, we
have that the invariant subspace Ṽ = V (1) and subspace representation B̃ of the
perturbed matrix Ã are given by

Ṽ =

∞∑

k=0

Zk, B̃ = V̂ HÃṼ .

She also shows that the coefficients in the expansion decay geometrically, i.e., like

‖Zk‖2 ≤ αqk, ‖Ck‖2 ≤ βqk

where the rate q is a constant strictly larger than ρ and (naturally) strictly less than
one (cf. [Cha93], page 89).

Complete Eigensystems

Without any knowledge on eigenvectors or eigenvalues we can only obtain very
crude and in general pessimistic bounds on the variation of the eigenvalues. The
classical theorems on the variation of the spectrum or single eigenvalues that do
not need any information about the matrix A are the theorems of Ostrowski and
Elsner. These theorems may be found in the textbook of Stewart and Sun (cf.
[SS90], pages 167–170).

With knowledge on the eigenvalues and eigenvectors or other properties of a
‘near-by’ problem one can do significantly better. Many results on the entire spec-
trum are based on instances of the following theorem:

Theorem 1.40 (Bauer, Fike) Let A ∈ Kn×n. Let λ̃ be an eigenvalue of Ã =
A + ∆A. Then, for any choice of a regular matrix Q ∈ Kn×n and all consistent
norms ‖ · ‖ the following bound holds true:

‖Q−1(λ̃I −A)−1Q‖−1 = ‖Q−1R(λ̃)Q‖−1 ≤ ‖Q−1∆AQ‖.

Proof. When λ̃ is an eigenvalue of A, there is nothing to prove. From now on
we suppose that λ̃ is no eigenvalue of A. Let ṽ denote any eigenvector of Ã to
eigenvalue λ̃. This vector may not be uniquely defined, but at least one eigenvector
must exist. Then (λ̃I −A)ṽ = ∆Aṽ holds true. We multiply this equation by Q−1

and transform ṽ = QQ−1ṽ to obtain

Q−1(λ̃I −A)QQ−1ṽ = Q−1∆AQQ−1ṽ.
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Our assumption that λ̃ is not contained in the spectrum of A implies that the matrix
Q−1(λ̃I − A)Q is non-singular and thus can be inverted. Defining y = Q−1ṽ and
taking norms we obtain

‖y‖ ≤ ‖Q−1(λ̃I −A)−1QQ−1∆AQ‖‖y‖
≤ ‖Q−1(λ̃I −A)−1Q‖‖Q−1∆AQ‖‖y‖.

Upon division by ‖(λ̃I −Q−1AQ)−1‖‖y‖ we obtain the desired result. ¤

This theorem is more or less a variation of Theorem II in the original paper of
Bauer and Fike (cf. [BF60]). To simplify subsequent steps we followed Stewart and
Sun (cf. [SS90], Theorem 1.6, page 171) in adding the similarity transformation.
Actually, the proof implies a slightly stronger, but less usable result:

Lemma 1.41 ([BF60], Theorem I) Let A, ∆A and R(λ̃) be defined as in The-
orem 1.40. Then for all consistent matrix norms the following holds true:

‖R(λ̃)∆A‖−1 ≤ ρ(R(λ̃)∆A)−1 ≤ 1.

Proof. We observe that the vector ṽ is an eigenvector of the matrix R(λ̃)∆A to
the eigenvalue one. The spectral radius is defined to be the maximal modulus of
all eigenvalues. This finishes the proof. ¤

The general result of Theorem 1.40 leaves some freedom in the choice of the matrixQ
and the norm. Taking Q as eigenvector matrix V , we obtain the following corollary:

Corollary 1.42 ([BF60], Theorem IIIa) Let A, ∆A be defined as in Theorem 1.40.
Let the Jordan decomposition of A be given as A = V JV −1. Then for all consistent
matrix norms and all eigenvalues λ̃ of Ã = A+∆A the following holds true:

‖(λ̃I − J)−1‖−1 ≤ ‖V −1∆AV ‖ ≤ κ(V )‖∆A‖. (1.19)

Let ‖ · ‖p be a Hölder norm. Then there exists an eigenvalue λ of A with index
m = mλ such that

|λ̃− λ|
∑m−1

i=0 |λ̃− λ|−i
=

|λ̃− λ|m
∑m−1

i=0 |λ̃− λ|i
≤ ‖V −1∆AV ‖p ≤ κ(V )‖∆A‖p (1.20)

holds true.
Let A be diagonalisable and ‖ · ‖ be an axis-oriented norm. Then there exists

an eigenvalue λ of A such that

min |λ̃− λ| ≤ ‖V −1∆AV ‖ ≤ κ(V )‖∆A‖ (1.21)

holds true.

Proof. Equation (1.19) follows directly from Theorem 1.40. To prove equation
(1.20), we have to show that

min
λ

|λ̃− λ|
∑m−1

i=0 |λ̃− λ|−i
= min

λ

|λ̃− λ|m
∑m−1

i=0 |λ̃− λ|i
≤ ‖(λ̃I − J)−1‖−1p

for all Hölder norms. We stress that m depends on λ. First, note that for all
block-diagonal matrices B = B1 ⊕ · · · ⊕ Bk, ‖B‖p = maxj{‖Bj‖p}. We partition
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x = x1 ⊕ · · · ⊕ xk accordingly. One direction follows by definition,

‖B‖pp = max
x

‖Bx‖pp
‖x‖pp

= max
x

{‖B1x1‖pp
‖x‖pp

+ · · ·+
‖Bkxk‖pp
‖x‖pp

}

= max
x

{‖B1x1‖pp
‖x1‖pp

‖x1‖pp
‖x‖pp

+ · · ·+
‖Bkxk‖pp
‖xk‖pp

‖xk‖pp
‖x‖pp

}

≤ max
α1+···+αk=1, αj≥0

{
‖B1‖ppα1 + · · ·+ ‖Bk‖ppαk

}
= max

j
{‖Bj‖pp}.

Now, suppose the maximal block is given by Bj . Equality is attained by choosing
x in the form

x = ( 0 · · · 0 xTj 0 · · · 0 )
T
,

where the vector xj attains equality for the block Bj , i.e., xj fulfils ‖Bjxj‖p =
‖Bj‖p‖xj‖p. Let Jλ be the largest Jordan block to the eigenvalue λ of size m. The

result (1.20) follows, since the norm of the matrix (Jλ−λ̃I)−1 can be bounded using
the triangle inequality and a Neumann series:

‖(Jλ − λ̃I)−1‖p = ‖(λ− λ̃)−1(I + (λ− λ̃)−1N)−1‖p

≤ 1

|λ̃− λ|

m−1∑

i=0

‖N i‖p
|λ̃− λ|i

=
1

|λ̃− λ|

m−1∑

i=0

1

|λ̃− λ|i
.

The proof for the validity of equation (1.21) is obvious. The results and proofs may
also be found in the book by Stewart and Sun (cf. [SS90]) and in an early preprint
of Li (cf. [Li85]). ¤

The result (1.21) is often quoted as ‘the’ Bauer–Fike theorem. The corollary shows
that it may be possible that an eigenvalue of a perturbed matrix has its origin not in
the closest eigenvalue of the original matrix, but in a Jordan block whose eigenvalue
is further apart, but more sensitive to perturbations.

Instead of the Jordan form we can use the Schur form. For any norm we define
the departure from normality ν(A) of A by

ν(A) ≡ min
R
{‖R− diag(R)‖, R is a Schur form of A} .

The Schur form leads to the following corollary, originally due to Henrici:

Corollary 1.43 (Henrici) Let ‖ · ‖ be a norm on Cn×n such that ‖C‖ ≥ ‖C‖2 for
all C ∈ Cn×n. Let ν(A) be the departure from normality measured in this norm.
Then for every eigenvalue λ̃ of Ã there is an eigenvalue λ of A such that

(

ν(A)−1|λ̃− λ|
)n

∑n−1
i=0

(

ν(A)−1|λ̃− λ|
)i
≤ ν(A)−1‖∆A‖2.

Proof. The proof proceeds analogously to the proof of Corollary 1.42 and can
be found written out in the book of Stewart and Sun (cf. [SS90], Theorem 1.9,
page 172). ¤

We can set ∆A to A without diagonal and use the ‖ · ‖∞ norm in the Bauer-Fike
theorem. This leads to the result first proven by Gerschgorin:

Corollary 1.44 (Gerschgorin) For A ∈ Kn×n let

ri =
∑

j 6=i

|aij | and Gi(A) = {z ∈ C : |z − aii| ≤ ri}.
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Then

Λ(A) ⊂
n⋃

i=1

Gi(A).

Moreover, if m of the Gerschgorin disks Gi(A) are isolated from the other n −m
disks, then there are precisely m eigenvalues of A in their union.

Proof. The first part follows directly from the Bauer-Fike theorem as mentioned
above. That every connected component of m circles contains precisely m eigenval-
ues follows by a simple continuity argument. ¤

The Bauer–Fike approach can be generalised, which seems to be unknown yet.

Theorem 1.45 (“Unsymmetric” Bauer-Fike Theorem) Let all notation be as
defined in Theorem 1.40. Furthermore, let W ∈ Kn×n be any regular matrix. Then
the following holds true:

‖W−1(λ̃I −A)−1Q‖−1 = ‖W−1R(λ̃)Q‖−1 ≤ ‖Q−1∆AW‖.

Proof. The proof is quite analogous to the proof of Theorem 1.40. The only dif-
ference is that we substitute WW−1ṽ and not QQ−1ṽ for ṽ. ¤

This theorem can be used to bring the resolvent or the perturbation matrix into
some canonical form not necessarily related to similarity transformations. The use
of the SVD of the (inverted) resolvent for instance results in the following corollary:

Corollary 1.46 Let all notation be as in Theorem 1.45. Let UΣV H = λ̃I − A be
the singular value decomposition of the matrix λ̃I − A. Then the following holds
true:

‖Σ−1‖−1 ≤ ‖UH∆AV ‖ ≤ ‖UH‖‖V ‖‖∆A‖.

When ‖ · ‖ is axis-oriented, this implies

σmin(λ̃I −A) ≤ ‖UH∆AV ‖ ≤ ‖UH‖‖V ‖‖∆A‖.

Let ||| · ||| be any unitarily invariant norm. Then the following bound holds true:

|||Σ−1|||−1 ≤ |||∆A|||

For the special choice of the 2-norm, ||| · ||| = ‖ · ‖2, this implies that

σmin(λ̃I −A) =
(

σmax(R(λ̃))
)−1

≤ ‖∆A‖2

holds true. This result, of course, is obvious by definition of the backward error for
an approximate eigenvalue. For the special choice of the Frobenius norm, ||| · ||| =
‖ · ‖F , we obtain the new result

(
n∑

i=1

1

σ2i

)−1/2

≤ ‖∆A‖F .

Proof. The results follow upon taking Q = U and W = V . ¤

When the matrix A is normal or even Hermitian, we can do significantly better.
We state the well-known theorems of Wielandt-Hoffman and Weyl.
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Theorem 1.47 (Wielandt, Hoffman) Let A and Ã be normal. Let π denote a
permutation of the set n. Then the following holds true:

min
π

√
∑

i

|λ̃π(i) − λi|2 ≤ ‖∆A‖F

Proof. The proof may be found in volume one of the textbook by Horn and John-
son (cf. [HJ85], Theorem 6.3.5, page 368). ¤

The theorem is not true when the Frobenius norm is replaced by an arbitrary
unitarily invariant norm. For Hermitian matrices this theorem can be generalised
to arbitrary unitarily invariant norms with the aid of symmetric gauge functions
and the following Theorem by Mirsky:

Theorem 1.48 (Mirsky) Let A ∈ Kn×m, and let Ã ∈ Kn×m be a perturbation
of A, Ã = A + ∆A. Let A = UΣV H and Ã = Ũ Σ̃Ṽ H denote the singular value
decomposition of A and Ã. Then for all unitarily invariant norms ||| · ||| the following
holds true:

|||Σ̃− Σ||| ≤ |||∆A|||.

Proof. The proof may be found in the book by Stewart and Sun (cf. [SS90], The-
orem 4.11, pages 204f). ¤

Because of the one-to-one correspondence between symmetric gauge functions (cf.
[SS90], Definition 3.3, page 75) and unitarily invariant norms (cf. [SS90], Theo-
rem 3.6, page 78) this implies the following theorem for Hermitian matrices:

Theorem 1.49 Let A and A be Hermitian. Then for all symmetric gauge functions

‖Λ̃− Λ‖Φ ≤ ‖∆A‖Φ
holds true. The special case of the 2-norm is also known as the Theorem of Weyl,

min |λ̃− λ| ≤ ‖∆A‖2.

The special case of the Frobenius norm improves over the Wielandt-Hoffman theo-
rem for normal matrices,

√
√
√
√

n∑

i=1

|λ̃− λ|2 ≤ ‖∆A‖F ,

since now the ordering is explicitely given.

Proof. The result may be found in the book of Stewart and Sun (cf. [SS90], Corol-
lary 4.12, page 205). ¤

In case of Hermitian matrices the eigenvalues can be characterised using Theo-
rem 1.24. This implies the stronger version of the Theorem of Weyl:

Lemma 1.50 (Weyl) Let A ∈ Kn×n and Ã ∈ Kn×n be Hermitian with eigenvalues
λi and λ̃i. Let εmin and εmax denote the minimal and maximal eigenvalue of the
perturbation ∆A = Ã−A. Then the following holds true:

λ̃i ∈ [λi + εmin, λi + εmax].

This lemma is a corollary of an even stronger result which may be found in the
book by Stewart and Sun (cf. [SS90], Theorem 4.8, page 202).
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Semi-Simple Eigenvalues

Let λ be a semi-simple eigenvalue of A with right eigenvector v and left eigenvector
v̂H such that v̂Hv 6= 0. Let Ã = A + ∆A be the perturbed matrix. A first order
bound for the simple eigenvalue λ is based on the observation that the Rayleigh
quotient provides a first-order approximation to the perturbed eigenvalue λ̃,

λ̃ =
v̂H(A+∆A)v

v̂Hv
+O(‖∆A‖2)

= λ+
v̂H∆Av

v̂Hv
+O(‖∆A‖2).

This is proven algebraically in the textbook of Stewart and Sun (cf. [SS90], Theorem
2.3, page 183). The first-order behaviour shows that the derivatives of λ with respect
to the matrix entries are given by

∂λ

∂aij
=
v̌ivj
v̂Hv

.

This shows that the condition of the eigenvalues depends on the variation of all n2

entries of A. As Wilkinson ([Wil65], page 89) pointed out, it might be necessary
to observe all n2 derivatives to unseal all the mysteries of eigenvalue perturbations.
For all n eigenvalues this would sum up to n3 important data.

The first-order representation directly implies a condition number. A crude
norm estimation gives the first-order bound

|λ̃− λ| ≤ κ(λ)‖∆A‖+O(‖∆A‖2), κ(λ) ≡ ‖v̂‖‖v‖|v̂Hv| .

The quantity κ(λ) is known as the Wilkinson condition number of the simple eigen-
value λ. It measures the secant of the angle between v̂ and v. Observe that in
the class of non-derogatory matrices iff v̂ and v are eigenvectors to a non-simple
Jordan block, they are orthogonal. Nevertheless, they may even be arbitrarily close
to orthogonality for a semi-simple eigenvalue (cf. [SS90], page 185f).

When the norm is the 2-norm, the Wilkinson condition number κ(λ) is closely
related to the condition of a specially scaled eigenmatrix V as follows:

Lemma 1.51 (Nearly Optimal Scalings) Let V ∈ Kn×n be an eigenmatrix of
the matrix A ∈ Kn×n. Let ‖ · ‖p be a Hölder norm. Then the condition κp(V ) ≡
‖V ‖p‖V −1‖p of V is bounded from below by the Wilkinson condition of the eigen-
values,

max
λ

κp(λ) ≤ κp(V ). (1.22)

Now, let ‖ · ‖2 be the 2-norm. Suppose that V has been scaled by a diagonal scaling
V ← V D such that the jth column has unit length. Then, furthermore

max
λ

κ2(λ) ≤ κ2(V ) ≤ nmax
λ

κ2(λ) (1.23)

holds true. Next, consider the scaling such that the jth column has length
√

κ(λj).
With this particular scaling, the last bound can be sharpened to give

max
λ

κ2(λ) ≤ κ2(V ) ≤
∑

λ

κ2(λ) ≤ nmax
λ

κ2(λ). (1.24)

Proof. The first inequality (1.22) follows from the observation that for all j ∈ n,
‖v̂Hj ‖p ≤ ‖V̂ H‖p‖ej‖p = ‖V −1‖p and ‖vj‖p ≤ ‖V ‖p‖ej‖p = ‖V ‖p holds true. Thus,
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the first equality in general holds true, i.e., independent of scalings. The other two
inequalities hold true, since upon setting V̂ H ≡ V −1 we can conclude that

‖V ‖2‖V̂ ‖2 ≤ ‖V ‖F ‖V̂ ‖F =

(
∑

i

‖vi‖22

) 1
2




∑

j

‖v̂j‖22





1
2

(1.25)

holds true. In case V has columns of unit length, i.e., in case of inequality (1.23),
we observe that

κ2(λi) =
‖v̂i‖2‖vi‖2
|v̂Hi vi|

= ‖v̂i‖2.

Hence, with ‖vi‖ = 1, the last part of equation (1.25) can be bounded by

√
n

√
∑

j

‖v̂j‖22 ≤ nmax
j
‖vj‖2 = nmax

j
κ2(λj).

When the columns of V are scaled such that ‖vi‖2 =
√

κ2(λi), we observe that also

the rows of V̂ H ≡ V −1 are scaled this way, since

κ2(λi) =
‖v̂i‖2‖vi‖2
|v̂Hi vi|

=
√

κ2(λi)‖v̂i‖.

Thus, the columns of V and the rows of V̂ H = V −1 are equilibrated, ‖vi‖ = ‖v̂Hi ‖ =√

κ(λi). In this case, the last part of equation (1.25) can be bounded by

√
∑

i

κ2(λi)

√
∑

i

κ2(λi) =
∑

i

κ2(λi).

This finishes the proof. ¤

The last scaling was introduced by Wilkinson (cf. [Wil65], pages 88–89). Demmel
invented the (simpler) scaling of V , ‖vi‖ = 1 for all i ∈ n. This scaling is used in
tools like LAPACK and Matlab.

The Wilkinson condition number of a semi-simple eigenvalue λ is closely linked
to the limes of the resolvent, we have that

‖v̂‖‖v‖
|v̂Hv| = lim

z→λ

|z − λ|
‖R(z)‖

This is readily verified when we bring to mind the Laurent expansion of the resolvent
in a punctured neighbourhood of λ of equation (1.13). Thus, the first-order bound
for semi-simple eigenvalues is usually stated in terms of the norm of the associated
spectral projector. We state the first-order bound and a global bound:

Theorem 1.52 Let λ be a simple eigenvalue of A ∈ Kn×n. Let P denote the
spectral projector onto the eigenspace associated with λ. Let Ã = A + ∆A. Then
there exists an eigenvalue λ̃ of Ã, such that

|λ̃− λ| ≤ ‖P‖2‖∆A‖2 +O(‖∆A‖22)

holds true. The first-order bound can be turned into a global bound by multiplication
by the dimension n:

|λ̃− λ| ≤ n‖P‖2‖∆A‖2.
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The proof for this theorem can be found in the paper by Bauer and Fike (cf. [BF60]).
This is a slightly stronger result than the before mentioned one.

We switch to eigenvectors. An eigenvector is not uniquely defined, since with
v ∈ Kn every αv, α ∈ K non-zero is an eigenvector to the same eigenvalue. The
linear space spanned by an eigenvector is turned by an angle when the matrix A
is subject to a perturbation. When the corresponding eigenvalue is simple, we can
find a normwise and mixed condition number and a bound on the variation of the
angle between the unperturbed and the perturbed eigenvector.

The relative normwise condition number of a simple eigenvector is linked to a
partial inverse, defined by

Σ = V
(
λI −WHAV

)−1
WH , (1.26)

where (v, V ) and (w,W ) are adjoint bases of Kn, where v is the unperturbed eigen-
vector and w is any vector such that wHv = 1. Then, by direct calculation or by
application of the Rayleigh-Schrödinger expansion, to first-order

∆v ≈ Σ∆Av

holds true.

Theorem 1.53 Let (λ, v) be a simple eigenpair of A ∈ Kn×n. Let Ã = A+∆A be
a perturbation of A. Let Σ be defined as in equation (1.26). Then, the normwise
condition number of v is given by

κ(v) = α‖Σ‖,

and the mixed condition number of v is given by

κ(v) =
‖|Σ|E|v|‖∞
‖v‖∞

.

The normwise condition number in full generality has its origins in the works of
Chatelin (cf. [Cha93, CCF96]). The mixed condition number is due to Geurts (cf.
[CCF96], page 63).

When the basis (v, V ) has been chosen unitary, the perturbation ∆v = Σ∆Av is
such that ‖∆v‖2 = tan θ gives the tangent of the angle between the space spanned
by v and ṽ. This choice of a basis is due to Stewart and ensures that the condition of
the eigenvalue and the eigenvector are not necessarily related. This is in contrast to
the choice of Wilkinson, who proposed to use the left eigenvector as w (cf. [CCF96],
pages 63–64).

Clustered Eigenvalues

More interesting is the case of a multiple eigenvalue or cluster and corresponding
invariant subspace. We give a summary of the bounds that apply to clusters (in-
cluding multiple eigenvalues) and invariant subspaces. When we are talking about
a cluster of close eigenvalues, we have to be sure that no other eigenvalues come
close when perturbing. So it seems natural to restrict the size of the perturbation
∆A in order to investigate only clusters perturbed such that no other eigenvalues
interact significantly. Let A be in partial Schur form like in Definition 1.29. Then
this is the case, as long as the spectra of A11 and A22 remain disjoint, which is the
case, when

‖∆A‖F <
sepF (A11, A22)

4‖P‖2
(1.27)



1.6. THE ALGEBRAIC EIGENPROBLEM 49

holds true. Here, P is the spectral projector onto the eigenspace associated with the
spectrum of A11. The proof can be found in an article by Stewart (cf. [Ste73]). The
expansion of the single eigenvalues in general would have to be based on fractional
powers of the perturbation. In the following, λ is the arithmetic mean of the
eigenvalues that are part of the cluster. This average of the eigenvalues can be
computed by means of the trace,

λc = trace(A11)/m, λ̃c = trace(Ã11)/m.

Here, the cluster is assumed to be of size m with the Schur forms of A and Ã chosen
such that the correspond to the matrices A11 and Ã11, respectively.

Theorem 1.54 Let A ∈ Kn×n be perturbed to Ã = A + ∆A. Let λc be the mean
of the eigenvalues of the cluster we are interested in. Let λ̃c denote the mean of the
perturbed cluster. Then, a first-order bound is given by

|λ̃c − λc| ≤ ‖P‖2‖∆A‖2 +O(‖∆A‖22).

As long as condition (1.27) holds true, a global bound is given by

|λ̃c − λc| ≤ 2‖P‖2‖∆A‖2.

In other words, this bound holds as long as the cluster remains disjoint from the
remaining part of the spectrum.

Proof. The proof for the first order bound may be found in the book by Kato
(cf. [Kat66]). The proof for the global bound may be found in the aforementioned
article (cf. [Ste73]). ¤

Similarly, we can obtain bounds for the variation of an associated invariant subspace:

Theorem 1.55 Let all notation be as in Theorem 1.54. Let V denote the invariant
subspace associated with the cluster, and let Ṽ denote the invariant subspace asso-
ciated with the perturbed cluster. Then, the maximal angle θ ≡ θmax(V, Ṽ) between
V and Ṽ is bounded to first-order by

θ ≤ 2‖∆A‖F
sep

+O(‖∆A‖2F ).

Moreover, as long as condition (1.27) holds true, we have the global bound

θ ≤ atan

(
2‖∆A‖F

sep− 4‖P‖2‖∆A‖F

)

.

Condition (1.27) ensures that the denominator on the right-hand side of the global
bound is positive.

Proof. The proofs may be found in an article by Demmel (cf. [Dem86]). ¤

All the results without proofs may be found in LAPACK working note 13 (cf.
[BDM91]).

1.6.4 Subspaces and Projectors

Krylov methods are projection methods. Thus, we summarise the basic results on
projectors. A matrix P is a projector when P 2 = P holds true. Therefore, we can
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write Kn = ker(P )⊕ ran(P ). In other words, a projector is defined by two spaces,
M = ker(P ) and S = ran(P ). We say that the projector P is onto M,

Px ∈M,

and along (parallel) to S
x− Px ∈ S.

This point of view is based on two spaces of (in general) different dimensions. When
we switch to the orthogonal complement L = S⊥, we obtain a description involving
two spaces of the same dimension:

Px ∈M, x− Px ⊥ L.

We now say that the projector is ontoM and orthogonal to L. We can write down
the projector in matrix form by choosing bases:

M = span(M), L = span(L).

The matrix representation of P , if it is defined, is given by

P =M(LHM)−1LH .

A projector is defined iff no vector inM is orthogonal to L. When the spacesM
and L are different, we talk of an oblique projector. A better choice of bases would
be biorthogonal (adjoint) bases,

LHM = I.

Then the oblique projector takes the simple form P =MLH . When the spaces are
equal and we have chosen an orthogonal basis,

MHM = I,

we name the projector an orthogonal projector. An orthogonal projector is Hermi-
tian, since P =MMH . In contrast to an oblique projector, an orthogonal projector
always exists, because no vector can be orthogonal to itself.

1.7 Miscellaneous

In this section we collect some material that is related to the field of Krylov methods
and paves way for some of the results. Krylov methods are related to polynomials,
more precise, infinite precision Krylov subspace methods may be defined using
polynomials. Thus, we give some basic facts on polynomials.

Like Krylov methods, polynomials, especially orthogonal polynomials, or more
general, orthogonal functions, are closely related to three-term recurrences, i.e., to
finite difference equations. One of the most interesting phenomena, the deviation
of a short-term recurrence from the infinite precision counterpart can already be
observed in the simpler example of the so-called Bessel labyrinth.

1.7.1 Polynomials

The set of all polynomials is a linear vector space which we denote by P. We
heavily use three finite dimensional subsets of P. First, we define the subspace of
all polynomials of degree less k, denoted by Pk−1. In context of Krylov methods for
the solution of the algebraic eigenproblem we minimise certain expressions over the
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set P k−1
k−1 , the set of monic polynomials of degree less k. In context of the solution

of linear systems this role is played by the set P 0k−1, the set of polynomials with
constant term equal to one, c0 = 1. These sets are no subspaces.

For simplicity we say that the zero polynomial, p(λ) = 0 has all values as root
with infinite multiplicity. The degree of the zero polynomial is minus infinity. The
characteristic polynomial of a matrix,

χ(λ) = χA(λ) ≡ det (λI −A) ,

is defined such that χA ∈ Pn
n . By Cayley-Hamilton χA(A) = 0. The smallest

polynomial with the same feature is the minimal polynomial of the matrix. The
minimal polynomial is given by

µ = µA(λ) ≡
∏

(λ− λi)ki ,

where the product is over all distinct eigenvalues and the power ki is the size of the
largest Jordan block to eigenvalue λi.

Now, we switch to orthogonal polynomials. Orthogonal polynomials are given
by the constraint

〈pk, pj〉 = δkj ,

where 〈·, ·〉 is some scalar product in P. Frequently, the scalar product is an integral

〈pk, pj〉 =
∫

R
w(x)pk(x)pj(x) dx,

where w is a non-negative weight function. A discrete evaluation is formally written
in the same form,

〈pk, pj〉 =
n∑

i=1

w(xi)pk(xi)pj(xi) =

∫

R
w(x)pk(x)pj(x) du(x).

The occurring integral

I[f ] =

∫

R
f(x) du(x) =

∫

R
f du

is known as the Stieltjes integral (or Riemann-Stieltjes integral) with the integrating
function u.

The existence of orthogonal polynomials is equivalent to the existence of a three-
term recurrence. This follows from the representation of xpk(x) in the basis of the
orthogonal polynomials,

xpk(x) =

k+1∑

j=0

ckjpj(x).

Upon application of the inner product 〈·, pj〉 we obtain that

〈xpk(x), pj(x)〉 = ckj

holds true. By our orthogonality assumption,

ckj = 〈xpk(x), pj(x)〉 = 〈pk(x), xpj(x)〉 = 0 ∀ j < k − 1,

since xpj(x) is a polynomial of degree less or equal j + 1. This leaves us with a
recurrence where at most three coefficients are non-zero, i.e., we obtain a three-term
recurrence

ck,k+1pk+1(x) = rk(x) = (x− ckk) pk(x)− ck,k−1pk−1(x).
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The coefficients can be computed as

ck,k−1 = 〈xpk(x), pk−1(x)〉,
ckk = 〈xpk(x), pk(x)〉 and

ck,k+1 = ‖rk‖ ≡
√

〈rk(x), rk(x)〉.

This Gram-Schmidt procedure in the linear space of polynomials is known as Stielt-
jes procedure. We just remark that orthogonal polynomials have connections to
Gauss quadrature, to continued fractions and to Padé approximation.

1.7.2 Finite Difference Equations

Finite difference equations were the source of inspiration for Leibniz to invent dif-
ferential calculus in 1715. In the works of Casorati (1835–1890) many analogies
between differential and difference calculus are recognised, the most interesting
among them being the notion of the Casoratian or Casorati determinant, the dif-
ference calculus counterpart to the Wronskian or Wronski determinant (cf. [Jar]).
Finite difference equations are closely related to the matrices arising in Krylov sub-
space methods.

1.7.3 Short-Term Recurrences: An Example

Three-term recurrences (and coupled two term recurrences) form the core of short-
term Krylov subspace methods like the Lanczos method and CG. Originally, three-
term recurrences arise in the efficient computation of orthogonal functions, mostly
polynomials, such as the Chebychev, Legendre or Laguerre polynomials.

It is well known that the straight-forward computation of orthogonal functions
need not be stable. As an example we consider the so-called Bessel labyrinth
(“Besselscher Irrgarten”, cf. [DH93], pages 167–173). The Bessel functions are
special functions that fulfil the three-term recurrence

Jk+1(x) =
2k

x
Jk(x)− Jk−1(x), k ≥ 1.

The Neumann functions fulfil the same three-term recurrence, and small rounding
errors introduced in the computation lead to a deviation from the Bessel part to
the Neumann part and vice versa. This can be seen in figure 1.2.

The given three-term recurrence is evaluated with two given starting values J0(x)
and J1(x) at the point x = 2.13 up to J23(x). We evaluate the recurrence backward
with the last two values. The sketched forward-backward evaluation is carried
out repeatedly several times. The ‘exact’ Bessel functions Jk are decreasing with
growing k and the Neumann functions are rapidly increasing. In a forward sweep,
small rounding errors are blown up such that the dominant Neumann functions
overlap the Bessel functions. In a backward sweep the Bessel functions overlap the
Neumann functions. This causes the plot shown in figure 1.2. We have adopted
the figure and the example from the book by Deuflhard and Hohmann, where the
starting values and a detailed error analysis can be found (cf. [DH93], pages 167–
169).

To understand the problem in full generality, we consider all solutions of the
homogeneous three-term recurrence. The solution set is a subspace of all maps from
N to R. The solution set is two-dimensional, since any solution of the recurrence is
determined uniquely by two starting values. In the example, a set of independent
solutions is given by the Bessel and Neumann functions.
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Figure 1.2: The Bessel labyrinth

We show how to construct two independent solutions. We think of the three-
term recurrence in the form

xpk(x) = akpk+1(x) + bkpk(x) + ak−1pk−1(x), k ≥ 1 (1.28)

xp0(x) = a1p1(x) + b0p0(x). (1.29)

Equation (1.28) is merely a slightly re-written form of a three-term recurrence. The
additional equation (1.29) fixes one degree of freedom. We suppose that all ak > 0.

When we impose the starting value p0(x) = 1, we have a unique solution
{pk}∞k=0. The second solution will only fulfil equation (1.28). One such solution
{rk}∞k=0 is determined by the initial conditions r0(x) = 0 and r1(x) = a−10 . The re-
sulting polynomials could also have been obtained by equating the integral formula

rk(x) =

∫

R

pk(x)− pk(y)
x− y du(y).

The polynomials {rk}∞k=0 are the associated polynomials.
Whether two solutions to a three-term recurrence are linear dependent or not can

be checked with the aid of the Casorati determinant. The Casorati determinant in
difference calculus corresponds to the Wronski determinant in differential calculus.
The Casorati determinant Ck,k+1 of {pk}∞k=0 and {rk}∞k=0 in step k is defined by

Ck,k+1[p, r] = ak (pk+1rk − pkrk+1) .

Both sets {pk}∞k=0 and {rk}∞k=0 defined above fulfil equation (1.28). We multiply
the equation for pk(x) with rk(y) and subtract the equation for rk(y) multiplied by
pk(x). This results in

(x− y)pk(x)rk(y) = (akpk+1(x) + bkpk(x) + ak−1pk−1(x))rk(y)
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− (akrk+1(y) + bkrk(y) + ak−1rk−1(y))pk(x)

= ak(pk+1(x)rk(y)− rk+1(y)pk(x))
− ak−1(pk(x)rk−1(y)− rk(y)pk−1(x)).

Setting y = x proves that the Casorati determinant does not depend on k and is
given by Ck,k+1[p, r] = −1. Replacing rk by pk and summing yields the famous
Christoffel-Darboux formula

(x− y)
n−1∑

k=0

pk(x)pk(y) = an−1(pn(x)pn−1(y)− pn−1(x)pn(y)).

These results can be found in the lecture notes by Koelink for a SIAM Activity
Group Summer School in Spain (cf. [Koe00], pages 9–11).

We merely remark that the coefficients occurring in equations (1.28) and (1.29)
may be arranged in the form of a Jacobi matrix, such that the solution set {pk}∞k=0
corresponds (in some un-specified manner) to the whole matrix and the associated
polynomial solution set {rk}∞k=0 corresponds (in the same un-specified manner) to
the Jacobi matrix consisting of the previous one, where the first row and first column
is left out. This has many similarities with the decision scheme invented by Cullum
and Willoughby to identify spurious Ritz values in the finite precision symmetric
Lanczos method.

The solution to a perturbed three-term recurrence, i.e., the solution of an in-
homogeneous three-term recurrence can be computed using the convolution with
a discrete Green function. The discrete Green function is defined similarly to its
differential calculus analogue. The Kronecker delta δjk plays the role of a discrete
delta distribution.

We think of a three-term recurrence for a fixed value x, and write the general
inhomogeneous recurrence in the form

pk = akpk−1 + bkpk−2 + ck, k > 1, bk 6= 0. (1.30)

The discrete Green function is defined by

G(j, k) ≡
{
G−(j, k), if k ≥ j
G+(j, k), if k ≤ j ,

where G−(j, k) and G+(j, k) are the solutions of the special inhomogeneous three-
term recurrences

G−(j, k)− akG−(j, k − 1)− bkG−(j, k − 2) = δjk

G+(j, k)− akG+(j, k − 1)− bkG+(j, k − 2) = −bkδj,k−2.

The solution to the inhomogeneous equation (1.30) with starting values p0 = c0 and
p1 = c1 is then given by the convolution

pk =

k∑

j=0

cjG(j, k) =

k∑

j=0

cjG
−(j, k), k ∈ N

with the Green function. This corresponds to the infinite dimensional (differential
calculus) case.

Now we consider perturbed three-term recurrences. Let the perturbed recurrence
be given by (relatively) perturbed starting values

p̃0 = p0(1 + θ0), p̃1 = p1(1 + θ1)
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and (relatively) perturbed coefficients

ãk = ak(1 + αk), b̃k = bk(1 + βk), k > 1.

Then the absolute error ∆pk ≡ p̃k − pk fulfils the inhomogeneous three-term recur-
rence

∆pk = ak∆pk−1 + bk∆pk−2 + Ek, k > 1

where the error terms Ek are defined by

Ek ≡ αkakp̃k−1 + βkbkp̃k−2 ≈ αkakpk−1 + βkbkpk−2.

The absolute error of a three-term recurrence can be computed by the convolution
of the Green function with the error terms, i.e., by

∆pk =
k∑

j=0

EjG(j, k).

The discrete Green function gives information on the absolute condition number of
the three-term recurrence subject to relative perturbations.

The relative errors θk ≡ ∆pk/pk fulfil the inhomogeneous three-term recurrence

θk =
akpk−1
pk

θk−1 +
bkpk−2
pk

θk−2 + εk, k > 1

where the relative error terms εk are given by

εk =
Ek
pk
≈ αk

akpk−1
pk

+ βk
bkpk−2
pk

.

Thus, we can express the relative error in the form of a convolution

δk =

k∑

j=0

εkR(j, k)

with some sort of ‘relative’ discrete Green function

R(j, k) =
pj
pk
G(j, k).

The ‘relative’ discrete Green function gives information on the relative condition
number of the three-term recurrence subject to relative perturbations.

The solutions can be distinguished into minimal solutions and dominant solu-
tions. A solution {pk}∞k=0 is called minimal, if

lim
k→∞

pk
qk

= 0 ∀ qk independent of pk.

All other independent solutions are termed dominant solutions. These dominant
solutions can be computed stable by the three-term recurrence. The minimal so-
lutions can not be computed in a stable way using the three-term recurrence (at
least not using the straight-forward approach). The convergence of Krylov meth-
ods is linked to minimal solutions. The trick that does work for simple three-term
recurrences (i.e., those where the coefficients are known a priori, in contrast to the
coefficients in Krylov subspace methods, whose are computed whilst executing the
algorithm) is known as Miller’s method and is based on a backward evaluation of
the three-term recurrence.

The definition of the discrete Green function and its use to express the absolute
and relative errors of a perturbed three-term recurrence is an excerpt from (the
German edition of) the book by Deuflhard and Hohmann (cf. [DH93], pages 164–
166, 169–171).
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Chapter 2

Krylov Subspace Methods
and Matrix Structure

Krylov methods are iterative methods. In every step they expand a basis and
corresponding matrix representation. These matrices have a nested structure. In
most cases the old matrix will be a submatrix of the new one.

Krylov methods are iterative eigenproblem and linear system solvers. We have
to ask ourselves how a bordering of a matrix changes intrinsic properties like eigen-
values and eigenvectors.

Krylov methods are a subset of the set of iterative methods. The matrix repre-
sentations are restricted to the class of Hessenberg matrices. The matrix represen-
tations of the so-called short-term Krylov methods are even restricted to the class
of tridiagonal matrices.

Execution in finite precision does not destroy the structure of the matrix repre-
sentations. So we have a connection between Krylov methods and matrix structure.
Knowledge on matrix structure is knowledge on (finite precision) Krylov methods
and vice versa.

In this chapter we derive results which are necessary for our approach. To
simplify and to shorten, we always examine the most general setting. We start at
general matrices and stop at symmetric tridiagonals.

At the same time we aim at justifying part of mathematical folklore on the size
of eigenvector entries and on the shape of eigenvectors.

We remark that various results can be extended to the classes of block Hessen-
berg, block tridiagonal and banded matrices.

2.1 An Algebraic Identity

In this section we pave the way for a variety of nice results that enlighten the
relations between eigenvalues of a matrix and of its principal submatrices. Our
approach is based on the adjugate and on the Jordan normal form.
Let A ∈ Kn×n. The adjugate, or (classical) adjoint, of A is defined as the matrix
of cofactors

B ≡ adjA ⇔ bij ≡ (−1)i+j detAji.

Laplace expansion proves the important relation

adjAA = A adjA = detAI. (2.1)

We remark that the adjugate is defined by rational functions and exists even when A
is singular. The adjugate is more stable than the inverse, i.e., its condition number

57
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in 2-norm is given by the ratio of the second smallest and largest singular value (cf.
[Ste98]). It is well-known that the adjugate is connected to compound matrices.

Let the Jordan decomposition of A been given by

AV = V JΛ ⇔ A = V JΛV
−1.

We need to access the rows of V −1 later on, and since these are conjugated left
eigenvectors, we define the matrix

V̂ H ≡ V −1, i.e., V̂ ≡ V −H .

With this matrix we assure validity of the two relations

V̂ HA = JΛV̂
H and V̂ HV = V H V̂ = I.

In other words, the columns of V̂ are left eigenvectors, scaled such that they form
a bi-orthonormal set to the right eigenvectors of A.

Let λ be not contained in the spectrum of A. Then the inverse of λI − A can
be expressed in terms of the Jordan decomposition as

(λI −A)−1 = V J−1λ−ΛV
−1 = V J−1λ−ΛV̂

H .

We use the Jordan normal form and equation (2.1) to express the adjugate of λI−A,

adj (λI −A) = det (λI −A) (λI −A)−1

= χA (λ) (λI −A)−1

= V
[
χA (λ) (λI − JΛ)−1

]
V̂ H . (2.2)

We take a closer look at the matrix in the middle. First we consider (λI − JΛ)−1.
The structure for one single Jordan block Jλi of size k is given by

(λI − Jλi)−1 = Ei ≡










(λ− λi)−1 (λ− λi)−2 . . . (λ− λi)−k
(λ− λi)−1

. . .
...

(λ− λi)−1










.

Let S denote the sign matrix

S = S−1 =









1
−1

1
. . .

(−1)n+1









.

We express the adjugate with the aid of compound matrices,

adjA ≡ SCn−1(AT )S.

Define E ≡ ⊕iEi. We transform equation (2.2) by moving the sign matrices,

P ≡ Cn−1(λI −AT ) = (SV )G (V̂ HS)

≡ (SV ) [χA (λ)E] (V̂ HS). (2.3)

The elements of the compound matrix P are polynomials in λ of the form

pij = pij (λ;A) ≡ detLji, where L ≡ λI −A. (2.4)
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The elements of G are obviously given by rational functions in λ, since

G = χA (λ) · (⊕iEi) .

Many terms cancel, and the elements of G turn out to be polynomials in λ.
The algebraic identity (2.3) relates polynomials of submatrices to polynomials

of the matrix and left and right eigenvectors.
We remark that only the diagonal elements of the left-hand side are characteristic

polynomials, of principal submatrices. We consider two interpretations of equation
(2.3).

When A has a multiple eigenvalue, one can raise the question whether a prin-
cipal submatrix inherits this eigenvalue. We derive lower bounds on the algebraic
multiplicity with the aid of equation (2.3).

Suppose λ1 is fixed. Let αj denote the algebraic multiplicity of eigenvalue λj .
The entries inside the upper triangular part of the first Jordan blocks without sign
matrices are given by

χA(λ)(λ− λ1)−π =
∏

i

(λ− λi)α
′
i , (2.5)

where

α′i =

{
αi i 6= 1

α1 − π i = 1
.

The index π is determined by the position in the matrix, i.e., we have π = j − i+1
for position (i, j). We determine the matrix position with π maximal, and divide
equation (2.3) by the factor

(λ− λ1)α1−π.

After computing the limes λ→ λ1 at least one element in the resulting matrix has
non-zero value c defined by

χ
(α1)
A (λ1) =

∏

i6=1

(λ1 − λi)αi ≡ c.

The remaining entries are zero. All non-zero entries are in the π − 1th diagonal.
The number of non-zero entries corresponds to the number of Jordan blocks that
have maximal size given by π.

We have proven validity of the following theorem:

Theorem 2.1 Let A ∈ Kn×n. Let the Jordan decomposition of A be given by A =
V JΛV

−1 ≡ V JΛV̂ H . Suppose that the Jordan blocks are sorted first by eigenvalues

and then by descending block size. Let c = χ
(α1)
A (λ1), where α1 denotes the algebraic

multiplicity of λ1. Let π denote the size of the first Jordan block. Let P be the
transposed matrix of minors of λI −A.

Then the following relation holds true:

lim
λ→λ1

(λ− λ1)π−α1P = (SV )







M
. . .

M
O







(V̂ HS), (2.6)

where

M =







0 · · · 0 c
0 · · · 0 0
...

. . .
...

...
0 · · · 0 0






, S =







1
−1

. . .

±1






,

and O is a zero matrix of appropriate size.
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The number of blocksM is the number of Jordan blocks of λ1 of maximal size. The
other Jordan blocks of λ1 do not play a role in this equation.

The right-hand side of (2.6) is well-defined, thus the left-hand side is well-defined
and the polynomial

(λ− λ1)α1−π
∣
∣
∣ P

divides all entries of P . Depending on the right-hand side the factor may have
higher multiplicity.

The entries interpreted as polynomials in λ have λ1 as root with multiplicity
greater equal α1 − π.

Remark 2.2 As interesting byproduct we note that the polynomials (2.4) in cer-
tain cases must have a multiple root λ. This is of general interest even only the
diagonal elements are characteristic polynomials.

The polynomials (2.4) can be used to make propositions on the Jordan normal form
based on the structure of A. In some cases we can restrict the class of possible
Jordan normal forms to a subclass or in other cases exclude a subclass.

For certain structured matrices (for example many zeros) the degrees of the
polynomials can be given explicitly. This observation is based on the Laplace ex-
pansion or the Leibniz formula for the determinant, or the representation of the
determinant as a double sum of minors.

The next theorem is based on the observation that the ith diagonal element of
P is the characteristic polynomial χAi(λ) of the ith principal submatrix of A of size
n− 1.

Theorem 2.3 Let A ∈ Kn. Let λ be an eigenvalue of A with k Jordan blocks of
sizes nj , j ∈ k.

Then all principal submatrices Ai, i ∈ n have λ as an eigenvalue of algebraic
multiplicity at least

nmin ≡





k∑

j=1

nj



− nmax,

where nmax = maxj(nj) is the size of the largest Jordan block.
Suppose we know the locations of the zero components of the eigenvectors. When

some of components of the left and right eigenvectors are zero, the multiplicity of
some eigenvalues of Ai may be higher. If on the other hand the multiplicity is larger
than predicted, the vectors must have zero components.

We observe that the multiplicity is not only determined by the sizes and numbers of
the Jordan blocks, but can be higher depending on possible zeros in the eigenvectors
and principal vectors.

We now restrict ourselves to the case of no zero elements in the eigenvectors and
principal vectors, i.e., we take a closer look at the generic case.

The algebraic multiplicity of an inherited eigenvalue with algebraic multiplicity
α = α(λ) and geometric multiplicity γ = γ(λ) is given by α− π, where π is the size
of the largest block in the Jordan decomposition.

The combinatorial evaluation of the
(
α
γ

)

possible partitions of the eigenspace into Jordan blocks proves that when we restrict
ourselves to the case that we only know the algebraic and geometric multiplicity
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of an eigenvalue, we can only show that the algebraic multiplicity for a principal
submatrix is at least

mmin = α− (α− γ + 1) = γ − 1.

We formulate this result as

Theorem 2.4 Let A ∈ Kn×n. Let λ be an eigenvalue of A with geometric multi-
plicity γ.

Then all principal submatrices Ai, i ∈ n have λ as an eigenvalue of algebraic
multiplicity at least

mmin = γ − 1.

Additional knowledge of the algebraic multiplicity can not be used to sharpen the
bound any further.

The intimate connection stated in Theorem 2.3 between zeros eigenvector compo-
nents and multiple eigenvalues of submatrices can be extended to non-zero eigenvec-
tor components. In the next section we derive formulae shedding light on relations
between eigenvalues and eigenvectors.

2.2 Eigenvalue – Eigenvector Relations

We have shown that some eigenvalues of A are eigenvalues of principal submatrices.
The proof rests upon equation (2.6). Up to now we neglected the non-zero eigen-
vector components. In this section we keep track of all eigenvector components.

In the sequel we will heavily use the notation

V̂ = V −H i.e., V̂ HV = V H V̂ = I.

We also access the entries of the left eigenvectors. For this reason we introduce
the shorthand notation v̌ ≡ v̂. This may be memorised as reflection on the real
axis, turning hat to vee and vice versa. This notation corresponds to the matrix
definition

V̌ = V̂ = V −H = V −T , i.e., V̌ TV = V T V̌ = I.

As consequence of (2.6) we have to consider a sum of rank one matrices which
are built of the left and right eigenvectors. We remark that no principal vectors
can occur in these equations. For ease of understanding we refer to the following
clarifying picture.

V V̂ H

vi (i, j)

v̂Hj

Figure 2.1: How vectors are selected from the eigensystem

We will derive a variety of results from equation (2.6). As first example we re-derive
the well-known result (cf. [Tho66, TM68, CW80]) for a simple eigenvalue.
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Example 2.5 (simple eigenvalue) Let A ∈ Kn×n. Let λl be a simple eigenvalue
of A. Let v̂Hl and vl be the corresponding left and right eigenvectors with v̂Hl vl = 1.
Then the well-known relation

adj(λlI −A) = χ′A(λl)vlv̂
H
l

=
∏

s6=l

(λl − λs) vlv̂Hl (2.7)

holds true. This result could have been obtained using only equation (2.1) and the
definition of the trace of a matrix.

This first example is the basis for more results. We multiply equation (2.7) from
the left by eTi and from the right by ei to obtain another well-known eigenvalue-
eigenvector relation.

Example 2.6 (same index) Let A ∈ Kn×n. Let λl be a simple eigenvalue of
A. Let v̂Hl and vl be the corresponding left and right eigenvectors with v̂Hl vl = 1.
Define νs,i ≡ λs(Ai). Then

vilv̌il =

∏

νs,i
(λl − νs,i)

∏

s6=l (λl − λs)
=

∏

νs,i
(λl − νs,i)

∏

λs 6=λl
(λl − λs)

holds true. We observe that in the non-normal case the condition of the eigenvalue
comes into play. In the normal case we can express the sizes of the eigenvector
elements using only the eigenvalues of the matrix and some principal submatrices,

|vil|2 =
∏

νs,i
(λl − νs,i)

∏

λs 6=λl
(λl − λs)

.

The next result uses different indices. It seems to be less known, maybe because of
the unhandy polynomials (2.4).

Example 2.7 (different indices) Let A ∈ Kn×n. Let λl be a simple eigenvalue
of A. Let v̂Hl and vl be the corresponding left and right eigenvectors with v̂Hl vl = 1.
Then

vjlv̌il = (−1)(j+i) pji(λl;A)
∏

s6=l (λl − λs)
= (−1)(j+i) pji(λl;A)

∏

λs 6=λl
(λl − λs)

,

This example contains the polynomials pji(λl;A).

Example 2.7 shows that it is possible to construct the eigenvector components iter-
atively. The computation involves the polynomials (2.4). A special case where this
makes sense will be considered later on.

The next theorem is important for Hessenberg and tridiagonal matrices and
applies to all non-derogatory eigenvalues.

Theorem 2.8 Let A ∈ Kn×n. Let λl = λl+1 = . . . = λl+k be a geometrically
simple eigenvalue of A. Let k + 1 be the algebraic multiplicity of λ. Let v̂Hl+k and
vl be the corresponding left and right eigenvectors with appropriate normalisation.
Then

vjlv̌i,l+k = (−1)(j+i) pji(λl;A)
∏

λs 6=λl
(λl − λs)

holds true. Again the polynomials pji(λl;A) are involved.
This setting matches every eigenvalue of non-derogatory A.
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Remark 2.9 In the generic case all matrices are non-derogatory. This can been
seen when comparing the dimension of all non-derogatory matrices with the dimen-
sion of the derogatory ones using Schur decomposition (cf. [Dem]).

If the matrix is diagonalisable (which is easy to see in the normal case, hard to
see if the eigenvalues are merely separated, and mostly impossible to see if we have
multiple eigenvalues) we can get rid of the messy polynomials.

Example 2.10 (diagonalisable matrix) Let A ∈ Kn×n be diagonalisable. Sup-
pose λl = λl+1 = . . . = λl+k is a multiple eigenvalue with algebraic multiplicity
k + 1. Then

k∑

t=l

vjtv̌it = (−1)(j+i)
p
(k)
ji (λl;A)

∏

λs 6=λl
(λl − λs)

holds true. We remark that the polynomial pji(λl;A) has a kth root λl. Thus the

kth derivative p
(k)
ji (λl;A) is well-defined and non-zero.

The last theorem and example are just instances of a more general example with
all Jordan blocks to eigenvalue λl equal sized.

Example 2.11 (equal sized Jordan blocks) Let A ∈ Kn×n have p equal sized
Jordan blocks to eigenvalue λl = λl+1 = . . . = λl+k with algebraic multiplicity
k + 1 = p · q. Then

p
∑

t=1

vj,l+(t−1)q v̌i,l+tq−1 = (−1)(j+i)
p
(k+1−q)
ji (λl;A)

∏

λs 6=λl
(λl − λs)

holds true.

When A is normal, the left and right eigenvectors are identical.

Example 2.12 (the envelope) Let A ∈ Kn×n be normal. Let νs,i = λs(Ai).
Then the envelope of the eigenspace associated with a multiple eigenvalue is given
by

∑

m

|vim|2 =
∏

νs,i 6=λl
(λl − νs,i)

∏

λs 6=λl
(λl − λs)

.

2.3 Hessenberg Matrices

An important class of matrices are so-called upper Hessenberg matrices. An upper
Hessenberg matrix is a matrix having all elements equal to zero below the first
sub-diagonal. Analogously lower Hessenberg matrices may be defined. We restrict
ourselves to the case of upper Hessenberg matrices.

We term a Hessenberg matrix unreduced when the sub-diagonal compromises
only of non-zero elements. A general Hessenberg matrix is the direct sum of unre-
duced Hessenberg matrices. We define H(m) to be the set of all unreduced upper
Hessenberg matrices of size m, and the set of all unreduced upper Hessenberg ma-
trices

H = ∪m∈NH(m).

Schur’s Theorem states that every matrix A ∈ Kn×n is unitarily similar to an
upper triangular matrix,

QHAQ = R ≡ Λ +N.
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Abel’s Theorem implies that in general the Schur form can not be computed by
means of a finite sequence of algebraic transformations, i.e., the Schur form can
only be approximated.

Hessenberg matrices are close to triangular matrices. Indeed, every matrix A ∈
Kn×n is unitary similar to the direct sum of unreduced Hessenberg matrices,

QHAQ = H ≡ ⊕iH(i), H(i) ∈ H.
This Hessenberg form may be computed by applying Householder reflectors or
Givens rotators. This proves that a Hessenberg form can be computed by means of
a finite sequence of algebraic operations.

This approach is norm-wise stable when implemented in finite precision due to
the multiplicative use of orthogonal matrices.

We have gained a computable decomposition at the cost of one additional sub-
diagonal. We remark that the Hessenberg form is not destroyed in a GR algorithm
applied subsequently, and even accelerates computation.

Another approach is to compute Q columnwise. This approach is known as
Gram-Schmidt and is based on induction.

We re-state the unitarian similarity in an equivalent subspace form,

QHAQ = H ⇒ AQ = QH. (2.8)

We consider the leading part of this subspace equation, such that the Hessenberg
matrix is unreduced and Q may be rectangular.

We interprete the last equation columnwise, i.e., we form (2.8) ek to obtain the
relation

Aqk =

k+1∑

j=1

qjhjk ⇔

qk+1hk+1,k = rk ≡ Aqk −
k∑

j=1

qjhjk. (2.9)

The moments hjk fulfil

hjk = 〈qj , Aqk〉 ∀ j ∈ k, |hk+1,k| = ‖rk‖. (2.10)

We can compute the entries ofH and the columns ofQ using the relations (2.9+2.10).
If we fix the sub-diagonal to be real positive, i.e., hk+1,k ≡ ‖rk‖ we obtain Q with
q as first column and an unreduced Hessenberg matrix H.

The process may break down before step n in case a zero vector occurs. We can
choose a new starting vector of unit length orthogonal to the computed columns
of Q. This process is much less stable than the direct version. The next theorem
states that the computed Q (and H) is unique.

Theorem 2.13 (Implicit Q Theorem) Let A ∈ Kn×n. Let q = q1 ∈ Kn have
unit norm. This uniquely determines an orthonormal matrix Q with q1 as first
column and H ∈ H with positive real sub-diagonal such that

AQ = QH

holds true. The implicitly defined Q in general will be rectangular, Q ∈ Kn×m.

Proof. The existence of orthonormal Q and Hessenberg H follows by induction.
The starting vector q1 is orthonormal by definition. Suppose the vectors qj com-
puted by Gram-Schmidt are orthonormal for j ∈ k. The vector rk and thus qk+1 is
orthogonal to the previous vectors, since

〈qj , rk〉 = 〈qj , Aqk〉 − hjk = 0.
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The choice of hk+1,k ensures qk+1 orthonormal. The resulting H is unreduced upper
Hessenberg.

The uniqueness follows by contradiction. Suppose

AQ = Q

(
H ?
0 ?

)

, AP = P

(
G ?
0 ?

)

with H,G ∈ H and Q,P orthonormal holds true. Suppose w.l.o.g. that H ∈ H(m)
and G ∈ H(l) with m ≤ l. Then W = PHQ fulfils

(
G ?
0 ?

)

W = PHAQ =W

(
H ?
0 ?

)

.

The first column of W is the first unit vector e1. By induction on the columns of
W using

wk+1hk+1,k =

(
G ?
0 ?

)

wk −
k∑

j=1

wjhjk,

we observe that W has the form

W =

(
R ?
0 ?

)

with R ∈ Km×m upper triangular. By analogous induction on the columns of
WH = QHP , it follows that WH has the form

WH =





D 0 0
0 R̃ ?
0 0 ?





with D ∈ Km×m diagonal and R̃ ∈ K(m−l)×(m−l) upper triangular. W is orthonor-
mal and thus ∣

∣
∣
∣

(
D 0
0 R̃

)∣
∣
∣
∣
= Il.

We note that l = m, since G is unreduced. The relation DGD−1 = H together
with the real positivity of the sub-diagonals proves uniqueness. ¤

In analogy to the orthogonal projection onto Hessenberg form we may consider an
oblique projection onto Hessenberg form, namely

Q−1AQ ≡ Q̂HAQ = H ⇒ AQ = QH.

There is no need for a direct method of this type. The extension of Gram-Schmidt
to this setting makes perfect sense.

2.3.1 The Eigendecomposition

A Hessenberg matrix has a very special structure. This structure is reflected in the
structure of the inverse and the eigendecomposition.

Unreduced Hessenberg matrices are non-derogatory, i.e., every eigenvalue cor-
responds to one single Jordan block. This becomes obvious when considering the
rank deficiency of shifted H ∈ H(m),

rank (H − θI) ≥ m− 1,

since the first m− 1 columns are linearly independent. Whenever H − θI becomes
rank deficient, θ is an eigenvalue and has geometric multiplicity one.
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We denote the Jordan decomposition of H ∈ H(m) by

HS = SJΘ, i.e., H = SJΘS
−1.

Like before we define
ŜH ≡ S−1, i.e., Ŝ ≡ S−H .

This may be considered as the unique left eigenvector matrix with the properties

ŜHH = JΘŜ
H , ŜHS = SH Ŝ = I.

The eigenvectors can not be arbitrary. This is proven in the next theorem.

Theorem 2.14 (Non-zero components in eigenvectors) Let H ∈ H(m). Let
θ be an eigenvalue of H. Let s be the right eigenvector to eigenvalue θ. Let ŝH be
the left eigenvector to eigenvalue θ.

Then the last component of s and the first component of ŝH are both non-zero.

Proof. The proof follows by contradiction. Suppose s is a right eigenvector with
last component zero,

Hs = sθ, em ⊥ s.
The last row of H has to be orthogonal to s. Since H is unreduced upper Hessen-
berg, this implies em−1 ⊥ s. By induction all components are zero, and s is the
null-vector. The proof for the left eigenvector is analogous. ¤

From now on we focus on Hessenberg matrices related to another matrix A by
unitary or general similarity. We consider only the leading unreduced part of the
subspace equations as constructed by Gram-Schmidt.

The eigenvalues and eigenvectors of the unreduced Hessenberg matrix are related
to those of A via

AQ = QH ⇒ AQS = QSJΘ.

This indicates that we have computed part of the eigenvectors and eigenvalues of
A. Let the eigendecomposition of A been given by

A = V JΛV
−1 = V JΛV̂

H .

Suppose the Jordan decompositions of A and H can be chosen such that the vectors
QS are contained in the columns of V . Conditions when this is possible are stated in
Theorem 1.22. We denote the submatrix compromising of the columns of a matrix
V in the index set µ by V (µ). Thus QS = V (µ) for some index set µ of cardinality
m. We observe that

V̂ HQS = V̂ HV (µ) = I(µ)

This ensures that
V̂ HQ = I(µ)ŜH .

Finally we re-write QS = V (µ) as S = Q̂HV (µ). We have shown that in certain
cases the relations

V̂ HQ = I(µ)ŜH and S = Q̂HV (µ)

are valid. Interpreted componentwise we see that

∀j ∃i ŝHj = v̂Hi Q and sj = Q̂Hvi (2.11)

holds true. In any case eigenvectors fulfilling these relations can be found.
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We have proven that in some cases in the iterative computation of the unreduced
Hessenberg matrix we fix the leading entries of the eigenvectors of ultimate H in
implicit form, i.e.,

ŝkj = 〈qk, v̂i〉, skj = 〈q̂k, vi〉. (2.12)

Knowledge on eigenvectors of A enables us to compute the leading entries of eigen-
vectors of H without knowing the trailing part of H. In a later section we prove a
similar result when we know the eigenvalue λ.

We need to access submatrices of Hessenberg matrices. For this reason we extend
our notation.

2.3.2 Submatrices and Eigenvectors

We define the principal submatrices

H1:m ≡ Hm ≡ H, H ∈ H(m)

Hi:j ≡ H

(
i, i+ 1, . . . , j
i, i+ 1, . . . , j

)

, i ≤ j, i, j ∈ m.

We are interested in eigenvalues and eigenvectors. We denote the eigendecomposi-
tion of the submatrix Hi:j by Hi:jSi:j = Si:jJi:j . The left eigenvectors are defined
by

Ŝi:j ≡ S−Hi:j , i.e., ŜHi:jH = Ji:jŜ
H
i:j and ŜHi:jSi:j = SHi:jŜi:j = I.

We can use prolonged versions of eigenvectors of submatrices as estimations for
the true eigenvectors. The residuals of these approximate eigenvectors have a nice
structure in two cases.

Theorem 2.15 Let H ∈ H(m). Split H = H1:m into

H1:m =

(
H1:k ?

hk+1,ke1e
T
k Hk+1:m

)

≡
(
H1:k ?
M Hk+1:m

)

.

Consider the prolonged right eigenvectors of the leading part H1:k as approximate
right eigenvectors of H. The residual is given by the rank one matrix

(
H1:k ?
M Hk+1:m

)(
S1:k
0

)

−
(
S1:k
0

)

J1:k

= hk+1,kek+1e
T
k S1:k.

The prolonged left eigenvectors of the trailing part Hk+1:m have the rank-one resid-
ual

(
0

Ŝk+1:m

)H (
H1:k ?
M Hk+1:m

)

− Jk+1:m

(
0

Ŝk+1:m

)H

= hk+1,kŜ
H
k+1:me1e

T
k .

Both cases are interesting for backward error analyses. When some part of the
residual becomes small, it does not move any longer in backward sense. The caveat
is that the condition of the eigenvectors might grow. Only when the condition
growth is bounded, this result is useful.

We can extend the results slightly by applying the full eigenvector matrix from
the other side. This results in the following.
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Theorem 2.16 Let H ∈ H(m). Suppose H partitioned as in the last theorem.
Denote the eigendecompositions as before. The inner product of the full left eigen-
vectors ŜH1:m with the prolonged leading right eigenvectors S1:k fulfils

J1:mŜ
H
1:m

(
S1:k
0

)

− ŜH1:m

(
S1:k
0

)

J1:k

= hk+1,kŜ
H
1:mek+1e

T
k S1:k.

The inner product of the prolonged left leading eigenvectors ŜHk+1:m with the full
right eigenvectors S1:m fulfils

(
0

Ŝk+1:m

)H

S1:mJ1:m − Jk+1:m

(
0

Ŝk+1:m

)H

S1:m

= hk+1,kŜ
H
k+1:me1e

T
k S1:m.

This theorem states in a compact form many useful eigenvalue - eigenvector relations
based on submatrices. These relations clarify the dependencies between the quality
of a prolonged eigenvector as approximation and the sizes of certain eigenvector
components.

The distance between an eigenvalue θ
(k)
j of a leading submatrix H1:k and an

eigenvalue θ
(m)
i of the full matrix H1:m in terms of eigenvector components for

example is described by

(

θ
(m)
i − θ(k)j

)(

ŝ
(m)
i

)H
(

s
(k)
j

0

)

= hk+1,kš
(m)
k+1,is

(k)
kj .

There is some freedom in this relation. We might choose the eigenvalue of Hm

nearest to the eigenvalue of interest of H1:k.
The next section is concerned with another approach to eigenvalue eigenvector

relations.

2.3.3 Eigenvalue – Eigenvector Relations

We enhance the results on the connection between eigenvalues and eigenvectors
obtained in the preceeding sections.

We have shown that there is a certain relation between eigenvalues and eigen-
vectors involving polynomials evaluated at eigenvalues.

To be more precise, let H ∈ H(m). Let θ be an eigenvalue of H and ŝH = šT

and s the corresponding eigenvectors. Let the algebraic multiplicity of θ be k + 1.
Then we have shown in Theorem 2.8 that

(−1)j+i š(i)s(j) = pji(θ;H)
∏

θl 6=θ
θ − θl

.

We adopted notation to Hessenberg matrices, Ŝ ≡ S−H and Š ≡ S−T .
For Hessenberg matrices some polynomials pji(θ;H) can be evaluated explicitly.

Whenever i ≤ j the new matrix inside the determinant is a block upper diagonal
matrix whose determinant is simply the product of the determinants of the blocks,
in this case the determinants of smaller Hessenberg matrices or upper triangular
matrices.

We consider two important examples.

Example 2.17 (omitting first row and last column) Let H ∈ H(m). Let the
matrix of polynomials P be defined as in (2.4). Let L = θI −H. The polynomial
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pm1 is constant and can be evaluated as follows,

pm1(θ;H) = detL1m

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

−h21 θ − h22 · · · −h2,m−1
0 −h32

. . .
...

...
. . .

. . . θ − hm−1,m−1
0 · · · 0 −hm,m−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

m−1∏

l=1

−hl+1,l = (−1)m+1
m−1∏

l=1

hl+1,l.

To be conforming with previous notation we used

(−1)j−i = (−1)j−i (−1)2i = (−1)i+j .

Whenever an upper triangular matrix occurs inside the determinant of the polyno-
mial, the unknowns play no role. It turns out that we can evaluate explicitly half
of the polynomials.

Example 2.18 (row index less than column index) Let H ∈ H(m). Let the
matrix of polynomials P be defined as in (2.4). Let i ≤ j. Let L = θI −H. The
polynomial pji has degree (i− 1) + (m− j) and can be evaluated as follows,

pji(θ;H) = detLij

=

∣
∣
∣
∣
∣
∣

θI −H1:i−1 ?
Ri+1:j−1

0 θI −Hj+1:m

∣
∣
∣
∣
∣
∣

= det(θI −H1:i−1) det(Ri+1:j−1) det(θI −Hj+1:m)

= (−1)i+j χH1:i−1
(θ)
∏

diag(Hi:j ,−1)χHj+1:m
(θ).

Example 2.18 simplifies the relation between characteristic polynomials of subma-
trices, sub-diagonal elements and eigenvector entries.

Theorem 2.19 Let H ∈ H(m). Let i ≤ j. Let θ be an eigenvalue of H with
multiplicity k + 1. Let s be the unique right eigenvector and ŝH be the unique left
eigenvector to eigenvalue θ. Then

š(i)s(j) =

[

χH1:i−1
χHj+1:m

χ
(k+1)
H1:m

(θ)

]
j−1
∏

l=i

hl+1,l (2.13)

holds true.

Among these relations of special interest is the case of index pairs (i,m), (1,m) and
(1,m), (1, j). They can be used to derive relations between eigenvalues and a single
eigenvector. The dependency on multiplicity is removed. The three index pairs of
interest are

š(i)s(m) =

[

χH1:i−1

χ
(k+1)
H1:m

(θ)

]
m−1∏

l=i

hl+1,l, (2.14)

š(1)s(m) =

[

1

χ
(k+1)
H1:m

(θ)

]
m−1∏

l=1

hl+1,l, (2.15)



70 CHAPTER 2. KRYLOV METHODS AND MATRIX STRUCTURE

š(1) s(j) =

[

χHj+1:m

χ
(k+1)
H1:m

(θ)

]
j−1
∏

l=1

hl+1,l. (2.16)

We remark that equation (2.15) provides a second proof that the last component
of a right eigenvector and the first component of a left eigenvector are non-zero.
The right-hand side is non-zero by assumption that H is unreduced and is finite by
construction. Thus the left hand side has to be non-zero.

Dividing equation (2.14) by equation (2.15) we obtain a useful characterisation
of the left eigenvector.

Theorem 2.20 (Construction of left eigenvectors) Let H ∈ H(m). Let θ be
an eigenvalue of H. Then ŝ = š defined by non-zero š(1) and the relations

š(i)

š(1)
=

χHi−1
(θ)

∏i−1
l=1 hl+1,l

∀ i ∈ m,

is (up to scaling) the unique left eigenvector of H to eigenvalue θ.

Dividing equation (2.16) by equation (2.15) we obtain an analogous characterisation
of the right eigenvector.

Theorem 2.21 (Construction of right eigenvectors) Let H ∈ H(m). Let θ
be an eigenvalue of H. Then s defined by non-zero s(m) and the relations

s(j)

s(m)
=

χHj+1:m
(θ)

∏m
l=j+1 hl,l−1

∀ j ∈ m,

is (up to scaling) the unique right eigenvector of H to eigenvalue θ.

The last two theorems reflect the Hessenberg structure. Suppose the eigenvalue θ is
given. Then the left eigenvector can be computed whilst computing the Hessenberg
matrix column by column, whereas the right eigenvector depends from the beginning
on on the whole matrix.

We apply the last two results to unreduced Hessenberg matrices that have been
constructed by Gram-Schmidt.

Equation (2.11) shows the relations between components of eigenvectors of H
and eigenvectors of A. Inserted into the two theorems we obtain the following
theorem:

Theorem 2.22 Let A ∈ Kn×n fulfil the conditions of Theorem 1.22. Let H ∈
H(m). Let AQ = QH.

Then

〈v̂i, qk+1〉 =
χH1:k

(λi)
∏k

l=1 hl+1,l
〈v̂i, q1〉 and 〈vi, q̂k−1〉 =

χHk:m
(λi)

∏m
l=k hl,l−1

〈vi, q̂m〉

hold true.

Suppose A is diagonalisable. We multiply the first set of quantities by the right
eigenvectors,

k+1∏

l=1

hl+1,lvi〈v̂i, qk+1〉 = χHk
(λi)vi〈v̂i, q1〉.

After summing up the equations we obtain the shorter and more familiar expression

qk+1

k+1∏

l=1

hl+1,l = χHk
(A)q1.

We obtained an explicit expression for the recurrence vectors qj .
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2.3.4 Mathematical Folklore

This section is concerned with a bunch of observations and rules of thumb on Hes-
senberg matrices. More precisely, we consider the shape of the eigenvectors and the
size of the eigenvector components.

What can be said about the absolute size of the entries of the eigenvectors? We
first consider zero entries, and then switch to small entries.

When a zero component occurs in a left eigenvector ŝH , we have seen that
the corresponding eigenvalue is also an eigenvalue of a smaller leading Hessenberg
matrix. At the same time a zero in a right eigenvector implies that the corresponding
eigenvalue is also an eigenvalue of the a smaller trailing Hessenberg matrix.

When switching to small components, we see that this remains true approxi-
mately. This has been considered in more detail in a previous section.

From now on we focus on the left eigenvectors. We have derived an explicit
recurrence for the components of left eigenvectors, which uses only the leading part
of the final Hessenberg matrix H and the exact final eigenvalue θ.

Suppose that H is well-conditioned, i.e., close to normal. Suppose that θ is
well-separated from the remaining part of the spectrum. Then the polynomials
which form the basis for the recurrence are well-conditioned and prune to small
perturbations in θ.

In the generic case well-separated eigenvalues are well approximated by some
eigenvalues of some submatrices. The preceeding considerations imply that the
eigenvector components will be small when hitting the border of such a matrix.

The polynomial recurrences imply that the eigenvector components in the generic
case will be distributed logarithmically. The convergence history is stored in the
final eigenvector.

When we switch to clustered eigenvalues, the picture changes. We propose a
dynamic interpretation. In the beginning none of the eigenvalues will be approx-
imated well. When the first eigenvalue approximates the cluster, the eigenvector
corresponding to the approximation θ will have small last components.

When the second eigenvalue becomes approximated, the polynomial will be very
sensitive to small perturbations. Both eigenvectors will look nearly identical. In the
beginning the size of the components will decrease until the polynomial becomes
sensitive. Then the size of the components will start to increase again. When two
approximations are close to the cluster, the polynomials become sensitive and so
forth.

Also in this case the convergence will be stored in the eigenvector components.
But in contrast to a simple eigenvalue, the point where the eigenvector has a max-
imum is the point where the leading submatrix will provide a good approximation
to the cluster.

The same holds true for the backward interpretation and right eigenvectors.

2.4 Tridiagonal Matrices

Matrices that are upper and lower Hessenberg are tridiagonal matrices. All results
obtained thus far apply to tridiagonal matrices.

The elements of tridiagonal matrices will be denoted by

Tk = tridiag(β, α, γ) =








α1 γ1

β1 α2
. . .

. . .
. . . γk−1
βk−1 αk







.
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The dimension of T will in general be given by m. We extend all notation developed
for Hessenberg matrices to tridiagonals. In contrast to Hessenberg matrices we term
a tridiagonal matrix unreduced when all elements along the sub- and super-diagonal
are non-zero.

The eigendecomposition of general tridiagonal T will be denoted by

TS = SJΘ ⇔ T = SJΘS
−1.

In case of normal T the eigenvector matrix is unitary. In case of diagonalisable T
the Jordan form is denoted by the diagonal matrix Θ.

Like before we define

Ŝ = S−H with ŜHT = JΘŜ
H and ŜHS = SH Ŝ = I

as special left eigenvector matrix.
We collect the knowledge on unreduced tridiagonals as corollary.

Corollary 2.23 Unreduced tridiagonals are upper and lower unreduced Hessenberg
matrices. This implies the following:

• Tridiagonals are non-derogatory. This implies that normal tridiagonal matri-
ces have simple eigenvalues.

• The last and first components of the unique eigenvectors are non-zero. When
a component of an eigenvector s is zero, the trailing (leading) principal subma-
trix has the trailing (leading) part of s as eigenvector to the same eigenvalue.

• Knowing the final eigenvalue the eigenvectors can be computed with the aid of
trailing and leading submatrices, i.e., we have forward and backward expres-
sions for the eigenvector components.

Proof. The results follow by application of Theorem 2.14, Theorem 2.20 and The-
orem 2.21, since unreduced tridiagonals are upper and lower unreduced Hessenberg
matrices. ¤

We considered the Gram-Schmidt process to construct a Hessenberg matrix H and
an orthonormal matrix Q. The so-called two-sided Gram-Schmidt process uses two
sequences of vectors to project the matrix simultaneously onto an upper and a lower
Hessenberg matrix, i.e., onto a tridiagonal matrix.

Two-sided Gram-Schmidt assumes the existence of a matrix Q such that

Q−1AQ = T ⇔ AQ = QT.

We define Q̂H ≡ Q−1. We consider the leading part of T , i.e., we assume that
T = Tm is unreduced. We choose q̂1 and q1 with 〈q̂1, q1〉 = 1. We consider the
iterations

qk+1βk = rk ≡ Aqk − αkqk − γk−1qk−1,
γk+1q̂

H
k+1 = r̂Hk ≡ q̂Hk A− q̂Hk αk − q̂Hk−1βk−1,

with γkβk ≡ 〈r̂k, rk〉.

This iteration may fail to produce unreduced T . When A and T are self-adjoint
this process collapses to a single recurrence and is always executable.

The residual of prolonged left and right eigenvectors has a nice structure when
we use trailing or leading principal submatrices. A low rank structure occurs also
when considering prolonged eigenvectors of principal submatrices in the middle.
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Let Ti:j , i ≤ j be a principal submatrix somewhere in the middle. Let the
eigendecomposition of Ti:j be given by

Ti:jSi:j = Si:jJi:j .

The residual when we apply the prolonged middle eigenvectors to Tm is given by





T1:i−1 γi−1ei−1e
T
1 0

βi−1e1e
T
i−1 Ti:j γjej−i+1e

T
1

0 βje1e
T
j−i+1 Tj+1:m









0
Si:j
0



 −





0
Si:j
0



 Ji:j

= γi−1ei−1e
T
1 Si:j + βjej−1e

T
j−i+1Si:j .

Essentially the same holds true for the prolonged left eigenvectors. We obtain in all
cases a low-rank residual. In other words:

Theorem 2.24 Let T = Tm ∈ Km×m be unreduced tridiagonal. Let the eigende-
composition of T and of a middle principal submatrix be defined as stated above.

The departure of the right partial eigensystem from the right exact one is given
by the low-rank matrix

Tm





0
Si:j
0



 −





0
Si:j
0



 Ji:j

= γi−1ei−1e
T
1 Si:j + βjej−i+1e

T
j Si:j .

The departure of the left partial eigensystem form the left exact one is given by the
low-rank matrix





0
Ŝi:j
0





H

Tm − Ji:j





0
Ŝi:j
0





H

= βi−1Ŝ
H
i:je1e

T
i−1 + γjŜ

H
i:jej−i+1e

T
j+1.

These results may be interpreted column-, row- and componentwise to give backward
bounds on single eigenvector approximations.

These results also give backward bounds on the eigensystem when the matrix is
prolonged to either direction.

They can be used to describe the setting in case of multiple eigenvalues. The
shape of the eigenvectors will reflect the number of eigenvalues close to each other.
Together with the polynomial evaluations of the eigenvectors in terms of submatrices
we observe that we can find a basis of eigenvectors that are non-zero only in a single
region.

In the consideration of the residual of prolonged eigenvectors of Hessenberg ma-
trices we obtained some useful eigenvector - eigenvalue relations. The complex
relations stated in Theorem 2.24 multiplied from the other side by the full eigenvec-
tor matrix again result in eigenvalue - eigenvector relations. We obtain the following
theorem.

Theorem 2.25 Let T = Tm ∈ Km×m be unreduced tridiagonal. Let Ti:j be any
principal submatrix with i ≤ j. Let the eigendecomposition be given as Ti:jSi:j =
Ji:jSi:j .

Then the following relations hold among the eigenvectors, the prolonged eigen-
vectors and the Jordan forms. First we state the relation in terms of the full left
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eigenvector matrix and the partial right eigenvector matrix:

J1:mŜ
H
1:m





0
Si:j
0



 − ŜH1:m





0
Si:j
0



 Ji:j

= γi−1Ŝ
H
1:mei−1e

T
1 Si:j + βjŜ

H
1:mej−i+1e

T
j Si:j .

The corresponding result involving the partial left eigenvector matrix and the full
right eigenvector matrix is similar:





0
Ŝi:j
0





H

S1:mJ1:m − Ji:j





0
Ŝi:j
0





H

S1:m

= βi−1Ŝ
H
i:je1e

T
i−1S1:m + γjŜ

H
i:jej−i+1e

T
j+1S1:m.

Again these relations may be interpreted colum-, row- and componentwise.

2.4.1 Mathematical Folklore

The size of eigenvector components and the shape of eigenvectors is also of interest
in case of tridiagonal matrices.

The residual bounds show that in case of small eigenvector components two
matrices, a trailing and a leading have eigenvalues close to the corresponding eigen-
value. The polynomial representation together with the stability considerations of
the polynomial evaluation ensures that there are eigenvectors of principal subma-
trices, that are candidates for eigenvectors with small residual.

Parlett was one of the researchers to find more rigid proofs. His work is restricted
to the case of symmetric tridiagonals. He proved that it is sufficient to compute
eigenvectors of some leading and trailing submatrices to obtain a nearly orthogonal
basis for the subspace, and furthermore to have a small residual when these vectors
are used as approximate eigenvectors.

He stated that it was better to use the bisectors as approximate eigenvectors.
This is natural, since their shape is better matching with the eigenvector represen-
tation in terms of characteristic polynomials of leading, trailing and middle subma-
trices.

2.5 Rectangular Matrices

We compute candidates for invariant subspaces column by column. The basis vec-
tors form rectangular matrices. In case of the methods using orthogonal bases the
resulting matrices will have orthonormal columns, or at least locally orthonormal
columns. Most methods result in basis vectors that have approximately unit length.

For reasons of completeness we state some basic results on relations between
singular values and singular vectors that can easily be obtained.

2.5.1 Singular Value – Singular Vector Relations

We are interested in rectangular matrices Q ∈ Kn×k. Let the SVD of Q be given as

Q = UΣWH , U ∈ U(n), Σ ∈ Kn×k, W ∈ U(k).

We denote the short SVD by

Q = U0Σ0W
H , U0 ∈ Kn×k, Σ0 ∈ Kk×k.
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The short SVD is obtained by discarding the null-space.
Using the equation

(
0 Q
QH 0

)(
U U0
W1 −W

)

=

(
U U0
W1 −W

)(
Σ1 0
0 −Σ

)

we could obtain relations between the eigenvalues, i.e., the singular values, and the
eigenvectors, i.e., the left and right singular vectors. Here we have additionally
defined the matrices

W1 = (W 0 ) ∈ Kk×n and Σ1 =

(
Σ 0
0 0

)

∈ Kn×n.

This is possible and involved. There is a better approach which gives the same
results.

Another way of embedding singular value decompositions into symmetric eigen-
value problems is given by

QHQ =WΣHUUHΣWH =WΣ2WH .

We set
A = QHQ, V =W.

Since A is selfadjoint, we observe that V̂ = W , and thus V̌ = W . The matrix of
eigenvalues is given by Λ = Σ2. Principal submatrices of A are given by

Aj = (Q1:j−1 Qj+1:k )
H
(Q1:j−1 Qj+1:k )

and correspond to erasing one column in Q. We denote the singular values of such
Q with jth column erased by σ′s.

Proceeding this manner we obtain that for a simple singular value σl the relation

|wjl|2 =
∏
σ2l − σ′2s

∏
σ2l − σ2s

,

and in case of a multiple singular value the relation

∑

t

|wjt|2 =
∏

σ′s 6=σl
σ2l − σ′2s

∏

σs 6=σl
σ2l − σ2s

hold true. We do not obtain relations on changes in the left singular vectors, but
they actually do not change. They change when we erase rows, and in this case we
can use the other representation, namely

A = QQH = U

(
Σ2 0
0 0

)

UH .

Here we have to be careful with the n− k zero eigenvalues.
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Chapter 3

Krylov Subspace Methods
in Infinite Precision

In this chapter we re-derive the commonly known Krylov subspace methods. We in-
troduce a general framework intended to fit the investigation of their finite precision
behaviour.

Having defined simple and block Krylov subspaces we study the properties of
different bases and representations. We introduce the fundamental notion of a
Krylov subspace decomposition, which will form the basis for our unified approach.
Then we turn attention to the actual methods.

We introduce Krylov methods divided according to their application. First we
dicuss the methods for the algebraic eigenproblem. Then we focus on methods used
in the solution process of sparse linear systems.

We restrict ourselves to the basic methods.

3.1 Krylov Subspaces

Krylov subspaces are named after Russian naval engineer Aleksei Nikolaevich Krylov
(*1863 – †1945). In 1931 Krylov published a paper (cf. [Kry31]) on a method to
compute the coefficients of the characteristic polynomial. In this paper Krylov
subspaces were used for the first time.

For more information on Aleksei Nikolaevich Krylov see (cf. [Bot, oMa]).

Definition 3.1 A Krylov subspace, short Krylov space, is a subspace of Kn spanned
by a sequence of Krylov vectors, short Krylov sequence

Ak−1q, A ∈ Kn×n, q ∈ Kn, k ∈ m,

We denote this (sub)space by

K ≡ K (A, q) ≡ Km ≡ Km (A, q) ≡ span
{
q,Aq,A2q, . . . , Am−1q

}
⊂ Kn.

The Krylov vectors can be computed iteratively,

Akq = A
(
Ak−1q

)
, k < m.

This leads to a sequence of nested subspaces

span {0} ≡ K0 ⊂ K1 ⊂ K2 ⊂ . . . ⊂ Km, AKk−1 ⊂ Kk ∀ k ∈ m.

The dimensions are bounded by

0 = dimK0 ≤ . . . ≤ dimKm−1 ≤ dimKm ≤ m. (3.1)

77
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Definition 3.2 We refer to the matrix

K ≡ K(A, q) ≡ Km ≡ Km(A, q) ≡
[
q,Aq,A2q, . . . , Am−1q

]
∈ Kn×m,

whose columns span the Krylov space as the Krylov matrix . The Krylov vectors
are the columns of the Krylov matrix.

Krylov matrices characterise the vectors in Krylov subspaces. Every vector x in a
Krylov subspace Kk can be written as a linear combination of columns of Kk, that
is

x ∈ Kk ⇔ x = Kkz, z ∈ Kk. (3.2)

The dimension of a Krylov subspace is given by the rank of the Krylov matrix,

dim(Kk) = rank(Kk).

Krylov subspaces are furthermore connected to polynomial spaces, we have

x ∈ Kk ⇔ x = pk−1(A)q, pk−1 ∈ Pk−1. (3.3)

The coefficients of the polynomial pk−1 defined in equation (3.3) are the components
of the vector z defined in equation (3.2),

pk−1(θ) = z1 + · · ·+ zkθ
k−1 =

k∑

j=1

zjθ
j−1. (3.4)

Lemma 3.3 Suppose dim(Kk) = k. Then equation (3.4) defines an isomorphism

πk : Kk → Pk−1

between the spaces Kk, the kth Krylov space, and Pk−1, the space of polynomials of
degree less k.

The condition dim(Kk) = k is valid for k = 0. The bound (3.1) reveals that there
must be a first index m ≥ 0 with

m = dim(Km) = dim(Km+1).

Then we have equivalence

Amq ∈ Km ⇔ Km = Km+l ∀ l ∈ N
⇔ AKm = Km.

Thus Km is an invariant subspace of A. Furthermore we formulate the characteri-
sations using the Krylov matrix, (3.2), and the polynomial space, (3.3),

Amq ∈ Km ⇔ Amq = Kmz

⇔ Km+1

(
−z
1

)

= 0

⇔ pm (A) q = 0, pm ∈ Pm
m .

We summarise the results obtained:

Theorem 3.4 Suppose m = dim(Km). The following conditions are equivalent:

dim(Km) = dim(Km+1) ⇔ AKm = Km
⇔ pm (A) q = 0, pm ∈ Pm

m . (3.5)

The index m is the dimension of the smallest invariant subspace of A that contains
the starting vector q.
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There is a unique index m with these properties. We will refer to m as the maximal
reachable dimension.

Krylov spaces are subspaces of Kn, thus m ≤ n. Equation (3.5) shows that the
index m can be estimated by finding monic polynomials of small degree with

p(A)q = 0 ⇐ p(A) = 0.

Well-known polynomials with the latter property are the characteristic polynomial
χA of A (by Cayley-Hamilton) and the minimal polynomial µA of A.

The stronger condition involving the vector q is precisely the definition of µA,q,
the minimal polynomial of A with respect to the vector q.

This gives us

Theorem 3.5 Every Krylov sequence ceases to expand the Krylov subspace after a
finite number of steps. More exact, as long as

k ≤ m = deg µA,q ≤ deg µA ≤ degχA = n,

we have that
k = dim(Kk) = rank(Kk).

The Krylov spaces defined thus far will be called simple Krylov subspaces.
We will also consider block Krylov subspaces. Block Krylov subspaces are ob-

tained in analogue to simple Krylov spaces, the only change being that q is a block
vector.

Definition 3.6 A block Krylov subspace is a subspace of Kn spanned by a sequence
of block Krylov vectors

Ak−1q, A ∈ Kn×n, q ∈ Kn×b, k ∈ m.

The number b denotes the block size.

The block size usually remains fixed. Varying block sizes occur when deflation is
used, i.e., when Ak−1q becomes rank deficient.

The idea behind block methods is to capture multiple eigenvalues and clusters of
eigenvalues, since it is well-known that in this case the matrix of moments is better
conditioned than a single eigenvalue.

Many of the results obtained for simple Krylov subspaces can be extended to
results on block Krylov subspaces. Special care has to be taken for the dimensions
of matrices involved.

When speaking of a Krylov space we distinguish between simple and block
Krylov spaces only when necessary.

Having defined the spaces, we have to choose a representation, i.e., we have to
choose a basis for Km.

3.2 Krylov Subspace Bases

In the following m = deg µA,q denotes maximal reachable dimension. The sizes of
matrices given occur when considering simple Krylov spaces.

A natural basis for the Krylov space is given by the Krylov vectors, i.e., by the
columns of the Krylov matrix.

In the sequel we will use somewhat sloppy the formulation ‘the basis X’ as
abbreviation of the more precise formulation ‘the basis formed by the columns of
X’.
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Definition 3.7 We will refer to the basis Km as the natural Krylov basis. We call
any basis Q(m) of the Krylov space Km a (general) Krylov basis.

As we will see in the context of the power method, the first choice leads to a badly
conditioned basis. There exist various other bases, each has its own advantages.

The relation between a general and the natural basis can be expressed as matrix
equation

Q(m)B(m) = Km, B(m) ∈ Km×m.

The transformation matrix B(m) is a non-singular matrix and Q(m) and Km have
both full (column) rank.

We additionally require any basis

• to be computed during execution of the (block) algorithm and

• to be such that the already computed basis (block) vectors remain unaltered.

The vectors spanning the general Krylov basis, i.e., the columns of Qm ≡ Q(m), are
denoted by qk, k ∈ m. We define the submatrices

Qk ≡ [q1, . . . , qk] ∀ k ∈ m.

We are not free in choosing Qm. We have to ensure

Kk = span(Qk) ∀ k ∈ m. (3.6)

Suppose the relations between the bases Kk and Qk, k ∈ m are given by

QkB
(k) = Kk, B(k) ∈ Kk×k.

Equation (3.6) imposes restrictions on the structure of the basis transformations.
Consider two subsequent basis transformations B(k), B(k+1). We know that

Qk+1B
(k+1) = Kk+1 =

[
Kk, A

kq
]
=
[

QkB
(k), Akq

]

. (3.7)

Next partition Qk+1 and B(k+1),

Qk+1B
(k+1) = [Qk, qk+1]

(

B
(k+1)
k ck+1
rTk+1 sk+1

)

. (3.8)

Ignoring the last column in equation (3.7)

QkB
(k+1)
k + qk+1r

T
k+1 = QkB

(k),

⇔ Qk

(

B(k) −B(k+1)k

)

= qk+1r
T
k+1. (3.9)

We partition the pseudo-inverse of Qk+1 as follows,

Q†k+1Qk+1 =

(
Q̂H
k

q̂Hk+1

)

[Qk, qk+1] = Ik+1. (3.10)

Applying Q̂H
k to equation (3.9) leads to

Ik

(

B(k) −B(k+1)k

)

= 0, (3.11)

and as consequence
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Lemma 3.8 The basis transformations B(k), k ∈ m

QkB
(k) = Kk, such that Kk = span(Qk),

are leading principal submatrices of the basis transformation Bm ≡ B(m), i.e., with
the notation of equation (3.8),

Bk ≡ B(k+1)k = B(k) ∀ k < m.

The basis transformations are upper (block) triangular matrices, i.e.

Rk ≡ Bk ∀ k ∈ m.

Proof. The first part is just equation (3.11) re-written. The second part follows
noting that the left-hand side of equation (3.9) vanishes, and thus

0 = qk+1r
T
k+1.

Keep in mind that qk+1 6= 0 and thus rk+1 = 0. ¤

From now on we will focus on iteratively computable bases, i.e., bases Qm satisfying

QmRm = Km,

with Rm non-singular upper (block) triangular.

Definition 3.9 A Krylov basis Qm fulfilling the relation

QmRm = Km

with Rm non-singular upper (block) triangular will be called a (block) Hessenberg
basis of Km.

The triangular structure is natural, since the kth basis vector qk can only be a
combination of vectors available at step k. The proof, especially equation (3.10),
helps to answer the following question:

How to choose triangular basis transformations when we do not want to compute
the natural Krylov basis explicitly?

Remark 3.10 Sufficient conditions to ensure triangular basis transformations are
a) An orthogonal (orthonormal) basis Qm, i.e., Qm such that

QH
mQm = Dm (QH

mQm = Im)

holds true.
b) A biorthogonal (biorthonormal) basis Qm, i.e., Qm such that with a second

matrix Q̂m

Q̂H
mQm = Dm (Q̂H

mQm = Im)

holds true.
c) A basis Qm, such that with a second matrix Q̂m

Q̂H
mQm = Lm

holds true where Lm is lower triangular.

Biorthogonality is sometimes called duality for reasons of brevity.
The most common used and from a numerical viewpoint favourable bases are

orthonormal bases.
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Definition 3.11 An orthonormal (block) Hessenberg basis Qm,

QmRm = Km, QH
mQm = Im

is referred to as (block) Arnoldi basis of Km.

The orthonormal Arnoldi basis Qm can (in principle) be computed by means of
(block) QR decomposition of Km. This is of interest only for theoretical purposes.

The simple Arnoldi basis is unique up to sign. A block Arnoldi basis is unique
up to the choice of an orthonormal basis for each block vector. These are direct
consequences of the underlying QR decompositions.

The orthonormality condition

QH
mQm = Im

reveals that the upper (block) triangular matrix Rm

KH
mKm = RH

mQ
H
mQmRm = RH

mRm

is the (block) Cholesky factor of the (block) Cholesky decomposition of KH
mKm.

This relates existence and uniqueness as well as stability of the (block) Arnoldi basis
to the existence, uniqueness and stability of a (block) Cholesky decomposition. An
Arnoldi basis always exists.

The orthogonality condition

QH
mQm = Dm

in similar fashion is related to the LDLT decomposition

KH
mKm = RH

mQ
H
mQmRm = RH

mDmRm.

We remark that in case of selfadjoint A the matrix KH
mKm is a Hankel matrix.

Definition 3.12 A generalised orthonormal (block) Hessenberg basis Qm,

QmRm = Km, QH
mZQm = Im

is referred to as generalised Arnoldi basis of Km.

This generalised orthonormality will be of interest in the solution process of linear
systems. Frequent choices for Z include Z = AHA, and if A HPD, Z = A.

Construction of a generalised Arnoldi basis is related to the Cholesky decompo-
sition

KH
mZKm = RH

mQ
H
mZQmRm = RH

mRm.

When we use two (block) Hessenberg bases Qm, Q̂m,

QmRm = Km Q̂mR̂m = K̂m ≡ Km(Â, q̂)

of two Krylov spaces Km, K̂m,

Km = span(Km) and K̂m = span(K̂m),

with additional constraint that the two bases Qm, Q̂m are biorthonormal,

Q̂H
mQm = Im

we see that the (block) triangular matrices Rm, R̂m are just factors of a (block) LR
decomposition of the matrix

K̂H
mKm = R̂H

mQ̂
H
mQmRm = R̂H

mRm.
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This relates existence, uniqueness and stability of two bi-orthonormal (block) Hes-
senberg bases to the existence, uniqueness and stability of a (block) LR decompo-
sition.

Merely bi-orthogonal bases Qm, Q̂m,

Q̂H
mQm = Dm

lead to the LDMT decomposition

K̂H
mKm = R̂H

mQ̂
H
mQmRm = R̂H

mDmRm.

We remark that when Km = Km(A, q), and K̂m = Km(AH , q̂), the matrix K̂H
mKm

again is a Hankel matrix.
Bi-orthogonal Hessenberg bases are important for the non-symmetric Lanczos

algorithms.

Definition 3.13 Bi-orthogonal (block) Hessenberg bases Qm, Q̂m,

QmRm = Km Q̂mR̂m = K̂m, Q̂H
mQm = Im

of two Krylov spaces Km and K̂m will be referred to as (block) Lanczos bases.

We see that bi-orthogonal Lanczos bases need not exist (because of occurrence of
zero pivots in the decomposition, a so-called serious breakdown).

Remark 3.14 The connection of Arnoldi and Lanczos bases to matrix decompo-
sitions gives insight in the methods of Arnoldi and Lanczos to be defined later
on.

3.3 Krylov Subspace Decompositions

The sizes of matrices given in the following occur when considering simple Krylov
spaces.

We know that A maps the kth Krylov subspace Kk onto the (k + 1)st Krylov
subspace Kk+1,

AKk ⊂ Kk+1. (3.12)

To be more precise,

[q,AKk] = Kk+1.

Inserting any two Krylov bases (not necessarily q
(k+1)
1 = q) gives

Q(k+1)B(k+1) =
[

q,AQ(k)B(k)
]

=
[

q,AQ(k)
](

I 0
0 B(k)

)

,

where the dimension of the identity matrix is given by the block size of the starting
vector. Since B(k) is a basis transformation and thus non-singular we obtain the
marvellous relation

[

q,AQ(k)
]

= Q(k+1)B(k+1)
(
I 0
0
(
B(k)

)−1

)

. (3.13)

This proves that we have computed a decomposition of the matrix
[
q,AQ(k)

]
.
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Furthermore we have expressed the equation as one step of a recurrence in the
new basis vectors. The matrix representation of the subspace inclusion (3.12) in
the chosen bases is given by

AQ(k) = Q(k+1)C(k), C(k) ∈ Kk+1×k.

Expressed in equivalent rank-one update formulation,

AQ(k) = Q
(k+1)
k C(k) + q

(k+1)
k+1

(

c(k)
)T

, C(k) ∈ Kk×k,
(

c(k)
)T

∈ K1×k.

The matrices C(k), C(k) and the (block) vector c(k) are defined by the relations

(
c
s

C(k)
)

=

(
c C(k)

s
(
c(k)
)T

)

= B(k+1)
(
I 0
0
(
B(k)

)−1

)

. (3.14)

Definition 3.15 Following Stewart ([Ste01]), we will call the subspace equation

AQ(k) = Q(k+1)C(k)

a Krylov subspace decomposition, short a Krylov decomposition.

The connection given by equation (3.14) between basis transformations and Krylov
decompositions relates the existence, uniqueness and stability of the Krylov decom-
positions to the existence, uniqueness and stability of the basis transformations.

Remark 3.16 Two Krylov bases uniquely define a Krylov decomposition.

Use again the partitioning

(

Q(k+1)
)†

Q(k+1) =





(

Q̂(k)
)H

(
q̂(k+1)

)H





[

Q
(k+1)
k , q

(k+1)
k+1

]

= Ik+1

of the pseudo-inverse of Q(k+1).
The matrices C(k) and C(k) can be expressed in terms of basis vectors and the

system matrix A,

C(k) =





(

Q̂(k)
)H

(
q̂(k+1)

)H



AQ(k),

C(k) =
(

Q̂(k)
)H

AQ
(k)
k .

Matters simplify when we are restricting ourselves to Hessenberg bases.

Lemma 3.17 Choosing a (block) Hessenberg basis (with fixed block size)

QmRm = Km

leads to a Krylov decomposition

AQm = QmCm,

AQk = Qk+1Ck = QkCk + qk+1ck+1,ke
T
k ∀ k < m, (3.15)

where Ck ≡ C(k) and Ck ≡ C(k) are (block) Hessenberg matrices. Furthermore they
are leading (principal) submatrices of Cm.
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Proof. Define

Xk = Rk+1

(
I 0
0 (Rk)

−1

)

∀ k < m.

The basis transformations Rk of a Hessenberg basis are upper triangular matrices.
Thus Xk is upper triangular. The matrices Ck (Ck) are defined as Xk with first
column (and last row) missing. This shows they are (block) Hessenberg.

For the second part it suffices to show that Xk is a principal submatrix of Xk+1.
This is true, because for triangular matrices a) inversion as well as b) building prod-
ucts commutes with forming principal submatrices. ¤

Definition 3.18 The Krylov decomposition (3.15) using a Hessenberg basis will
be called a Hessenberg decomposition.

Equation (3.13) reveals that a Hessenberg decomposition is related to the (block)
GR decomposition of a slightly extended matrix,

[q,AQk] = Qk+1Rk+1

(
I 0
0 (Rk)

−1

)

. (3.16)

The characteristic polynomials of the matrices Ck are of special interest in a
general Hessenberg decomposition. They give the explicit relation between the
starting vector q and the basis vectors:

Theorem 3.19 The sequence of basis vectors qk of a simple Hessenberg decompo-
sition

AQm = QmCm,

AQk = Qk+1Ck = QkCk + ck+1,kqk+1e
T
k ∀ k < m, (3.17)

can be expressed in terms of A, q and the characteristic polynomials of Ck,

qk+1

k∏

j=1

cj+1,j = χCk (A) q.

Proof. We use induction. Trivially

q2c21 = (A− c11I) q1 = χC1
(A) q.

Assume

ql

l−1∏

j=1

cj+1,j = χCl−1
(A) q ∀ l ∈ k.

Forming (3.17) ek gives

Aqk −
k∑

l=1

qlclk = qk+1ck+1,k.

Using induction hypothesis, multiplying by

k−1∏

j=1

cj+1,j =

l−1∏

j=1

cj+1,j

k−1∏

j=l

cj+1,j
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we have to show that

(A− ckkI)χCk−1
(A)−

k−1∑

l=1

χCl−1
(A) clk

k−1∏

j=l

cj+1,j
!
= χCk(A).

But this is just the expression for the block-wise determinant of

Ik ⊗A− CT
k ⊗ In =








A− c11I −c21I
−c12I A− c22I

. . .
...

. . . −ck,k−1I
−c1kI −c2kI · · · A− ckkI








evaluated using Laplace expansion by last row. This block-wise determinant is well-
defined since A commutes with all polynomials in A. ¤

The question how to find a Hessenberg basis and thus a Hessenberg decomposi-
tion was already discussed in Remark 3.10. We will consider the first two variants.

Using the orthogonal Arnoldi basis

QmRm = Km, QH
mQm = Im

of the Krylov space we have

Ck = QH
k+1AQk, Ck = QH

k AQk ∀ k < m,

i.e., the matrices Ck are principal submatrices of a matrix that is unitarian similar
to A.

Definition 3.20 The Krylov decomposition using the orthogonal Arnoldi basis will
be called the Arnoldi decomposition.

Since the Arnoldi basis is a Hessenberg basis, we know that Ck is a Hessenberg
matrix. This matrix is unique up to sign (see also Theorem 2.13), because the GR
decomposition (3.16) becomes a QR decomposition,

[q,AQk] = Qk+1Rk+1

(
I 0
0 (Rk)

−1

)

.

The QR decomposition is unique up to sign.
The bases Qm using merely Z-orthogonality,

QmRm = Km, QH
mZQm = Im

lead to Krylov decompositions that look similar to a Arnoldi decomposition.

Definition 3.21 A Krylov decomposition using a Z-orthogonal basis will be called
a generalised Arnoldi decomposition.

This decomposition is unique provided Z is HPD.
Using two bi-orthogonal Lanczos bases Qm, Q̂m,

QkRk = Kk, Q̂kR̂k = K̂k,

of two Krylov spaces

Kk = span(Kk), K̂k = span(K̂k),
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we have
Ck = Q̂H

k+1AQk, Ck = Q̂H
k AQk.

The matrices Ck are again principal submatrices of a matrix, but the similarity no
longer is a unitary one.

Furthermore, when we span the second Krylov space by AH , i.e.

K̂k = Kk(AH , q̂) = span(K̂k),

both Ck and CH
k = QH

k A
HQ̂k are (block) Hessenberg, i.e., Ck is (block) tridiagonal.

Definition 3.22 The Krylov decomposition(s) using two bi-orthogonal or dual
Lanczos bases will (both) be called Lanczos decomposition.

The Arnoldi, Hessenberg and Lanczos decompositions are often introduced in terms
of spaces and projectors.

The Arnoldi decomposition is based on orthogonal projection. The orthogonal
projector onto Kk will be denoted by Qk, i.e.

Qkx ∈ Kk
x−Qkx ⊥ Kk.

The orthogonal projector Qk of the Arnoldi decomposition is given by QkQ
H
k .

General Hessenberg decompositions are based on oblique projections. The oblique
projector onto Kk orthogonal to Lk will be denoted by Pk, i.e.

Pkx ∈ Kk
x− Pkx ⊥ Lk.

For all Hessenberg decompositions it is possible to find a sequence of spaces Lk.
One could choose for example the spaces Lk spanned by the first k rows of the
pseudo-inverse of Qk+1 (Qm).

In case of a generalised Arnoldi decomposition the space Lk is given by ZHKk.
The corresponding oblique projector is given by QkQ

H
k Z.

In case of a Lanczos decomposition the space Lk is itself a Krylov space. The
oblique projector Pk of a Lanczos decomposition is given by QkQ̂

H
k .

Remark 3.23 Our notation of orthogonal and oblique projectors is in diametrical
opposition to the notation used in the book of Saad ([Saa92]).

Orthogonal projection chooses the minimal element, i.e.

‖x−Qkx‖ = min
y∈Kk

‖x− y‖.

Krylov subspace methods are based on Hessenberg decompositions. Hessen-
berg decompositions can be implemented using the abstract algorithm presented in
Algorithm 3.1.

The computed Hessenberg decomposition is used to derive information on the
eigendecomposition or to compute approximate solutions to linear systems.

Practical Krylov methods often differ from the abstract algorithm in mixing up
the computation of the moments with purging the residual vector or only implicitly
performing the Hessenberg decomposition.

Krylov linear system solvers frequently require the solution of small Hessenberg
systems involving the computed Ck. A natural approach is to find a recurrence that
directly computes a decomposition of Ck instead of Ck.
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input : A, r0
output: Ck, Qk for all k ∈ N

for k ∈ N do
Normalise rk−1:
qk ← rk−1/ck,k−1

Expand the Hessenberg basis:
Qk ← [Qk−1, qk]

Expand the Krylov subspace:
rk ← Aqk

for j ∈ k do
Compute cjk

end for
Purge rk:
rk ← rk −

∑

j qjcjk

end for

Algorithm 3.1: Generic Hessenberg decomposition

3.4 Krylov Subspace Methods

Definition 3.24 AKrylov subspace method , orKrylov method for short, is a method
that returns a sequence of approximations from a sequence of Krylov subspaces
Kk, k ∈ m.

This definition is slightly more general than the commonly used one. Our defini-
tion includes the power method and the subspace iteration in the class of Krylov
methods.

We can represent the approximations in any basis. Assume we have chosen to
use the Hessenberg basis Qm,

AQm = QmCm,

AQk = Qk+1Ck = QkCk + qk+1ck+1,ke
T
k ∀ k < m.

The different Krylov methods result from different moments cjk.

For the moment lets assume we denote the sequence of approximations by y(k),
k ∈ m. The approximation y(k) from the kth Krylov space Kk can be represented
in the Hessenberg basis Qm as

y(k) = Qks
(k) ∀ k ∈ m.

Next we multiply the Hessenberg decomposition by s(k). This leads to

Ay(k) = AQks
(k) = Qk+1Cks

(k) = QkCks
(k) + qk+1ck+1,ke

T
k s
(k).

This equation relates the action of A on y(k) to the action of Ck (Ck) on s
(k).

For s(k) to be computable we need to impose additional restrictions. This is
done by projection. Krylov subspace methods are composed of two components,
i.e.

Krylov method = Krylov decomposition + projection

First we consider Krylov methods for the algebraic eigenvalue problem.
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3.5 Krylov Methods for the Eigenproblem

The latest (block) vector in the Krylov basis tends to approximate the dominant
eigenvector (invariant subspace). This feature is used to compute the dominant
eigenspace. This is done in the power method and its block variant, the subspace
iteration.

Part of the sequence of nested subspaces tends to approximate invariant sub-
spaces of A. Efficient methods for extracting this information are the methods of
Lanczos and Arnoldi. These methods are (bi)orthogonal projection methods.

The key idea in such projection methods is to solve a small eigenproblem ob-
tained by the projection

(A, I)→ (AQk, Qk)→ (Q̂H
k AQk, Q̂

H
k Qk) = (Q̂H

k Qk+1Ck, Q̂
H
k Qk)

of the pencil (A, I). The first step of this projection is the result of restricting the
space to Kk in the chosen Hessenberg basis.

The matrix Q̂k of the second projection step is introduced to balance the number
of unknowns and equations.

Sometimes a singular projection is used, this holds true especially in methods
that use only the last vectors generated. In this case only the eigenvectors corre-
sponding to non-zero eigenvalues of the projected eigenproblem are used.

We present an abstract formulation of a Krylov subspace method for the solution
of the eigenproblem. We assume the Krylov space to be spanned by A and the
(unnormalised) starting vector r0. The resulting algorithm is Algorithm 3.2.

input : A, r0

output: Ck, Qk, Sk, J
(k)
Θ for all k ∈ N

for k ∈ N do
Compute Hessenberg decomposition:
AQk = QkCk + qk+1ck+1,ke

T
k

Compute projection of pencil:
Q̂H
k (A, I)Qk = (Q̂H

k Qk+1Ck, Q̂
H
k Qk)

Compute eigendecomposition:

Q̂H
k Qk+1CkSk = Q̂H

k QkSkJ
(k)
Θ

Compute approximate eigenvectors:
Yk ← QkSk

end for

Algorithm 3.2: Generic Krylov eigensolver

Since in general the simple eigenproblem is easier to solve, we intend to use an
orthonormal or bi-orthonormal projection matrix Q̂k. This leads to the simpler
algorithm in Algorithm 3.3.
In most Hessenberg decompositions defined thus far we explicitly know how to
choose Q̂k. In the Arnoldi decomposition we use Q̂k = Qk, in a generalised Arnoldi
decomposition we use Q̂k = ZHQk, and in case of a Lanczos decomposition the
bases Q̂k, Qk are bi-orthonormal by construction.

In any of these cases the projected pencil

(Q̂H
k AQk, Q̂

H
k Qk) = (Q̂H

k Qk+1Ck, Q̂
H
k Qk) = (Ck, I)

has a very simple structure. We have to solve a simple eigenproblem involving the
matrix Ck of the Hessenberg decomposition.
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input : A, r0

output: Ck, Qk, Sk, J
(k)
Θ for all k ∈ N

for k ∈ N do
Compute Hessenberg decomposition:
AQk = QkCk + qk+1ck+1,ke

T
k

Compute eigendecomposition:

CkSk = SkJ
(k)
Θ

Compute approximate eigenvectors:
Yk ← QkSk

end for

Algorithm 3.3: Bi-orthonormal Krylov eigensolver

In case of an orthogonal projection Ck is the result of a Ritz-Galerkin method.
For this reason we define

Definition 3.25 The eigenvalues of Ck resulting from (bi)orthogonal projection
are named Ritz values and the prolonged eigenvectors are named Ritz vectors. The
characteristic polynomials

χCk(θ) ≡ det (θIk − Ck)

of the Hessenberg matrices Ck are labelled Ritz polynomials.

The Ritz polynomials are sometimes also called Lanczos, Hankel or Hadamard poly-
nomials.

Krylov subspace methods are polynomial methods. The polynomials chosen to
built a new basis vector are just the characteristic polynomials of the Hessenberg
matrices Ck. This obviously follows from the recurrence relation of the basis vectors.

3.5.1 The Power Method

The power method is one of the oldest methods known for computing eigenvalue
estimates. It uses the natural Krylov basis with additional scaling to avoid underflow
and overflow. We denote the scaled Krylov vectors by qk, and the decomposition
by

AQk = Qk+1Nk = QkNk + νkqk+1e
T
k ∀ k ∈ N. (3.18)

The matrix Nk takes care of the normalising factors νj and is given by

Nk =










0 0
ν1 0

ν2
. . .
. . . 0

0 νk−1 0










.

For regular A and non-zero q this recurrence can be carried out for all k ∈ N.

We use a singular projection to obtain a smaller eigenproblem. We project the
Hessenberg decomposition with the singular matrix

Q̂H
k =

[

0, . . . , 0, qk

]H

∈ Kk×n.
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This leads to the small (singular) pencil
(

Q̂H
k AQk, Q̂

H
k Qk

)

=
(

Q̂H
k Qk+1Nk, Q̂

H
k Qk

)

=

((
0 0

qHk QkNk−1 νkq
H
k qk+1

)

,

(
0 0

qHk Qk−1 qHk qk

))

The only non-trivial solution is the last unit vector sk = ek. This leads to the
approximate eigenvector

yk = Qksk = Qkek = qk.

The approximate eigenvalue is given by

θk =
νkq

H
k qk+1
qHk qk

=
qHk Aqk
qHk qk

,

which is just the Rayleigh quotient of yk = qk.
A variant of the power method is given with Algorithm 3.4. In this variant the

recurrence vectors are normalised to have unit length. Another frequent choice is
normalisation by largest entry.

input : A, r0
output: Nk, Qk for all k ∈ N

for k ∈ N do
νk−1 ← ‖rk−1‖
qk ← rk−1/νk−1
rk ← Aqk
θk ← 〈qk, rk〉

end for

Algorithm 3.4: Power method

We assume A not to be nilpotent and the starting vector not to be contained in
the null-space of A. Once invoked, the power method will continue forever.

Given A and qk, the Rayleigh quotient θk of qk minimises the residual

Aqk − qkθk
with respect to Euclidian norm. Simultaneously the residual is orthogonal to the
approximate eigenvector qk. This is obvious by derivation, but is also an intrinsic
property of the Rayleigh quotient.

We now focus on the rate of convergence to an eigenvector. Defining q = q1
to be the normalised r0, the recurrence of the basis vectors can be stated more
condensed as

qk+1

k∏

j=1

νj = Akq (3.19)

The power method is a monomial method.
There are two ways to analyse the behaviour of the vectors qk. The first way is

to insert the Jordan normal form of A,

A = V JΛV
−1 = V JΛV̂

H ,

into equation (3.19). This results in

qk+1

k∏

j=1

νj = V (JΛ)
k
V −1q = V (JΛ)

k
V̂ Hq.
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Remark 3.26 We can choose the Jordan decomposition such that we have at most
one Jordan block with non-zero part V̂ Hq for every eigenvalue.

We first analyse the behaviour for a single Jordan block Jλ ≡ JΛ. We assume
w.l.o.g. that k > l, where l is the size of the Jordan block. Define

Z(k) ≡ (Jλ)
k
.

The matrix Z(k) is upper triangular.
Suppose s ≥ i. The components of the upper triangular part of Z (k) are given

by

z
(k)
j,j+i =

(
k

i

)

λk−i

=

(
k

s

)

λk−s
s(s− 1) · · · · · (i+ 1)λs−i

(k − i)(k − i− 1) · · · · · (k − s+ 1)

=

(
k

s

)

λk−sO(ki−s).

Choose s to be the largest index such that the corresponding part of V̂ Hq is non-
zero. This part behaves asymptotically like

((
k

s

)

λk−s
)

(O(1) O(k−1) · · · O(k−l) )
T
.

Apart from normalisation, this vector converges to the first unit vector e1. The
part corresponding to the subspace associated with the eigenvalue λ converges to
the unique eigenvector.

Next consider two Jordan blocks of two eigenvalues different in absolute value,
w.l.o.g. labelled |λ1| > |λ2|,

((
k

s1

)

λk−s11

)((
k

s2

)

λk−s22

)−1

= O(ks1−s2)

(
λ1
λ2

)k−s1 ( 1

λ2

)s1−s2

= O

(

ks1−s2
(
λ1
λ2

)k
)

.

The part corresponding to the eigenvalue smaller in absolute value vanishes.
The vectors generated converge to a mixture of eigenvectors corresponding to

maximal |λ|. If only one eigenvalue of maximal modulus exists, the method con-
verges to the corresponding eigenvector.

When there are several distinct eigenvalues of maximal modulus,

|λ1| = |λ2| = . . . = |λl|,

we often observe periodicity and quasi-periodicity in the computed vectors (cf.
[KGL97]).

Another way is to insert the Schur decomposition,

qk+1

k∏

j=1

νj = U (Λ +N)
k
UHq = U

(
k∑

l=0

(
k

l

)

ΛlNk−l

)

UHq.

The matrix N is a nilpotent matrix which is zero in case of a normal matrix. Again
we observe convergence to the eigenvector(s) of maximal modulus.

Remark 3.27 We see that non-normality (i.e., huge N k−l compared to Λl) causes
late convergence of the method and huge intermediate quantities.
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If the eigenvalue largest in absolute value is simple, and there is a substantial gap
between the first two eigenvalues, we observe fast convergence. When all eigenvalues
are simple and well separated in absolute value we can use deflation to compute one
eigenvalue after the other.

The power method can be applied to shifted and inverted A. In this case the
power method is called inverse iteration. The shifts may vary from step to step
since the eigenvectors remain unaltered by shifts. This idea is due to Wielandt and
was analysed mainly by Wilkinson. Some history of Wielandt’s and Wilkinson’s
work on the power method and inverse iteration may be found in three articles by
Ipsen (cf. [Ips96a], [Ips96b], [Ips97]).

The power method delivers estimates to one eigenvalue. Yet the decomposition
does contain more information on A. Assume the Hessenberg decomposition (3.18)
is available. Assume further that k ≤ m, such that Qk has full rank. Multiply
(3.18) from the left by Q†k to obtain

Q†kAQk = Nk + νkQ
†
kqk+1e

T
k .

For simplicity assume further that we do not use any normalisation, i.e. Qk = Kk.
This leads to a unit lower diagonal in Nk and thus K†kAKk is a companion matrix.

Remark 3.28 The coefficients of the characteristic polynomial of K†
kAKk are re-

lated to the Krylov basis via

χK†
k
AKk

(θ) = θk − a(k)1 θk−1 − a(k)2 θk−2 − · · · − a(k)k ∈ P k
k ,

where a(k) = K†kA
kq, i.e., the coefficients minimise ‖Kka

(k) −Akq‖.

As we will see, the roots of these polynomials approximate eigenvalues of A. The
pseudo-inverse becomes economic when using an orthonormal basis. The method
we sketched here is the Arnoldi method. A related derivation of the Arnoldi method
is given in the books of Demmel ([Dem97]) and Meurant (cf. [Meu99]). The latter
grants it to C. Vuik.

3.5.2 Subspace Iteration

The power method works best for matrices with a large gap between largest and
second largest eigenvalue. If this gap is small, a better alternative might be the
block power method, better known as subspace iteration, also known as simultaneous
iteration.

Subspace iteration performs block Hessenberg decomposition

AQk = Qk+1Nk = QkNk + qk+1νke
T
k ∀ k ∈ N.

The Hessenberg decomposition computed in subspace iteration is similar to the
Hessenberg decomposition computed in the power method, but now Nk is a block
matrix, the normaliser νk is a small matrix and the vectors qk are block vectors.

To maintain linear independence a factorisation of the block vectors is used.
The first code developed in 1957 by Bauer is known as ‘Treppeniteration’ (stair-
case iteration) and was based on the LR decomposition. When a complete set of
vectors spanning Kn is used, this code was superseded 1958 by the LR iteration
by Rutishauser. The next step was to use orthogonal transformations, i.e., the QR
decomposition, which resulted 1961 in Francis’ and Kublanovskaya’s QR iteration.
Both the LR and QR iterations work on a full set of vectors and are considered to
be direct methods.
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The subspace iteration code used today, for example SRRIT (cf. [BS97]), per-
forms a QR decomposition of the block vectors Aiterqk,

qk+1νk = Aiterqk.

Additionally a Schur decomposition is applied from time to time, such that the
columns of qk tend to approximate Schur vectors. Without this Schur step the
block vector qk will tend to approximate a random basis of the invariant subspace
of maximal modulus.

When the decomposition step is left out to often, i.e., when iter is to large, the
block vector qk may become badly conditioned regarded as basis.

3.5.3 The Arnoldi Method

The Arnoldi method is simply the computation of the Arnoldi decomposition

AQm = QmHm,

AQk = Qk+1Hk = QkHk + hk+1,kqk+1e
T
k ∀ k < m, (3.20)

of the Krylov space Km. In the following Hk will always denote the Hessenberg
matrix obtained in the Arnoldi decomposition.

One algorithmic implementation of the Arnoldi method, to be precise, the vari-
ant where modified Gram-Schmidt is used to orthogonalise the basis vectors, i.e.,
MGS-Arnoldi, is given by Algorithm 3.5.

input : A, r0
output: Hk, Qk for all k ∈ N

for k ∈ N do
hk,k−1 ← ‖rk−1‖
qk ← rk−1/hk,k−1
rk ← Aqk
for j ∈ k do

hjk ← 〈qj , rk〉
rk ← rk − qjhjk

end for
end for

Algorithm 3.5: Arnoldi method (MGS variant)

This algorithm is an example of mixing up the steps of computing the moments
with the purification of the residual vector. This change corresponds to choos-
ing MGS (Modified Gram-Schmidt) instead of CGS (Classical Gram-Schmidt) as
orthogonalisation technique.

As first observation concerning the domain of useful indices we state:

Theorem 3.29 (breakdown of the Arnoldi method) The Arnoldi method is
applicable as long as

dim (Kk) = k ≤ m = deg µA,q ≤ deg µA ≤ n.

The subspace spanned by Qm is an invariant subspace of A, and all eigenvalues of
Hm are eigenvalues of A.

Proof. The first part is trivial. Let the Jordan decompositions of Hk, k ∈ m be
given as

HkS
(k) = S(k)J

(k)
Θ ∀ k ∈ m.
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Define the matrices of generalised Ritz vectors

Y (k) = QmS
(k) ∀ k ∈ m.

The algorithm breaks down in step m with hm+1,m = 0. In this case

AQm = QmHm ⇒ AY (m) = Y (m)J
(m)
Θ .

Hence all eigenvalues of Hm are eigenvalues of A. ¤

Even when hk+1,k is far from zero, parts of the eigensystem

J
(k)
Θ , Y (k) =

[

y
(k)
1 , . . . , y

(k)
k

]

,

of Hk might deliver good approximations.
Suppose k fixed. We can measure how well the jth right Ritz pair

θj = θ
(k)
j , yj ≡ Qksj ≡ Qks

(k)
j , Cksj = sjθj ,

approximates a right eigenpair without forming Y = Y (k). Multiplying (3.20) by
sj leads to

Ayj − yjθj = QH
k (Hksj − sjθj) + hk+1,kqk+1skj .

Taking norms we obtain

‖Ayj − yjθj‖ = |hk+1,kskj |.

Keep in mind that

‖qk+1‖ = 1 and ‖yj‖ = ‖Qksj‖ = ‖sj‖ = 1

by construction. We can also think of a component-wise bound, since simple appli-
cation of component-wise absolute value leads to the similar bound

|Ayj − yjθj | = |hk+1,kskj | · |qk+1| .

It turns out that for outliers the size of the residuals |hk+1,kskj | very soon
becomes negligible.

The Ritz value is the Rayleigh quotient of the Ritz vector,

yHj Ayj − θj = yHj (Ayj − yjθj)
= yHj qk+1hk+1,kskj

= sHj Q
T
k qk+1hk+1,kskj = 0.

We present the results in matrix formulation:

Theorem 3.30 The approximation error of the kth Ritz decomposition

Y (k) = QkS
(k), J

(k)
Θ ,

is given by a rank one matrix composed of the residual of the Arnoldi decomposition
and the last row of S(k),

AY (k) − Y (k)J (k)Θ = qk+1hk+1,ke
T
k S

(k).

The Jordan matrix of Hk is the generalised Rayleigh quotient

(

Y (k)
)†

AY (k) =
(

S(k)
)−1

QH
k AQkS

(k) = J
(k)
Θ .
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As we have already shown in the section on the power method:

Remark 3.31 The coefficients of the characteristic polynomial of Hk are related
to the Krylov bases of subsequent steps via

χHk
(θ) = θk − a(k)1 θk−1 − a(k)2 θk−2 − · · · − a(k)n ,

where
a(k) = K†kA

kq.

We know that application of the pseudo-inverse delivers the solution with minimal
(2-norm) residual

‖Akq −Kka
(k)‖ = min . (3.21)

We use the correspondence of polynomials in A and vectors in the Krylov space to
obtain

‖Akq −Kka
(k)‖ = min

a∈Kk
‖Akq −Kka‖ = min

a∈Kk
‖Kk+1

(
−a
1

)

‖

= min
pk∈P k

k

‖pk(A)q‖ = ‖χHk
(A)q‖. (3.22)

Equation (3.22) proves:

Theorem 3.32 (minimisation property of the Arnoldi method) The
Ritz polynomials computed in the Arnoldi method minimise

k∏

j=1

|hj+1,j | = ‖qk+1
k∏

j=1

hj+1,j‖ = ‖χHk
(A)q‖ = min

pk∈P k
k

‖pk(A)q‖ (3.23)

over the space P k
k of all monic polynomials of degree less equal k.

We re-state that we can interprete one step of the Arnoldi decomposition as QR
decomposition

[q1, AQm] =
[
q1, AKmR

−1
m

]
= Km+1 ·

(
1 0
0 R−1m

)

= Qm+1Rm+1 ·
(
1 0
0 R−1m

)

of the matrix [q1, AQm].
Recall that the Hessenberg matrices Hk and Hk of the Arnoldi decomposition

are defined by

[e1, Hk] =

(
e1 Hk

0 hk+1,ke
T
k

)

= Rk+1 ·
(
1 0
0 R−1k

)

. (3.24)

These two observations are important in the analysis of the finite precision be-
haviour.

We know that the Arnoldi method delivers Hessenberg matrices. The next
remark clarifies the interplay between Hessenberg matrices and the Arnoldi method.

Remark 3.33 Every unreduced upper Hessenberg matrix can be inserted into an
Arnoldi decomposition,

HmIm = ImHm,

HmIm,k = Im,k+1Hk = Im,kHk + hk+1,ke
T
k ∀ k < m.

This is achieved for unreduced lower Hessenberg matrices by choosing a flipped
identity. This reveals once again that all unreduced Hessenberg matrices are non-
derogatory.
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This remark helps to predict the observable behaviour.
The Arnoldi method was originally based on Lanczos ideas. It was developed

by and named after Walter Edwin Arnoldi (*1917 – †1996). Arnoldi published his
method in 1951 (cf. [Arn51]).

Saad also considered a block variant of the Arnoldi method. In this method the
matrix Ck = Hk becomes block Hessenberg (cf. [Saa80]).

3.5.4 The Symmetric Lanczos Method

The symmetric Lanczos method is Arnoldi’s method applied to selfadjoint matrices.
When the Arnoldi method is applied to a selfadjoint matrix A = AH , the Hessenberg
matrix obtained must be selfadjoint, i.e., tridiagonal, since

Hk = QH
k AQk = HH

k ≡ Tk

is selfadjoint and tridiagonal.
The symmetric Lanczos method differs from the Arnoldi method in three re-

spects. First, the low storage costs. We only need three basis vectors and three
moments per step. Second, the preservation of structure. This implies that both A
and Tk have an orthogonal eigenbasis. Third, its connection to orthogonal polyno-
mials.

Like the Arnoldi method, its epigone, the symmetric Lanczos method, can be
written as Arnoldi decomposition

AQm = QmTm,

AQk = Qk+1T k = QkTk + βkqk+1e
T
k ∀ k < m. (3.25)

The matrix Tk is composed of recurrence coefficients,

Tk = tridiagk (β, α, β) =








α1 β1

β1 α2
. . .

. . .
. . . βk−1
βk−1 αk







.

We now state an algorithmic implementation of the symmetric Lanczos method
with Algorithm 3.6.

input : A, r0
output: Tk, Qk for all k ∈ N

q0 ← 0

for k ∈ N do
βk−1 ← ‖rk−1‖
qk ← rk−1/βk−1
rk ← Aqk
αk ← 〈qk, rk〉
rk ← rk − αkqk − βk−1qk−1

end for

Algorithm 3.6: Lanczos method (symmetric variant)

The matrix Tk obtained in Algorithm 3.6 is an unreduced selfadjoint tridiagonal
matrix with real positive off-diagonal elements.

All results obtained for the Arnoldi method hold:
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Theorem 3.34 (breakdown of symmetric Lanczos) The symmetric
Lanczos method is applicable as long as

dim(Kk) = k ≤ m = deg µA,q ≤ deg µA ≤ n.

The subspace spanned by Qm is an invariant subspace of A, and all eigenvalues of
Tm are eigenvalues of A.

The selfadjointness has consequences on the approximation error:

Theorem 3.35 The approximation error of the kth Ritz decomposition

Y (k) = QmS
(k), Θ(k),

is given by a rank one matrix composed of residual of the Arnoldi decomposition
and the last row of the unitary S(k),

AY (k) − Y (k)Θ(k) = qk+1βke
T
k S

(k).

The matrix of Ritz values is the generalised Rayleigh quotient

(

Y (k)
)H

AY (k) = Θ(k).

Furthermore we can bound the distance to the nearest eigenvalue,

|λ− θj | ≤
‖Ayj − yjθj‖
‖yj‖

= ‖βkskjqk+1‖ = |βkskj | ≤ |βk|.

The minimisation property holds:

Theorem 3.36 (minimisation property of symmetric Lanczos) The
Ritz polynomials computed in the symmetric Lanczos method minimise

k∏

j=1

|βj | = ‖qk+1
k∏

j=1

βj‖ = ‖χTk(A)q)‖ = min
pk∈P k

k

‖pk(A)q‖

over the space P k
k of all monic polynomials of degree less equal k.

The connection to orthogonal polynomials is a direct consequence of the three-
term recurrence and the orthonormality of the basis vectors:

Theorem 3.37 (orthogonality of the Ritz polynomials) The sequence of char-
acteristic polynomials χk ≡ χTk satisfies the three-term recurrence

βk+1χk+1(λ) = (λ− αk)χk(λ)− βkχk−1(λ).

The polynomials χk are orthogonal with respect to the inner product

〈χk, χj〉S =

∫

χkχj du. (3.26)

This inner product is a Stieltjes integral with integrating function

u(λ) =
∑

i

∣
∣v̂Hi q

∣
∣
2
H(λ− λi).
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Proof. This is merely a change in notation. We define the Stieltjes integral
∫

f(λ) du(λ) ≡ qHf(A) q =
∑

i

∣
∣v̂Hi q

∣
∣
2
f(λi).

This integral has the integrating function

u(λ) =
∑

i

∣
∣v̂Hi q

∣
∣
2
H(λ− λi).

We can interprete the integral (3.26) as Rayleigh quotient of a matrix function,

∫

χkχl du = qHχk(A)χl(A)q = qHk ql

k∏

j=1

βj

l∏

j=1

βj .

The orthonormality of the recurrence vectors simplifies the last line to

∫

χkχl du = δkl

k∏

j=1

|βj |2 ,

which proves the orthogonality of the polynomials χk. ¤

The symmetric (and non-symmetric) Lanczos method was developed by and
named after Cornelius Lanczos (Kornél Löwy, Kornél Lánczos, *1893 – †1974). He
published two papers (cf. [Lan50, Lan52]) on ‘the method of minimised iterations’.
These papers formed the basis for a variety of Krylov methods, the most prominent
among them the symmetric and non-symmetric Lanczos method as well as some
form of BiCG.

Blocked and banded variants of the symmetric Lanczos methods have been con-
sidered by Ericsson and Ruhe, by Underwood and Golub, by Cullum and Donath
and by Parlett and Kahan (cf. [ER80, Und75]).

3.5.5 The Non-Symmetric Lanczos Method

We have defined two orthogonal projection methods. The Arnoldi method applies
to general matrices, but uses long recurrences. The symmetric Lanczos method uses
short recurrences, but applies only to selfadjoint matrices.

Using an oblique projection method it is possible to obtain a method that re-
covers short recurrences and applies to general matrices. This method is the non-
symmetric Lanczos method.

The non-symmetric Lanczos method relies on a Lanczos decomposition and cor-
responds to a Petrov-Galerkin approach. The Lanczos decomposition is based on
two Krylov spaces Kk and K̂k, usually

Km = Km (A, q) =
{
q,Aq, . . . , Am−1q

}
,

K̂m = K̂m
(
AH , q̂

)
=

{
q̂, AH q̂, . . .

(
AH
)m−1

q̂
}
.

The starting vectors are assumed bi-orthonormal, i.e., q̂Hq = 1.
We already noted that the matrix Cm resulting from the oblique projection

underlying the non-symmetric Lanczos method is tridiagonal, Tm ≡ Cm. In contrast
to the symmetric Lanczos method Tm is a general tridiagonal matrix.

We denote diagonal elements by αk, sub-diagonal elements by βk and super-
diagonal elements by γk, i.e.

Tm = tridiagk (β, α, γ) =








α1 γ1

β1 α2
. . .

. . .
. . . γm−1
βm−1 αm







.
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The resulting Lanczos decomposition

AQm = QmTm,

AQk = Qk+1T k = QkTk + qk+1βke
T
k ∀ k < m, (3.27)

need not exist due to breakdown of the underlying LR decomposition of the Hankel
matrix. Assume for the moment that no breakdown occurs.

The non-symmetric Lanczos method also computes a second Lanczos decompo-
sition. This Lanczos decomposition is related to AH ,

AHQ̂m = Q̂mT̂m,

AHQ̂k = Q̂k+1T̂ k = Q̂kT̂k + q̂k+1β̂ke
T
k ∀ k < m. (3.28)

For reasons of readability we introduced the matrices T̂k = THk , k ∈ m. The

elements of T̂k are denoted with a small hat, and correspond to the elements of Tk
by α̂k = αk, β̂k = γk and γ̂k = βk.

This is also a more general form, where we allow for non-bi-orthonormal bases.
In this variant the computed bases Qk, Q̂k are bi-orthonormal, i.e., such that

Q̂H
mQm = Im

holds true.
We are now able to state an algorithmic implementation. The general algorithm

for a non-symmetric Lanczos method is given with Algorithm 3.7.

input : A, r0, r̂0

output: Tk, Qk, Q̂k for all k ∈ N

q0 ← 0, q̂0 ← 0

for k ∈ N do
βk−1γk−1 ← 〈r̂k−1, rk−1〉
qk ← rk−1/βk−1
q̂k ← r̂k−1/γk−1
rk ← Aqk
r̂k ← AH q̂k
αk ← 〈q̂k, rk〉 = 〈r̂k, qk〉
rk ← rk − αkqk − γk−1qk−1
r̂k ← r̂k − αkq̂k − βk−1q̂k−1

end for

Algorithm 3.7: Lanczos method (non-symmetric variant)

We have some freedom in choosing the off-diagonal elements βk and γk. All we have
to ensure is that the relation

βkγk = r̂Hk rk

holds true. The most common choices, and their advantages and disadvantages, are
collected in the following remark:

Remark 3.38 a) Setting

βk = ‖rk‖, γk =
r̂Hk rk
βk

,

ensures that the columns of Qk have unit length. The columns of Q̂k can vary in
magnitude.
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b) Setting

βk =
√
∣
∣r̂Hk rk

∣
∣, γk =

r̂Hk rk
βk

,

ensures that the columns of Qk multiplied by |γ0| and the columns of Q̂k multiplied
by |β0| have the same length.

c) Setting
βk = ‖rk‖, γk = ‖r̂k‖, ωk = r̂Hk rk

with additional diagonal matrix Ωk ensures that the columns of Qk and the columns
of Q̂k have unit length.

This last variant leads to a new algorithm. This algorithm uses the Lanczos
decomposition

AQk −QkΩ
−1
k Tk = βkqk+1e

T
k

AHQ̂k − Q̂k

(
Ωk

)−1
THk = γkq̂k+1e

T
k ,

obviously with different tridiagonal Tk given by

Tk =








α1 ω2γ1

ω2β1 α2
. . .

. . .
. . . ωkγk−1

ωkβk−1 αk







.

Projection leads to the pencil

(A, I)→ (Q̂H
k AQk, Q̂

H
k Qk) = (ΩkΩ

−1
k Tk,Ωk) = (Tk,Ωk).

We have to solve a general eigenvalue problem (a matrix pencil). This variant is
due to Day. The implicit scaling can also be used to scale the vectors differently.

The three choices have no influence on the breakdown of the method:

Theorem 3.39 (breakdown of the Lanczos method) The non-symmetric Lanc-
zos method breaks down in case

r̂Hm+1rm+1 = 0.

Two cases of breakdown can be distinguished. The first is the case of a lucky break-
down

r̂m+1 = 0 or rm+1 = 0.

In this case we have computed a left or right invariant subspace of A. All eigenvalues
of Tm are eigenvalues of A. Additionally we can compute the corresponding left or
right eigenvectors.

The second is the case of a serious breakdown

r̂Hm+1rm+1 = 0 and r̂m+1 6= 0 6= rm+1.

In this case the algorithm can no longer be continued using short-term recurrences.

The residual of an un-normalised Ritz pair can be measured with the use of
computed quantities:

Ayj − yjθj = βkqk+1skj .

Since Qk in general will be non-orthogonal, this gives only a crude estimation of
actual convergence. Nevertheless the right-hand side still gives the backward error
of the un-normalised Ritz pair.
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Remark 3.40 We have a one-to-one correspondence between Krylov subspaces
built with AH and Krylov subspaces built with AT . By inspection

Km
(
AH , q̂

)
= Km

(
AT , q̂

)
.

Under mild circumstances this holds true even numerically.

Spanning the second Krylov space with AT instead of AH does not impose restric-
tions on the class of possible algorithms.

It is possible to extend the non-symmetric Lanczos method to deal with serious
breakdowns. This can be done by threshold pivoting in computing the LDMT
decomposition of the Hankel matrix.

Methods that try to cope with the occurrence of serious breakdowns are known
as Lanczos with look-ahead . Look-ahead leads to block tridiagonal matrices Tk with
varying block-size. A blocked variant of the non-symmetric Lanczos method named
ABLE has been considered by Bai, Day and Ye (cf. [BDY99]).

The symmetric Lanczos may be extended by using so-called J-Symmetry. When-
ever we have a relation of type

AJ = JAH or AJ = JAT

we can construct the second basis without using AH or AT . Explicit knowledge of
the matrix J allows to generalise the symmetric Lanczos method to a method for
symplectic A, skew-symmetric A and so forth.

3.6 Krylov Methods for Solving Linear Systems

Krylov subspace methods seek approximations from a Krylov subspace. Suppose
that we already have an approximation to A−1b, i.e. x̃ ≈ A−1b. If such pre-
information is lacking, set x̃ = 0.

We can think of a transformation of the linear system to the new linear system

Ax = r0 ≡ b−Ax̃.

The solution of the system Ay = b is given by y = x̃ + x. We choose the starting
vector q = q1 in direction of the residual r0 = b−Ax̃.

Suppose we have chosen a Hessenberg decomposition

AQm = QmCm,

AQk = Qk+1Ck = QkCk + qk+1ck+1,ke
T
k ∀ k < m

of the Krylov subspace Km(A, q).
The kth approximation xk ∈ Kk for x = A−1r0 can be expressed in terms of the

new basis,
xk = Qkzk, zk ∈ Kk.

The task is to find a computable expression for zk.
There are essentially two approaches. The first is related to the matrix Ck,

−rk = Axk − r0 = AQkzk −Qke1‖r0‖
= Qk(Ckzk − e1‖r0‖) + qk+1ck+1,kzkk.

We partition the pseudo-inverse of Qk+1 as follows,

Q†k+1Qk+1 =

(
Q̂H
k

q̂Hk+1

)

[Qk, qk+1] = Ik+1.
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We apply Q̂H
k to the left. This yields

−Q̂H
k rk = Ckzk − e1‖r0‖.

When we set
zk = C−1k e1‖r0‖,

we annihilate the projected residual. This is a Galerkin approach. To be more
precise, we projected the linear system onto a smaller linear system

(A, r0) → (AQk, Qk‖r0‖e1)
→ (Q̂H

k AQk, Q̂
H
k Qk‖r0‖e1) = (Ck, ‖r0‖e1),

using a second matrix Q̂k (bi)orthogonal to Qk.
The kth residual rk of the transformed system Ax = r0 is the residual of the

original system Ay = b, since

rk = r0 −Axk = b−A(x̃+ xk) = b−Ayk.

Here we used the short-hand notation yk ≡ x̃+ xk.
When the spaces spanned by Qk and Q̂k are equal, this is known as a Bubnov-

Galerkin approach. When the spaces spanned by Qk and Q̂k are different, this is
known as a Petrov-Galerkin approach.

In case of a Bubnov-Galerkin approach usually the same basis is used, i.e.,
Q̂k = Qk. Furthermore usually an orthonormal basis is chosen.

Definition 3.41 Methods using the Bubnov Galerkin approach with orthonormal
Qk are termed OR (orthogonal residual) methods for obvious reasons.

Methods using the Petrov-Galerkin approach with bi-orthonormal or dual Q̂k

and Qk are termed QOR (quasi-orthogonal residual) methods.

We remark that when A is HPD, we can interpret the OR orthogonality

〈Axk − r0, y〉 = 0 ∀ y ∈ Kk
as minimisation in the A-norm.

The second approach is related to the matrix Ck. For this reason we re-name the
coordinate vector, the approximate solution and the residual zk, xk, rk, respectively,

−rk = Axk − r0 = AQkzk −Qk+1e1‖r0‖
= Qk+1(Ckzk − e1‖r0‖).

When we set
zk = C†ke1‖r0‖,

we minimise the residual of the small overdetermined system

Ckzk − e1‖r0‖.

This approach corresponds to the projection of the linear system onto the overde-
termined system

(A, r0) → (AQk, Qk‖r0‖e1)
→ (Q̂H

k+1AQk, Q̂
H
k+1Qk‖r0‖e1) = (Ck, ‖r0‖e1).

Afterwards the solution with minimal residual is computed.
This minimisation does not necessarily minimise the true residual, since we only

have validity of the following,

‖ − rk‖ = ‖Axk − r0‖ ≤ ‖Qk+1‖‖Ckzk − e1‖r0‖‖.
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Definition 3.42 Methods using the projection onto an overdetermined system and
the minimisation approach as stated above are termed QMR (quasi-minimal resid-
ual) methods.

When the matrix Qk is orthonormal, the true residual is minimised. QMR
methods using an orthonormal basisQk are termedMR (minimal residual) methods.

The MR approach computes zk with

‖AQkzk − r0‖ = min
z∈Kk

‖AQkz − r0‖.

We remark that this condition is equivalent to the residual being orthogonal to
AKk, i.e., to the QOR approach

r0 −Axk ⊥ AKk(A, q).

The relations between OR and MR, or more general between QOR and QMR, have
been considered in more detail. We state two approaches.

Remark 3.43 When changing the inner product, MR (QMR) in general can be
interpreted as special form of OR (QOR) (cf. [EE99]).

When applying residual smoothing to an OR (QOR) method, we obtain a MR
(QMR) method (cf. [Wei94, SW95]).

The OR and QOR approaches rely on the iterated solution of small systems with
system matrix Ck. The Hessenberg structure of Ck admits the computation of a
decomposition along with the computation of the coefficients. We can compute for
example the LR decomposition

Ck = BkRk, ck+1,k = bk+1,krkk.

Note that Bk is bidiagonal since Ck is Hessenberg. We define the matrix of direction
vectors Pm = QmR

−1
m . The Hessenberg decomposition can be transformed to read

APm = QmBm,

APk = QkBk + qk+1bk+1,ke
T
k ∀ k < m.

This is a Krylov decomposition with different bases, in contrast to the Krylov
decompositions used for the solution of the eigenproblem.

The Krylov decomposition and the relation Qk = PkRk define two coupled recur-
rences in the bases Qk and Pk. This approach supposes knowledge of the recurrence
parameters in the triangular matrices Bk and Rk.

Definition 3.44 We define a split Hessenberg decomposition to be a sequence of
matrix equations that can be expressed as a single Hessenberg decomposition.

Due to the one-to-one correspondence between Krylov and polynomial spaces
we can express the approximate solutions xk also using polynomials and the Krylov
matrix,

xk ∈ Kk ⇔ xk = Kksk ⇔ xk = pk(A)q.

The residual can also be expressed as polynomial, since it lies in a Krylov space,

rk = r0 −Axk = Kk‖r0‖e1 −AKksk = Kk+1

(
‖r0‖
−sk

)

∈ Kk+1.

We remark that this offers another possibility to expand the Krylov space. Instead
of expanding the basis with Aqk, we can use the kth residual rk.
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Definition 3.45 The polynomials ρk defined by

rk
‖r0‖

= ρk(A)q = (1−Aζk(A)) q,

are termed residual polynomials.

The residual polynomials by derivation fulfil the consistency condition

ρk(0) = 1, i.e., ρk ∈ P 0k .

The QOR approach may be stated as

0 = Q̂H
k rk = Q̂H

k ρk(A)q, ρk ∈ P 0k ,

and the QMR approach may be stated as

‖Q̂H
k rk‖ = ‖Q̂H

k ρk(A)q‖ = min ‖Q̂H
k ρ(A)q‖ ρ ∈ P 0k .

In the following we tried to use established standard forms of the algorithms we
consider. The presentation of the algorithms was inspired by the books of Saad,
Greenbaum, Golub/van Loan and Voß (cf. [Saa92, Saa96, Gre97, GvL96, Voß93]).

3.6.1 Richardson Iteration and Polynomial Acceleration

The Richardson iteration for the iterative solution of

Ax = r0 = b−Ax̃

is usually stated in its fixed-point form

xk+1 = (I −A)xk + r0.

This may be transformed (via −rk = Axk − r0) to read

AXk = Xk+1Bk +R0,

−Rk = Xk+1Bk = XkBk − xk+1eTk

where

Bk =







1
−1 1

. . .
. . .

−1 1






.

This builds a Krylov subspace, the basis is composed of the residual vectors. It is an
unusual representation of the basis expansion, because we have hidden the implicit
action of A.

Nevertheless we obtain a matrix equation that has enough similarities to a
Krylov decomposition to talk of a generalised Krylov decomposition. In place of
the (general) Hessenberg matrix we obtain the bidiagonal matrix Bk.

When Chebychev acceleration (or more general, acceleration using orthogonal
polynomials) is used, we obtain a similar relation with a tridiagonal matrix Tk
in place of the bidiagonal matrix Bk. This tridiagonal matrix is composed of the
recurrence coefficients.

In case of Chebychev acceleration, where we assume the eigenvalues of I −A in
the open interval (−1, 1), the recurrence looks like

−RkDk = Xk+1T k = XkTk − xk+1eTk . (3.29)
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The tridiagonal matrix Tk is composed of the recurrence coefficients of the three-
term recurrence of the Chebychev polynomials. The matrix Tk is given by

Tk =








1 −1
−1 2

. . .
. . .

. . . −1
−1 2







.

The matrix Dk on the left-hand side of equation (3.29) is a diagonal matrix. The
non-zero elements are simply the diagonal elements of Tk. We may divide by this
diagonal matrix of factors.

The recurrence (3.29) holds true in more generality. Consider a three-term
recurrence for orthogonal polynomials with non-constant recurrence coefficients,

φ0 = 1,

φ1 = γ1λ+ (1− γ1),
φk+1 = δk(γk+1λ+ (1− γk+1))φk

+ (1− δk)φk−1, ∀ k ∈ N.

Accelerating the Richardson iteration with this orthogonal polynomials we obtain
a recurrence formula with the same structure as (3.29).

The tridiagonal matrix Tk now is given by

Tk =








1 1− δ2
−1 δ2

. . .
. . .

. . . 1− δk
−1 δk







.

Additionally, we introduce the shorthand notation δ1 = 1. Dk is again a diagonal
matrix, the diagonal elements are given by the products djj = γjδj , i.e., by the
diagonal of Tk multiplied by some residual damping factors γj .

Again we might transform the tridiagonal by diagonal scaling from the right to
a tridiagonal with unit diagonal.

Chebychev acceleration uses γk = 1 for all k and δk = 2 for all k > 1.

More general forms of acceleration (i.e., using non-orthogonal polynomials) are
possible. They lead to a recurrence with a Hessenberg matrix in place of the tridi-
agonal,

−RkDk = Xk+1Hk ⇔ Rk = −Xk+1HkD
−1
k (3.30)

The question that naturally arises is how to compute the acceleration parameters,
i.e., the recurrence coefficients. It is obvious that the columns of HkD

−1
k and thus

of Hk have to sum up to zero, since the true solution has to be reproduced.

The following Krylov methods use acceleration parameters computed during the
algorithm. Even though some of them will have a form like (3.30), all are derived
using solely Krylov decompositions introduced before.

3.6.2 Orthores/Orthomin/Orthodir

Consider the Hessenberg decomposition

AQm = QmCm,

AQk = Qk+1Ck = QkCk + ck+1,kqk+1e
T
k ∀ k < m. (3.31)
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In the last section we noted that Hessenberg matrices with zero column sums are
useful in the solution process of linear systems. This usefulness can be extended to
a certain class of Hessenberg decompositions. The constructive proof is as follows.

The system
yTCm = αeTm

has a unique solution y, provided Cm is non-singular. Ignoring last column we
conclude that

yTCm−1 = 0.

If the kth component in the vector y is zero, the matrix Z obtained from Cm−1 by
deleting kth row must be singular. This matrix is block diagonal,

Z =

(
Ck−1 ?
0 R

)

.

The second block R is an upper triangular matrix with diagonal elements cj+1,j ,
k < j < m. Since we assume Cm to be an unreduced Hessenberg matrix, Ck−1
must be singular.

When all Ck are non-singular, we can scale the matrix Cm by D = diag(y),

C
(0)
m ← DCmD

−1. Suppose w.l.o.g. that we already have scaled the Hessenberg
decomposition, hence

eTC
(0)
m−1 = 0, ⇔ eTC

(0)
k = −c(0)k+1,keTk ∀ k < m. (3.32)

We restate (3.31) in form

AQk = Qk+1C
(0)
k = QkC

(0)
k − qk+1eTC(0)k =

(
Qk − qk+1eT

)
C
(0)
k . (3.33)

Furthermore we choose α such that q1 = r0. Then the OR approach corresponds to

zk =
(

C
(0)
k

)−1

e1.

With xk = Qkzk we obtain

−rk = Axk − r0 = c
(0)
k+1,kqk+1e

T
k zk = −qk+1eTC(0)k

(

C
(0)
k

)−1

e1 = −qk+1,

i.e., the vectors qk are just the residuals rk−1. For this reason we re-name the scaled
basis vectors r0, . . . , rm−1 instead of q1, . . . , qm,

ARm = RmC
(0)
m ,

ARk = Rk+1C
(0)
k = RkC

(0)
k − rkeTC(0)k

=
(
Rk − rkeT

)
C
(0)
k ∀ k < m. (3.34)

Note that we introduced the trivial approximation x0 = 0. Next consider equation
(3.34) multiplied from the left by A−1,

Rk = A−1Rk+1C
(0)
k

= [x− x0, . . . , x− xk]C(0)k
=

(
xeT −Xk+1

)
C
(0)
k ,

Rk = −Xk+1C
(0)
k ∀ k < m. (3.35)

Equations (3.34) and (3.35) together form the basis of a method known as Orthores.
As we can see, Orthores consists of two long-term recurrences. Orthores was first
derived by Young and Jea (cf. [YJ80]).
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Equation (3.35) reveals that Orthores can be interpreted as polynomial accel-
erated Richardson iteration. The acceleration parameters are computed by the
algorithm and do not have to be supplied by the user.

The method can be modified realizing that Orthores uses LDMT decomposition
of already scaled Ck. Considering equations (3.32) gives







1 0
1 1
...

...
. . .

1 1 · · · 1






C
(0)
k ≡ DkM

H
k .

where Dk = −diag(c(0)2,1, . . . , c
(0)
k+1,k) andM

H
k is upper triangular with unit diagonal.

Realize further that







1 0
1 1
...

...
. . .

1 1 · · · 1







= L−1k =








1 0

−1 . . .
. . . 1

0 −1 1








−1

.

Thus we have computed the LDMT decompositions of C
(0)
k ,

C
(0)
k = LkDkM

H
k ,

where Dk is diagonal and both Lk and Mk are triangular with unit diagonal. We
re-write the Hessenberg decomposition,

ARm = RmLmDmM
H
m

ARmM
−H
m D−1m = RmLm.

Defining the direction vectors p0, . . . , pm−1 already mentioned before,

Pm = RmM
−H
m (3.36)

we obtain the Krylov decomposition

APmD
−1
m = RmLm

APkD
−1
k = Rk+1Lk = RkLk − rkeTk . (3.37)

We restate (3.36) in form

Rk = PkM
H
k ∀ k ∈ m. (3.38)

The update of the approximations xk is given by

PkD
−1
k = −Xk+1Lk = −XkLk + xke

T
k ∀ k < m. (3.39)

The coupled recurrences (3.37), (3.38) and (3.39) define the method known as Or-
thomin. Orthomin was first derived by Vinsome (cf. [Vin76]).

A third method can be obtained by consideration of a different scaling of a
Hessenberg decomposition. Suppose w.l.o.g. that we have scaled a Hessenberg de-
composition such that

APm = PmCm,

APk = Pk+1Ck = PkCk + pke
T
k ∀ k < m. (3.40)
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This corresponds to a scaling of the unreduced Hessenberg matrix to have a unit
lower diagonal. The naming of the basis changes, because the basis vectors are used
as direction vectors, which are usually named p0, p1, . . . , pm−1 instead of q1, q2, . . . , qm.

Suppose the solution x = A−1r0 of the linear system Ax = r0 is in the Krylov
space Km. Then it has a basis representation

x = xm = Pmzm, zm = (α0, . . . , αm−1)
T ∈ Km.

This shows that in principle we can update the approximate solutions xk via

xk+1 = xk + αkpk, PkDα = −Xk+1Lk ∀ k < m. (3.41)

The residuals satisfy

rk+1 = rk − αkApk, APkDα = Rk+1Lk ∀ k < m. (3.42)

The recurrences (3.40), (3.41) and (3.42) define the method known as Orthodir.
Orthodir was first derived by Young and Jea (cf. [YJ80]). Another name for this
method is GCR (Generalised Conjugate Residuals).

The difference between GCR and Orthomin is the difference between restart
and truncation. The restarted variant is called GCR(l), and the variant where the
recurrence (3.40) is truncated is called Orthomin(l).

We decided to give a general approach to these three methods, with all relations
between them. Now we consider the implementational details.

Orthores is normally implemented using a scaled Arnoldi decomposition. The
scaling just turns orthonormality into orthogonality. Orthores breaks down when
one of the un-scaled Hessenberg matrices Hk is singular.

In this case zero is in the field of values of A,

Hkz = 0 ⇒ zHHkz = zHQH
k AQkz = yHAy = 0.

Suppose that zero is outside the field of values of A. A breakdown in Orthores
indicates we have computed the exact solution.

Orthores should remind of orthogonal residuals. Orthores using a scaled Arnoldi
decomposition corresponds to the OR approach.

Orthomin uses the matrices MH
k in equation (3.38) and D−1k in equations (3.37)

and (3.39). Orthodir uses the matrices Ck in equation (3.40) and Dα in equations
(3.41) and (3.42).

For these quantities to be computable, Orthomin and Orthodir are normally
implemented using the MR approach.

Suppose we are interested in minimising the residual in the 2-norm. Both meth-
ods perform in step k+1 a line search along search direction pk. Locally minimising
corresponds to

‖rk+1‖ = ‖rk − αkApk‖ = min .

The locally optimal αk is given by

αk =
〈Apk, rk〉
〈Apk, Apk〉

.

We remark that caution has to be taken in the field of complex values, since the
function

f(α) = ‖rk − αApk‖ = 〈rk, rk〉 − α〈rk, Apk〉 − α〈Apk, rk〉+ αα〈Apk, Apk〉
is not holomorphic. Using Wirtinger derivatives we obtain the unique solution,

d

dα
f(α) = −〈rk, Apk〉+ α〈Apk, Apk〉,

d

dα
f(α) = −〈Apk, rk〉+ α〈Apk, Apk〉.
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When all Apj are orthogonal, local minimisation is sufficient to compute the
global minimal residual.

This leads to choosing MH
k and Ck such that we obtain orthogonal Apj , or

equivalently, AHA-orthogonal pj ,

〈pi, pj〉AHA = 〈pi, AHApj〉 = 〈Api, Apj〉 = δji〈Apj , Apj〉.

We denote the elements of MH
k+1 by

MH
k+1 =








1 β01 · · · β0,k

1
. . .

...
. . . βk−1,k

1







.

In other words, we re-write the update formula (3.38) for Orthomin with shifted
index and last column equated in the more convenient form

pk = rk −
k−1∑

j=0

pjβjk.

Setting

βjk =
〈Apj , Ark〉
〈Apj , Apj〉

leads to the desired orthogonal Apj (the A
HA-orthogonal pj). Setting the diagonal

matrix D−1k ≡ Dα with α as chosen above, we have obtained the usual form of
Algorithm 3.8 of Orthomin.

input : A, b, x̃

output: Lk, Dk, M
H
k , Rk, Pk, Xk

r0 ← b−Ax̃, p0 ← r0, x0 ← x̃

for k ∈ N do
αk−1 ← 〈Apk−1, rk−1〉/〈Apk−1, Apk−1〉
xk ← xk−1 + αk−1pk−1
rk ← rk−1 − αk−1Apk−1
for j < k do

βjk ← 〈Apj , Ark〉/〈Apj , Apj〉
end for
pk ← rk −

∑k−1
j=0 pjβjk

end for

Algorithm 3.8: Orthomin

The update for the residuals shows that by induction

rk = rj −
k−1∑

i=j

αiApi = r0 −
k−1∑

i=0

αiApi

holds true. Since the direction vectors are AHA-orthogonal, we see that by applying
Apj from the left,

〈Apj , rk〉 = 〈Apj , rj −
k−1∑

i=j

αiApi〉 = 〈Apj , rj〉 − αj〈Apj , Apj〉 = 0 ∀ j < k.
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The last equality follows by definition of αj . Especially we have the identity

αk =
〈Apk, rk〉
〈Apk, Apk〉

=
〈A(rk −

∑k−1
j=0 pjβjk), rk〉

〈Apk, Apk〉
=
〈Ark, rk〉
〈Apk, Apk〉

.

This expression can be used as an alternative means of computation of αk. There
is also an alternative expression for the βkj ,

βkj =
〈Apj , Ark〉
〈Apj , Apj〉

=
1

αj

〈rj − rj+1, Ark〉
〈Apj , Apj〉

=
〈Apj , Apj〉
〈rj , Arj〉

〈rj − rj+1, Ark〉
〈Apj , Apj〉

=
〈rj − rj+1, Ark〉
〈rj , Arj〉

.

We observe that the kth residual is orthogonal to A times the old residuals,

〈AHrk, rj〉 = 〈rk, Arj〉 = 〈rk, A(pj +
j−1
∑

i=0

piβij)〉 = 0 ∀ j < k.

From now on we focus on Orthodir. We denote the non-trivial elements of Ck

by βij ,

Ck =







β00 β01 · · · β0k
1 β11 · · · β1k

. . .
. . .

...
1 βkk






.

We re-write the update formula (3.40) for Orthodir in the same manner we already
did for Orthomin,

pk = Apk−1 −
k−1∑

j=0

pjβjk.

The only difference between the update formulae of the direction vectors pj in
Orthomin and Orthodir is the choice of the next vector to be orthogonalised. In
case of Orthomin we choose the residual rk, in case of Orthodir we choose Apk−1.

In this case we achieve orthogonal Apj (AHA-orthogonal pj) by setting

βjk =
〈Apj , A2pk−1〉
〈Apj , Apj〉

.

Orthodir should remind of orthogonal (search) directions. We just obtained the
convenient form of Orthodir given by Algorithm 3.9.
All three algorithms more or less implicitly use a Krylov decomposition. Two of
them, namely Orthomin and Orthores, break down when one of the computed
matrices becomes singular.

A natural idea is to explicitly use a Krylov decomposition. This is done by the
methods introduced in the next section.

3.6.3 FOM/GMRES

Consider the case that we explicitly compute the Arnoldi decomposition

AQm = QmHm,

AQk = Qk+1Hk = QkHk + hk+1,kqk+1e
T
k ∀ k < m
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input : A, b, x̃

output: C
(0)
k , Lk, Dk, Rk, Pk, Xk

r0 ← b−Ax̃, p0 ← r0 x0 ← x̃

for k ∈ N do
αk−1 ← 〈Apk−1, rk−1〉/〈Apk−1, Apk−1〉
xk ← xk−1 + αk−1pk−1
rk ← rk−1 − αk−1Apk−1
for j < k do

βjk ← 〈Apj , A2pk−1〉/〈Apj , Apj〉
end for
pk ← Apk−1 −

∑k−1
j=0 pjβjk

end for

Algorithm 3.9: Orthodir

and directly use the OR and MR approaches.
We first consider the OR approach. We have to find xk = Qkzk with orthogonal

residual,

Hkzk − e1‖r0‖ = QH
k (Axk − r0) = −QH

k rk = 0.

The Hessenberg structure of Hk enables us to compute a Givens QR decomposition

Hk = UH
k Rk, UkHk = Rk

of the matrices Hk iteratively. The orthogonal matrix Uk is composed of the Givens
rotations,

Uk =
k−1∏

j=1





Ij−1 0
Gj

0 Ik−j−1



 , Gj =

(
cj sj
sj −cj

)

We only need to compute one Givens rotation per step. Afterwards the system is
solved by applying the Givens rotations to the left-hand side and backward substi-
tution,

Rkzk = ‖r0‖Uke1.

The resulting algorithm is Algorithm 3.10.

input : A, r0
output: Hk, Qk, Zk, Xk

for k ∈ N do
hk,k−1 ← ‖rk−1‖
qk ← rk−1/hk,k−1
rk ← Aqk
for j ∈ k do

hjk ← 〈qj , rk〉
rk ← rk − qjhjk

end for
Solve Hkzk = ‖r0‖e1
xk ← Qkzk

end for

Algorithm 3.10: FOM
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This method was developed by Saad and Schultz (cf. [SS86]) and is known as FOM
(Full Orthogonalisation Method).

The MR approach is handled similar. We have to find xk = Qkzk with minimal
residual,

‖Hkzk − e1‖b‖‖ = ‖Axk − b‖ = min

The solution of this minimal residual problem is again computed using an orthogonal
decomposition

Hk = UH
k+1W k, W k = Uk+1Hk

of Hk, apparently with the same Givens rotations,

Uk+1 =
k∏

j=1





Ij−1 0
Gj

0 Ik−j



 , Gj =

(
cj sj
sj −cj

)

.

The decompositions can easily be updated using the old decomposition. Only the
last column vector of Hk is influenced by the next Givens rotation.

Algorithm 3.11 stores the elements of the QR decomposed Hessenberg matrices
in the upper triangular matrices W k, but only the upper part Wk is used for the
backward substitution. For simplicity the last column of W k is denoted by wk.

input : A, r0
output: Hk, Qk+1, Gk, ...

α1 ← ‖r0‖
for k ∈ N do

Compute AQk = Qk+1Hk

wk ← Hkek
for j < k do
(

wj,k
wj+1,k

)

←
(
cj sj
sj −cj

)(
wj,k
wj+1,k

)

end for

νk ←
√

w2kk + w2k+1,k
ck ← wkk/νk, sk ← wk+1,k/νk
wkk ← νk, wk+1,k ← 0
αk ← ckαk, αk+1 ← skαk
if αk+1 ≈ 0 then

Solve Wkzk = (α1, . . . , αk)
T

xk ← Qkzk
endif

end for

Algorithm 3.11: GMRES

This method was developed by Saad and Schultz (cf. [SS86]) and is known as GM-
RES (Generalised Minimal RESidual).

Both methods deliver the exact solution xm = x in case the Arnoldi recurrence
breaks down, because

H†m = (H−1m 0 ) and Axm − r0 = Qm

(
zm −H−1m e1‖r0‖

)
= 0.

In FOM some iterates may not be defined, since the matrix Hk may be singular
even though A is regular. This can not occur when zero is outside the field of values
of A.
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We note that in both the OR and MR approach orthogonal decompositions
using Givens rotations are used. The relation between these methods becomes
more obvious when we look at the intimate relations between FOM and GMRES.

The first k−1 Givens matrices Gj in both algorithms are the same. To be more
precise,

(
Uk 0
0 1

)

Hk =

(
UkHk

hk+1,ke
T
k

)

=

(
Rk

hk+1,ke
T
k

)

.

The next Givens rotation annihilates the non-zero element in the last row and has
influences only on the last column.

We are interested in the residual of the MR solution zk. We observe that

Uk+1 (Hkzk − ‖r0‖e1) = W kzk − ‖r0‖Uk+1e1
= −‖r0‖ (s1 · · · · · sk) ek+1.

The OR solution zk inserted into the minimal residual equation leads to

(
Uk 0
0 1

)

(Hkzk − ‖r0‖e1) =

(
Rk

hk+1,ke
T
k

)

zk − ‖r0‖
(
Uk 0
0 1

)

e1

= hk+1,ke
T
k zkek+1.

The OR solution is given by
zk = R−1k Uke1,

and thus
eTk zk = eTkR

−1
k Uk‖r0‖e1 = r−1kk (s1 · · · · · sk−1) ‖r0‖.

Note that the next Givens matrix Gk annihilates the element hk+1,k, i.e.

Gk

(
rkk

hk+1,k

)

=

(
νk
0

)

⇒ ck =
rkk
νk

, sk = −hk+1,k
νk

where νk =
√

r2kk + h2k+1,k is the 2-norm of the vector consisting solely of the non-

zero elements of the last two rows. Thus we can express the residual as

‖r0‖hk+1,keTk zkek+1 = ‖r0‖
hk+1,k
rkk

(s1 · · · · · sk−1) ek+1

= −‖r0‖
1

ck
(s1 · · · · · sk) ek+1.

We know that both Qk and Uk do not change the length of the residuals. This
implies that as long ck 6= 0, the residuals of FOM and GMRES fulfil

‖rk‖ =
‖rk‖

√

1−
(
‖rk‖

/
‖rk−1‖

)2
.

This result remains valid for methods of type QOR and QMR, when we consider
the quasi-residuals

ζk = Ckzk − ‖r0‖e1 and ζ
k
= Ckzk − ‖r0‖e1

instead of the true residuals.
Mathematically we have equivalence between the methods Orthores and FOM,

and between the methods Orthomin, Orthodir and GMRES. On the other hand
FOM and GMRES are superior in both storage requirements and concerning nu-
merical stability.
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3.6.4 Truncated and Restarted Methods

The inherent complexity and work space requirements in the recurrences based on
the Arnoldi decomposition are O(m2). These recurrences, the so-called long-term
recurrences restrict the range of possible applications for those methods.

There are essentially two ideas to overcome complexity restrictions. First we
can truncate the sequence, i.e., we only orthogonalise against s terms. Secondly we
can restart the method when necessary.

We first consider restart techniques. In explicit restarts the computed Krylov
decomposition is discarded, and the last generated approximation is used as new
starting vector.

In implicit restarts the computed Krylov decomposition is transformed to a
smaller Krylov decomposition. Usually this is done by dividing the eigenvalues into
good and bad ones; the bad ones are removed.

According to the number of vectors used in the restart we distinguish thin and
thick restart. If only some vectors are used, we speak of thin restart, else of thick
restart.

Methods using explicit thin restart are GCR(m), FOM(m), GMRES(m). These
methods just restart with the last approximation as starting vector.

In a thick restart we do not throw away all information, we use a portion of the
knowledge obtained thus far. Often implicit thick restart is used, for example in
ARPACK.

Now we loose some words on truncated methods. We already mentioned the
truncated variant of Orthomin, namely Orthomin(m).

Other methods of this class are IOM and DIOM (direct IOM). These methods
are contained in the book of Saad ([Saa96]). IOM and DIOM use truncation of the
orthogonalisation in FOM.

Also GMRES can be truncated, leading to Quasi-GMRES and DQGMRES (di-
rect Quasi-GMRES). Also Quasi-GMRES and DQGMRES may be found in the
book of Saad ([Saa96]).

New variants of truncated methods throw away only specific vectors, methods
of this class are GCRO and GCROT. Here, like in the implicitly restarted methods,
the eigenvalues and singular values play a major role.

The ideas of restart and truncation may be used simultaneously. This field is
still developing, so we will not discuss restarted and truncated methods any further.

We just mention that both fit into our approach. The Krylov decompositions
obtained are still Hessenberg decompositions. The upper triangular part of the
Hessenberg matrices obtained changes, to be more precise, the matrices are block-
diagonal, when restart is used, and banded, when truncation is used.

3.6.5 CG/CR

In this section we restrict ourselves to Hermitian A and the symmetric Lanczos
decomposition

AQm = QmTm,

AQk = Qk+1T k = QkTk + βkqk+1e
T
k ∀ k < m.

We consider the methods Orthores, Orthomin and Orthodir. They simplify to short
recurrences.

We first consider the OR approach. The assembly of the Orthores variant is
obvious. The Orthomin and Orthodir variants require further thinking. We only
consider Orthomin.
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The direction vectors in the Orthomin variant have a special property. Remem-
ber that they are computed via

Pm = RmM
−H
m .

We observe that due to the orthogonality of the residuals, Dρ = RH
mRm is a diagonal

matrix.
We apply the matrix of direction vectors to both sides of A,

PH
mAPm =M−1

m RH
mARmM

−H
m =M−1

m RH
mRmCmM

−H
m =M−1

m DρLmDm.

The result is a lower triangular matrix. Since A is selfadjoint, this matrix is also
upper triangular and thus a diagonal matrix. We can state this relation alternatively
as

〈pi, Apj〉 = 0 ∀ i 6= j.

This orthogonality with respect to A is known as A-conjugacy.
When A is furthermore HPD (HND), A−1 uniquely defines

‖x‖A−1 ≡
√

〈x, x〉A−1 ≡
√

〈A−1x, x〉,

a scalar-product and a norm, the A−1-norm. The A−1-norm of the residual, i.e.,
the A-norm of the error,

‖rk+1‖A−1 = ‖A(x− xk+1)‖A−1 = ‖x− xk+1‖A

can be used in the local minimisation

‖rk − αkApk‖ = min .

The optimal αk in the A−1-norm is given by

αk =
〈Apk, rk〉A−1

〈Apk, Apk〉A−1

=
〈pk, rk〉
〈Apk, pk〉

.

Usually the alternative formula for αk is used,

αk =
〈Ark, rk〉A−1

〈Apk, Apk〉A−1

=
〈rk, rk〉
〈Apk, pk〉

.

The A-conjugacy fixes the choice of the βk ≡ −βk+1,k,

βk =
〈rk+1 − rk, Ark+1〉A−1

〈rk, Ark〉A−1

=
〈rk+1, rk+1〉
〈rk, rk〉

.

The method we just sketched here is known as the CG method, short, CG. The
name CG stands for conjugate gradients. The reason is that CG is usually defined
with the help of the auxiliary functional

f(x) =
1

2
xHAx− xHr0.

This function is real differentiable and the condition for a stationary point is equiv-
alent for x to be a solution of the system, i.e.

f ′(x) = Ax− r0 = 0.

The residuals are the gradients of the functional, and the search directions are
obtained by conjugating the residuals, thus conjugate gradients.
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input : A, b, x0

output: Rk, Pk, Lk, Dk, M
H
k

r0 ← b−Ax0, p0 ← r0

for k ∈ N0 do
αk ← 〈rk, rk〉/〈pk, Apk〉
xk+1 ← xk + αkpk
rk+1 ← rk − αkApk
βk ← 〈rk+1, rk+1〉/〈rk, rk〉
pk+1 ← rk+1 + βkpk

end for

Algorithm 3.12: CG, Omin variant

The local minimisation in the A−1-norm corresponds to the orthogonal approach
of OR, i.e., CG is equivalent to Orthores and thus FOM. The striking advantage of
using less matrix vector multiplies is superseded by the fact that CG now minimises
the error like MR.

The Orthomin variant of CG, or short, the Omin variant, follows as Algo-
rithm 3.12.

The MR approach is handled similarly. Orthomin for this class of matrices is
known as CR (conjugate residual method). We only consider the Orthomin variant
of CR. The algorithm for CR is given by Algorithm 3.13.

input : A, b, x0

output: Rk, Pk, Lk, Dk, M
H
k

r0 ← b−Ax0, p0 ← r0

for k ∈ N0 do
αk ← 〈Ark, rk〉/〈Apk, Apk〉
xk+1 ← xk + αkpk
rk+1 ← rk − αkApk
βk ← 〈Ark+1, rk+1〉/〈Ark, rk〉
pk+1 ← rk+1 + βkpk

end for

Algorithm 3.13: CR, Omin variant

The other methods, i.e., Orthores and Orthodir can also be applied. The resulting
variants of CG and CR are not that well-known.

Also a variant using LR decomposition of the tridiagonal matrix of the Lanczos
method is used. This method is named D-Lanczos (direct Lanczos) by Saad. It
corresponds to a simple scaling in ordinary CG (the Omin variant).

Due to the tridiagonal structure of the matrix in the Lanczos method, the long-
term recurrences of the general methods become short-term recurrences. We sum-
marise the properties of the three possible implementations of CG (and also CR).
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Remark 3.46 (Differences in the recurrences)

Orthodir, also known as Odir, is given by one three-term recurrence in the direc-
tion vectors pj and by two two-term recurrences in the residual vectors rj and
in the iterates xj .

Odir is immune to breakdowns, since the three-term recurrence still expands
the search space when the iterates stagnate. Odir applies to all selfadjoint
matrices.

Orthomin, also known as Omin, is given by three two-term recurrences in the
direction vectors pj , in the residual vectors rj and in the iterates xj .

Omin breaks down when one αj becomes zero, indicating that zero is in the
field of values of A. Omin in general applies only to HPD (HND) matrices.

Orthores, also known as Ores, is given by two three-term recurrences in both the
residual vectors rj and in the iterates xj .

Ores is equivalent to Omin. This can be seen by obtaining Ores from Omin
by removing the direction vector recurrence.

The connection between the Omin variant of CG and the symmetric Lanczos method
in matrix form

AQk −QkTk =Mk,

is given by

Mk =
(
−αCGk−1‖rk−1‖

)−1
rke

T
k

=

√

β CGk−1

−αCGk−1
qk+1e

T
k

≡ β Lanczosk qk+1e
T
k ,

α Lanczosk =
1

αCGk−1
+
β CGk−2

αCGk−2
.

The original CG and CR methods (the Omin variants) were developed indepen-
dently by Hestenes and Stiefel and published in ([HS52]). It is noteworthy that this
paper was published roughly the same time than Lanczos both papers appeared.

The connection between CG and the Lanczos method can be found in the books
of Householder (cf. [Hou75]) and Saad (cf. [Saa96]).

3.6.6 SymmLQ/MinRes

Odir is quite unstable, and due to the (implicit) triangular decomposition, the Omin
and Ores variants apply only to A HPD (HND).

A possible improvement is the use of pivoting or the Bunch-Kaufmann decom-
position. The latter variant is known as SymmBK . We will not discuss pivoting or
SymmBK any further.

Another and simpler cure is to proceed like in FOM/GMRES. We can compute
the (symmetric) Arnoldi decomposition using the Lanczos method,

AQm = QmTm,

AQk = Qk+1T k = QkTk + βkqk+1e
T
k ∀ k < m, (3.43)

and use orthogonal decomposition of Tk (T k) afterwards to compute the OR and
MR solutions.
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We first consider the OR approach. The decomposition used is a LQ decompo-
sition of Tm. We use a sequence of Givens rotations Gj ,

Gj ≡
(
cj sj
sj −cj

)

,

to erase the upper diagonal of Tm,

Tm = LmUm ≡ Lm
m−1∏

j=1





Ij−1
Gj

Im−j−1



 .

The lower triangular matrix Lm has only three non-zero diagonals.
The Givens rotations used imply that the LQ decompositions of previous steps

are given by

Tk = L̃kUk ≡ L̃k
k−1∏

j=1





Ij−1
Gj

Ik−j−1



 .

The next Givens rotation that decomposes Tk+1 only alters the last column of L̃k,
i.e., the diagonal element l̃kk. All other elements are not altered by the following
rotations, we have

L̃k =










l11
l21 l22

l31 l32
. . .

. . .
. . . lk−1,k−1

lk,k−2 lk,k−1 l̃kk










, lkk =

√

l̃2kk + β2k.

We define a new orthogonal basis Wm, given by

Wm = QmU
H
m .

Obviously the first k − 1 columns of the bases,

W̃k =
[
Wk−1, w̃k

]
= QkU

H
k ,

are equal to the first k − 1 columns of Wm.
Using this basis, the (symmetric) Arnoldi decomposition becomes

AWm = QmLm

AW̃k = QkL̃k + qk+1βke
T
k U

H
k .

The equations for the OR solution with unusual notation z̃k

Tkz̃k = ‖r0‖e1,

is transformed to the equations

L̃kzk ≡ L̃kUkz̃k = ‖r0‖e1.

We denote the ultimate solution vector of

Lmzm = ‖r0‖e1 by zm = ( ζ1 · · · ζm )
T
.

We observe that due to the Givens decomposition

zk = ( ζ1 · · · ζk−1 ζ̃k )
T
, where ck ζ̃k = ζk.
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The intermediate quantities may not be useful in representing the solutions, since
Tk and thus L̃k may be singular or badly conditioned. It is better to update the
solution in terms of the columns of Wk,

xk =Wkzk = xk−1 + ζkwk.

The kth CG iterate is given by a small correction to xk−1,

xCGk = xSymmLQk−1 + ζ̃kw̃k

= xSymmLQk−1 + ζkw̃k
/
ck.

The CG solution is computed solely in a last step when the desired accuracy has
been reached. An implementation of SymmLQ where the computation of the CG
solution occurs outside the main loop is given by Algorithm 3.14.

input : A, b, x0
output: Tk, Lk, Gj , Qk, . . .

r0 ← b−Ax0, q0 ← 0, β0 ← ‖r0‖, q1 ← r0/β0
c−1 ← 1, s−1 ← 0, c0 ← −1, s0 ← 0
ζ−1 ← 0, ζ0 ← −1
for k ∈ N do

Expand Arnoldi basis
rk ← Aqk
αk ← 〈qk, rk〉
rk ← rk − αkqk − βk−1qk−1
βk ← ‖rk‖
qk+1 ← rk/βk

Expand L-factor
l̃kk ← −ck−1αk − sk−1ck−2βk−1
lkk ←

√

l̃2kk + β2k
lk,k−1 ← sk−1αk − ck−1ck−2βk−1
lk,k−2 ← sk−2βk−1

Compute Givens rotation
ck ← l̃kk/lkk
sk ← βk/lkk

Expand SymmLQ basis
wk ← ckw̃k + skqk+1
w̃k+1 ← skw̃k − ckqk+1

Expand zk ← (zk−1, ζk)
ζk ← −(lk,k−2ζk−2 + lk,k−1ζk−1)/lkk
xk ← xk−1 + ζkwk

end for
xCGm ← xm−1 + ζmw̃m/cm

Algorithm 3.14: SymmLQ

The MR approach, similar to GMRES, uses QR factorisation. The matrix T k is
factorised,

T k = UH
k+1L

H
k .

The resulting factors correspond to the factors obtained in SymmLQ. This is an
implication of Tk being Hermitian. The minimal residual solution

zk = arg min
z∈Kk

‖T kz − ‖r0‖e1‖ = arg min
z∈Kk

‖LHk z − ‖r0‖Uk+1e1‖
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can be computed by backward substitution,

zk = L−Hk ‖r0‖ (Ik,k+1Uk+1e1) .

The left-hand side of this equation can be updated with the Givens rotations in-
volved, only the last elements have to be stored.

We additionally introduce the matrices

Vk = QkL
−H
k .

This corresponds to a transformation of the symmetric Arnoldi decomposition

AQm = QmTm

AQk = Qk+1T k = Qk+1U
H
k+1L

H
k

to a new Krylov decomposition in two bases. When we represent the solution in
the basis Vk instead of Qk we obtain Algorithm 3.15 for MinRes. We additionally
use the fact that βj ∈ R, i.e., that Tk is real symmetric, and thus the elements of
Lk are real.

input : A, x0, b

output: T k, Lk, Gj , Vk

r0 ← b−Ax0, p0 ← r0

for k ∈ N do
q ← Aqk
αk ← qHqk
q ← q − αkqk − βk−1qk−1
βk ← ‖q‖
l̃kk ← −ckαk − ckck−1βk−1
lkk ←

√

l̃2kk + β2k
lk,k−1 ← skαk − ckck−1βk−1
lk,k−2 ← sk−1βk−1
ck+1 ← l̃kk/lkk
sk+1 ← βk/lkk
vk ← (qk − lk,k−2vk−2 − lk,k−1vk−1)/lkk
xk ← xk−1 + ck+1ηkvk
ηk+1 ← sk+1ηk

end for

Algorithm 3.15: MinRes

Not all basis vectors qj and vj have to be stored, it suffices to store the last three
vectors. The same holds true for the inverse of Lk and the right-hand side. Thus
MinRes and SymmLQ can be implemented using solely short-term recurrences.

3.6.7 Biores/Biomin/Biodir

The non-symmetric Lanczos method computes two Hessenberg decompositions in
the bi-orthogonal bases Qm and Q̂m,

AQm = QmTm, AHQ̂m = Q̂mT̂m
AQk = Qk+1T k, AHQ̂k = Q̂k+1T̂ k

where T̂m ≡ THm and Q̂H
mQm = I.
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We can apply Orthores, Orthomin and Orthodir to both decompositions. The re-
sulting three new methods are usually termed Biores, Biomin and Biodir. Some au-
thors refer to them as Lanczos/Orthores, Lanczos/Orthomin and Lanczos/Orthodir.

We first consider Biores and Biomin. Biores and Biomin are based on scaled
tridiagonals with column sums equal zero. The scaled decompositions are denoted
by

ARk = Rk+1T
(0)
k and AHR̂k = R̂k+1T̂

(0)

k .

As before the scaled basis vectors are the residuals, suppose they are given by

Rm = QmDρ and R̂m = Q̂mDρ̂.

We will not dicuss Biores any further. We just mention that Biores breaks down
when one matrix Tk is singular. In contrast to the orthogonal approach this does
not necessarily imply that zero is in the field of values of A.

Orthomin and Orthodir use a set of direction vectors. The undefined scalars are
obtained by minimisation along the direction vectors. Local minimisation is still
possible, but the recurrence coefficients needed for the global minimisation turn out
to be not computable.

The resort is in the LDMT decompositions of T
(0)
m and T̂

(0)
m , given by

T (0)m = L1DmM
H
m and T̂ (0)m = L1D̂mM̂

H
m .

The LDMT decompositions are used to define the direction vectors pj and p̂j ,

Rm = PmM
H
m and R̂m = P̂mM̂

H
m .

We observe that the direction vectors p̂j , pj are A bi-conjugate, since

P̂H
mAPm = M̂−1

m R̂H
mARmM

−H
m = M̂−1

m Dρ̂DρL1Dm

= D̂H
mL

T
1Dρ̂DρM

−H
m .

The bi-orthogonality and bi-conjugacy relations suffice to derive a unique recur-
rence. This corresponds to the self-adjoint CG case, where we observed that the
direction vectors in the Orthomin variant are A-conjugate.

The resulting set of equations is given by

APkD
−1
k = Rk+1Lk, Rk = PkM

H
k ,

AP̂kD̂
−1
k = R̂k+1Lk, R̂k = P̂kM̂

H
k .

We have to fix the unknowns in the matrices Dm and D̂m, Mm and M̂m. Let Dm

and D̂m be given by

D−1m =





α0
. . .

αm−1



 and D̂−1m =





α̂0
. . .

α̂m−1



 .

This implies that the residual recurrences are given by

rk+1 = rk − αkApk, r̂k+1 = r̂k − α̂kAH p̂k.

By the bi-orthogonality

0 = 〈r̂k, rk+1〉 = 〈r̂k, rk − αkApk〉, i.e., αk =
〈r̂k, rk〉
〈r̂k, Apk〉

.
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Analogously

0 = 〈rk, r̂k+1〉 = 〈rk, r̂k − α̂kAH p̂k〉, i.e., α̂k =
〈rk, r̂k〉
〈rk, AH p̂k〉

.

We know that Mm and M̂m are both bidiagonal with unit diagonal. Assume they
are given by

MH
m =








1 −β0
1

. . .

. . . −βm−2
1







, M̂H

m =








1 −β̂0
1

. . .

. . . −β̂m−2
1







.

This implies that the direction vector recurrences are given by

pk+1 = rk+1 + βkpk, p̂k+1 = r̂k+1 + β̂kp̂k.

We use the A bi-conjugacy of the direction vectors to simplify the representation of
αk,

αk =
〈r̂k, rk〉
〈r̂k, Apk〉

=
〈r̂k, rk〉

〈p̂k − β̂k−1p̂k−1, Apk〉
=
〈r̂k, rk〉
〈p̂k, Apk〉

.

The corresponding simplification of α̂k proves that α̂k = αk.
The bi-conjugacy is used to obtain a representation of βk,

0 = 〈p̂k, Apk+1〉 = 〈p̂k, A(rk+1 + βkpk)〉, i.e., βk = −〈p̂k, Ark+1〉〈p̂k, Apk〉
.

This representation is changed using the bi-orthogonality, the relation

r̂k+1 = r̂k − αkAH p̂k ⇔ AH p̂k = − 1

αk
(r̂k+1 − r̂k)

and the expression for αk into

βk =
1

αk

〈r̂k+1 − r̂k, rk+1〉
〈p̂k, Apk〉

=
〈r̂k+1, rk+1〉
〈r̂k, rk〉

.

Similarly we obtain that β̂k = βk.
Biomin is commonly known as bi-conjugate gradients or BiCG, sometimes as

BCG. BiCG was already contained in Lanczos first paper. The form used here was
derived by Fletcher. An algorithm for BiCG is given in Algorithm 3.16.
Observe that BiCG solves two systems of equations, one with A as system matrix,
and one with AH as system matrix. A lucky breakdown of the left recurrence is
no longer a lucky one, since we are mostly interested in solving the right system of
equations.

The BiCG recurrences can be expressed in alternate matrix form,

rk+1 = rk − αkApk ⇔ APkDα = Rk+1Lk,

r̂k+1 = r̂k − αkAH p̂k ⇔ AH P̂kDα = R̂k+1Lk,
pk+1 = rk+1 + βkpk ⇔ Rk+1 = Pk+1Lβ ,

p̂k+1 = r̂k+1 + βkp̂k ⇔ R̂k+1 = P̂k+1Lβ .

This can be transformed to the two three-term recurrence form of the non-symmetric
Lanczos method.

We will not consider Biodir. All three methods use short recurrences like the
corresponding variants of CG, i.e., like Ores, Omin and Odir.
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input : A, x0, b, x̂0, b̂

output: Xk, X̂k, Rk, R̂k, Pk, P̂k, Dα, Lβ

r0 ← b−Ax0, p0 ← r0
r̂0 ← b̂−AH x̂0, p̂0 ← r̂0

for k ∈ N0 do
Compute αk:
αk ← 〈r̂k, rk〉/〈p̂k, Apk〉

Update the solution vectors:
xk+1 ← xk + αkpk
x̂k+1 ← x̂k + αkp̂k

Update the residual vectors:
rk+1 ← rk − αkApk
r̂k+1 ← r̂k − αkAH p̂k

Compute βk:
βk ← 〈r̂k+1, rk+1〉/〈r̂k, rk〉

Update the direction vectors:
pk+1 ← rk+1 + βkpk
p̂k+1 ← r̂k+1 + βkp̂k

end for

Algorithm 3.16: BiCG, Omin variant

We remark that the algorithm for BiCG might also have been obtained by
consideration of preconditioned CG for the system

(
0 A
AH 0

)(
x̂
x

)

=

(
b
b̂

)

, P =

(
0 I
I 0

)

.

Note that the preconditioner P is an indefinite preconditioner.

3.6.8 QOR/QMR

We can use the Lanczos decomposition directly to solve the right system of equa-
tions. The QOR and QMR approaches are similar to FOM and GMRES, with the
exception of the non-orthogonal bases.

The Galerkin approach QOR is similar to the symmetric variant SymmLQ,
i.e., we compute the Lanczos decompositions and perform an LQ decomposition.
Again there is no need to store all basis vectors and rotations. This approach is
mathematical equivalent to the BiCG variants Biores, Biomin and Biodir. Usually
Biomin is preferred.

We consider the approach of computing the solution of the overdetermined sys-
tem

T kzk = ‖r0‖e1 (3.44)

with minimal residual. This minimal residual is in general not the true residual,
since we use non-orthogonal bases in the non-symmetric Lanczos method. Never-
theless, a residual is minimised. This residual is usually termed quasi-residual.

The relation between residual and quasi-residual is given by

Axk − r0 = Qk+1(T kzk − ‖r0‖e1).

The minimal residual solution to the overdetermined system (3.44) is computed
by QR decomposition of T k. The QR decomposition is computed with Givens
rotations. The algorithm is along the lines of general GMRES and symmetric
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MinRes. Similar to MinRes, we can throw away old matrix entries, old basis vectors
and old Givens rotations.

The method we sketched is termed quasi-minimal residual or QMR. QMR was
invented by Freund and Nachtigal. We decided to give only an abstract algorithm
for QMR, Algorithm 3.17.

input : A, x0, b

output: T k, Qk+1, Q̂k, Uk, Rk, zk, xk

r0 ← b−Ax0, q1 ← r0/‖r0‖
for k ∈ N do

Update the Lanczos decomposition:
AQk = Qk+1T k

Update the minimal residual equation:
zk = argminz ‖T kz − ‖r0‖e1‖

Update the kth approximation:
xk = Qkzk

end for

Algorithm 3.17: QMR

Freund and Nachtigal also implemented a recurrence based on a splitting of the
matrix T k. This variant uses two coupled short-term recurrences.

3.6.9 Look-Ahead

One main problem with nonsymmetric short-term recurrences is the possibility of
serious breakdowns of the underlying recurrence. We note that even though the
next coefficients are not defined, the space is still expanded.

We may think of a method that expands the Krylov space for a while, and then
uses pivoting in the underlying triangular decomposition of the Hankel matrix. The
class of methods we just defined are known as look-ahead methods.

It may happen that a pivoting cures the breakdown only when reaching the
dimension of A. This case will be termed incurable breakdown. All other cases are
termed curable breakdown.

Numerical experiments show that most serious breakdowns are curable. The
number of look-ahead steps necessary is in the average at most four.

Different look-ahead techniques have been obtained by the connection of the
underlying unsymmetric Lanczos method to Padé tables, rational approximation,
block-polynomials and FOP (formal orthogonal polynomials). Despite all effort no
ultimate form of look-ahead has developed yet.

We only remark that most look-ahead methods do not destroy the Hessenberg
structure of the Krylov decomposition, and thus fit into our framework. The for-
merly tridiagonal matrices fill up, stairs appear on the upper part.

3.6.10 Lanczos-Type Product Methods

BiCG has very irregular convergence properties. The sizes of residuals and iterates
vary greatly in magnitude. The need for the Hermitian of A turns out to be a severe
restriction since in many cases only matrix-vector products and not the entries of
A are accessible.

The basis vectors can be expressed as polynomials in A times the starting vector.
These polynomials are the characteristic polynomials of the Hessenberg matrices
involved, and thus the polynomials are almost the same for both the left and right
recurrence.
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Suppose the residual vectors rk, r̂k and the direction vectors pk, p̂k generated
by BiCG are given by the polynomial representations

rk = ρk(A)r0, r̂k = ρk(A
H)r̂0,

pk = πk(A)p0, p̂k = πk(A
H)p̂0.

We only need the inner products of the residual vectors and the direction vectors.
Sonneveld observed that the inner products can be transformed to a form without
the need for AH by squaring the polynomials,

〈r̂k, rk〉 = 〈ρk(AH)r̂0, ρk(A)r0〉 = 〈r̂0, ρ2k(A)r0〉,
〈p̂k, pk〉 = 〈πk(AH)p̂0, πk(A)p0〉 = 〈p̂0, π2k(A)p0〉.

This allows us to express the coefficients of the recurrence with the aid of the left
residuals and direction vectors and one additional right vector, since p̂0 = r̂0. We
obtain a new method when we can find a recurrence of the squared polynomials.

The BiCG polynomials fulfil the recurrences

ρk+1 = ρk − αkλπk, πk+1 = ρk+1 + βkπk.

The squared polynomials fulfil the recurrences

ρ2k+1 = (ρk − αkλπk)2 = ρ2k − 2αkλρkπk + α2kλ
2π2k,

π2k+1 = (ρk+1 + βkπk)
2

= ρ2k+1 + 2βkρk+1πk + β2kπ
2
k.

We need recurrences for the mixed terms. It is sufficient to use a third recurrence,
since

ρkπk = ρk(ρk + βk−1πk−1) = ρ2k + βk−1ρkπk−1,

He goes on to define the recurrence vectors

rk = ρ2k(A)r0, pk = π2k(A)p0, qk = ρk+1(A)πk(A)r0.

The algorithm sketched is named Conjugate Gradient Squared, short CGS, because
of the squaring of the (Bi)CG polynomials. Using solely three recurrence vectors
the algorithm looks as follows,

rk+1 = rk − αkA(2rk + 2βk−1qk−1 − αkApk),
qk = rk + βk−1qk−1 − αkApk,
pk+1 = rk+1 + 2βkqk + β2kpk.

(3.45)

For reasons of efficiency he sets uk = rk + βk−1qk−1. We state the resulting CGS
recurrences together with the alternate matrix form,

qk = uk − αkApk ⇔ Qk = Uk −APkDα

xk+1 = xk + αk(uk + qk) ⇔ Xk+1Lk = −(Uk +Qk)Dα

rk+1 = rk − αkA(uk + qk) ⇔ Rk+1Lk = A(Uk +Qk)Dα

uk+1 = rk+1 + βkqk ⇔ Uk+1 = Rk+1 +Qk+1Nβ

pk+1 = uk+1 + βk(qk + βkpk) ⇔ Pk+1 = Uk+1 +Qk+1Nβ + Pk+1Nβ2 .

The final version of the algorithm for CGS is given by Algorithm 3.18.
These recurrences can not be transformed to a Hessenberg decomposition solely in
Rk. This becomes obvious when looking at the expansion tree

r0, u0, p0 ∈ K1, q0 ∈ K2
r1, u1, p1 ∈ K3, q1 ∈ K4
r2, u2, p2 ∈ K5, q2 ∈ K6.
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input : A, x0, b, r̂0
output: Xk, Rk, Qk, Pk, Uk, Lk, Dα, Nβ , Nβ2

r0 ← b−Ax0, p0 ← r0, u0 ← r0

for k ∈ N0 do
αk ← 〈r̂0, rk〉/〈r̂0, Apk〉
qk ← uk − αkApk
xk+1 ← xk + αk(uk + qk)
rk+1 ← rk − αkA(uk + qk)
βk ← 〈r̂0, rk+1〉/〈r̂0, rk〉
uk+1 ← rk+1 + βkqk
pk+1 ← uk+1 + βk(qk + βkpk)

end for

Algorithm 3.18: CGS

The residuals rj are only defined in Krylov subspaces with odd dimensions. The
recurrences can be expressed as a Hessenberg decomposition in the mixed basis
Rk, Qk. We denote the basis by W2k, i.e we define the matrix

W2m =
[

r0, q0, . . . , rm, qm

]

.

This defines the Hessenberg decomposition

AW2m = W2mC2m

AWk = Wk+1Ck ∀ k < 2m

in implicit form. The coefficients of the Hessenberg matrix are never explicitly given.
They may be constructed by the recurrences. It is obvious that they are given by
algebraic expressions in the CGS coefficients αj , βj , j ∈ m.

The coefficients may be computed by removing pk from the set of recurrences
(3.45). We use induction to obtain

pk = β2k−1pk−1 + rk + 2βk−1qk−1

=
k∑

i=0

i∏

j=1

β2k−j(rk−i + 2βk−1−iqk−1−i).

This representation of pk is inserted into the remaining two recurrences.
This is an interesting case of a Hessenberg decomposition where the Hessenberg

matrix is structured and not sparse, i.e., not tridiagonal, banded or blocked.
CGS is a Lanczos-type product method, short LTPM. Lanczos-type product

methods are based on the non-symmetric Lanczos algorithm and use products of
polynomials for the recurrence of the residuals. Another example of a Lanczos-type
product method is BiCGSTAB (BiCG Stabilised) by van der Vorst. BiCGSTAB is
based on the recurrence

rk = ρk(A)ψk(A), ψk+1(λ) = (1− ωkλ)ψk(λ),

where ρk is the usual polynomial for the residual recurrence of BiCG. The first
polynomial ψ0 is assumed constant.

The value of wk is chosen to minimise the residual

ωk = argmin
ω
‖(I − ωA)(rk − αkApk)‖.
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input : A, x0, b, r̂0
output: Xk, Rk, Pk, Qk, . . .

r0 ← b−Ax0, p0 ← r0

for k ∈ N0 do
αk ← 〈r̂0, rk〉/〈r̂0, Apk〉
qk ← rk − αkApk
ωk ← 〈qk, Aqk〉/〈Aqk, Aqk〉
xk+1 ← xk + αkpk + ωkqk
rk+1 ← qk − ωkAqk
βk ← (αk〈r̂0, rk+1〉)/(ωk〈r̂0, rk〉)
pk+1 ← rk+1 − βk(pk − ωkApk)

end for

Algorithm 3.19: BiCGSTAB

We will not go further into the details. The final algorithm for BiCGSTAB is given
by Algorithm 3.19.
Again we consider the expansion tree for the BiCGSTAB recurrences,

r0, p0 ∈ K1, q0 ∈ K2,
r1, p1 ∈ K3, q1 ∈ K4,
r2, p2 ∈ K5, q2 ∈ K6.

We conclude that again we have implicitly defined a Hessenberg decomposition in
the basis W2k,

W2m =
[

r0, q0, . . . , rm, qm

]

.

The coefficients of the Hessenberg matrix may be derived by removing the depen-
dency on pk. This can be done by induction on the equation

pk = rk + βk−1(pk−1 − ωk−1Apk−1).

The resulting matrix depends algebraically on the recurrence coefficients.
Other Lanczos-type product methods include BiCGstab(l), which is based on

higher degree polynomials, CGS2, shifted CGS and Transpose-Free QMR, short
TFQMR. We remark that TFQMR is not connected to QMR. TFQMR is obtained
by consideration of the implicit Hessenberg decomposition we already noted. The
idea behind TFQMR is to transform every second vector, which is not a residual
for the original system, to a residual in the original system. The coefficients of the
recurrence are chosen such that they are minimisers for the quasi-residuals.

LTPMs are distinguished by the second polynomial used in the recurrence of
the residual vectors. They are also referred to as smoothing techniques, since they
smooth the irregular behaviour of BiCG.

All these methods can be transformed to a Hessenberg decomposition by intro-
ducing larger basis matrices with auxiliary vectors. The coefficients of the Hessen-
berg matrices are defined implicitly by the recurrence coefficients.

3.6.11 CGNR/CGNE

The methods based on the Arnoldi and non-symmetric Lanczos decompositions
apply to general matrices. But these methods have limitations. The long-term
recurrences suffer from severe time and memory limitations. The short-term recur-
rences based on the non-symmetric Lanczos decomposition suffer from breakdown
and irregular convergence.
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None of these problems occur in case A is Hermitian. The short-term recurrences
based on the symmetric Lanczos decomposition impose no restrictions on storage
and time and are immune to breakdown.

We want to obtain short-term recurrences without breakdown for general matri-
ces. We consider the normal equations of type 1 and 2,

AHAx = AHr0 and AAHy = r0, where AHy = x.

In both cases the resulting system has a system matrix that is HPD. The solutions
of both systems are the solution of the original system.

We apply CG with small modifications to solve these systems. The resulting
two methods are termed CGN methods. CGN stands for CG applied to the normal
equations.

The idea of using CG on the normal equations of type 1 was already discussed
by Hestenes and Stiefel. The resulting method is termed CGNR. CGNR minimises
the residual, since CG minimises the error in the norm

‖xk −A−1r0‖AHA = ‖Axk − r0‖ = ‖rk‖.
We consider the Omin variant of CG. CGNR can be simplified. We observe that
the residual of the normal equation is given by

wk ≡ AHb−AhAxk = AH(b−Axk) = AHrk.

The notation wk should remind of wrong residual.
We define sk ≡ Apk. The computation of αk in the CG method turns into

αk =
〈wk, wk〉
〈AHApk, pk〉

=
〈wk, wk〉
〈Apk, Apk〉

≡ 〈wk, wk〉〈sk, sk〉
This enables us to express the recurrences in the residuals rk. The resulting algo-
rithm for CGNR is given by Algorithm 3.20.

input : A, x0, b

output: Rk, Wk, Sk, . . .

r0 ← b−Ax0, w0 ← AHr0, p0 ← w0

for k ∈ N0 do
sk ← Apk
αk ← 〈wk, wk〉/〈sk, sk〉
xk+1 ← xk + αkpk
rk+1 ← rk − αksk
wk+1 ← AHrk+1
βk ← 〈wk+1, wk+1〉/〈wk, wk〉
pk+1 ← wk+1 + βkpk

end for

Algorithm 3.20: CGNR

When we use the normal equations of type 2, we obtain the method known as CGNE.
CGNE was derived by Craig and is also known as Craig’s method. CGNE minimises
the error, since CG minimises the error of the normal equation approximation in
the norm

‖yk − y‖AAH = ‖xk − x‖.
Here we denoted the kth approximation to the solution of the normal equation by
yk and defined xk ≡ AHyk. Also CGNE can be simplified. The residual of the
normal equation is the original residual, since

rk = b−Axk = b−AAHyk.
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Denote the direction vectors by sk. Define pk ≡ AHsk. Then the computation of
αk is given by

αk =
〈rk, rk〉

〈AAHsk, sk〉
=

〈rk, rk〉
〈AHsk, AHsk〉

≡ 〈rk, rk〉〈pk, pk〉
.

We drop the update of yk and use solely the update of the desired solution xk,

yk+1 = yk + αksk ⇔ xk+1 = xk + αkA
Hsk = xk + αkpk

We can get rid of the direction vectors sk, since the update of the direction vectors
is given by

sk+1 = rk+1 + βksk ⇔ pk+1 = AHrk+1 + βkpk.

Algorithm 3.21 is the resulting implementation of CGNE.

input : A, x0, b

output: Xk, Rk, Pk, . . .

r0 ← b−Ax0, p0 ← AHr0

for k ∈ N0 do
αk ← 〈rk, rk〉/〈pk, pk〉
xk+1 ← xk + αkpk
rk+1 ← rk − αkApk
βk ← 〈rk+1, rk+1〉/〈rk, rk〉
pk+1 ← AHrk+1 + βkpk

end for

Algorithm 3.21: CGNE

We remark that despite the fact that both algorithms never explicitly form the
normal equations, an implicit squaring of the condition number can be observed in
praxis.

3.7 Krylov Methods and Preconditioning

Krylov methods are based on a starting vector and a matrix to span the Krylov
space. The matrix used to span the Krylov space in most cases is the matrix of
some inverted, shifted, or more generally preconditioned problem.

Preconditioning is mainly used in context of linear systems of equations. We
distinguish between left, right and two-sided preconditioning.

Left preconditioning is the multiplication of the system of equations with a ma-
trix Pl,

PlAx = Plb.

Left preconditioning tries to achieve PlA ≈ I.
Right preconditioning substitutes the solution vectors with pre-multiplied vectors

y,
APry = b, Pry = x.

Right preconditioning tries to achieve APr ≈ I.
Two-sided preconditioning uses both ideas of preconditioning,

PlAPru = b, Pru = x.

Two-sided preconditioning tries to achieve PlAPr ≈ I. This form of preconditioning
comes mainly in symmetric fashion, for instance when the preconditioning matrices
are the factors of an incomplete Cholesky factorisation.
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Preconditioning can be applied to all methods. It is never necessary to form the
preconditioned matrix explicitly, mostly we use an approximation to A and have to
solve a linear system with this approximation in every step.

Often used preconditioners include incomplete factorisations, like the ILU, ICC
and ILQ preconditioners. Another common choice is one or more steps of a basic
iterative method, like Jacobi, SOR or SSOR. Polynomials in A are used as pre-
conditioners. These choices usually have a small defect in the solution of the linear
system with the preconditioning matrix.

Another Krylov method may be used as preconditioner. This choice leads to
methods known as inner-outer iterations. Here the size of the defect is varying from
step to step. It is better for the analysis, to express the complete process as one
new single Krylov method.

Very simple preconditioners in the solution of the eigenproblem are shifts. To-
gether with inversion we obtain the shift and invert approach often used in Krylov
methods for the eigenproblem. This may be generalised by applying non-constant
shifts. The methods obtained are referred to as rational Krylov methods.

Krylov methods are always used with preconditioning. We will not consider
preconditioning in our approach, since this would make the error analysis almost
intractable.



132 CHAPTER 3. KRYLOV METHODS IN INFINITE PRECISION



Chapter 4

A Unified Approach

At first glance the behaviour of Krylov methods in finite precision is entirely dif-
ferent from the behaviour in infinite precision. This holds true especially when we
consider short-term recurrences. Surprisingly we still obtain good approximations.

Common to all Krylov methods is that the underlying Krylov decomposition
is fulfilled approximately. The other properties, like orthogonality, duality and A-
conjugacy of vector recurrences, are more or less no longer present. This has severe
impacts. Finite precision Krylov eigensolvers often return multiple instances of
simple eigenvalues. The bounds indicating that a Ritz value has converged to a
certain accuracy may grow, as if the Ritz value starts to diverge. Finite precision
Krylov linear system solvers still compute approximations with a small residual. In
many cases the number of steps necessary is a moderate multiple of the dimension
of the matrix.

In infinite precision the derivation of the methods and the convergence analysis
was based on (orthogonal) polynomials and the connection to optimisation. In
finite precision we decided to focus on a matrix analysis approach based on Krylov
decompositions. First we classify the Krylov methods. Then we show how our
Krylov decomposition approach can be used for describing the behavior of finite
precision Krylov methods. We show why and how orthogonality is lost, and develop
recurrences and backward formula describing the propagation of the error terms.

4.1 Classification

All Krylov methods introduced in Chapter 3 are explicitly, or at least implicitly,
based on Hessenberg decompositions,

AQm = QmCm
AQk = Qk+1Ck = QkCk + qk+1ck+1,ke

T
k

≡ QkCk +Mk ∀ k < m.

The matrix Mk collecting the newest quantities is introduced for reasons of brevity.
The matrix Cm is given by the projection Q̂H

mAQm, with a second basis Q̂m. The
methods can be classified according to several respects.

Depending on the projection, i.e. on the bases used, we distinguish between
singular, orthogonal and dual methods. Depending on the field of application we
distinguish between eigenproblem solvers and linear system solvers. The linear
system solvers are divided further into QOR and QMR methods. Depending on the
length of the vector recurrence used, we distinguish between short-term recurrences
and long-term recurrences.

133
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These distinctions suffice to classify the basic Krylov methods. The resulting
classification scheme is given as Table 4.1. The singular projections are left out.

eigenproblem solvers

orthogonal dual

short recurrence symmetric Lanczos dual Lanczos
long recurrence Arnoldi —

linear system solvers (QOR)

orthogonal dual

short recurrence SymmLQ/CG BiCG
long recurrence FOM/Orthores —

linear system solvers (QMR)

orthogonal dual

short recurrence MinRes/CR QMR
long recurrence GMRES/Orthodir/Orthomin —

Table 4.1: Classification of the basic Krylov methods

There are recurrences that use a single Hessenberg decomposition for constructing a
basis, and methods that use two Hessenberg decompositions to construct two bases.

Using block matrices all basic methods can be transformed into one simple
matrix recurrence. We assume the step k fixed and leave the subscripts out. After
we have transformed the linear system solvers to their eigenproblem counterpart,
all methods fulfil

(
A 0
0 CH

)(
0 Q̂
QH 0

)

−
(

0 Q̂
QH 0

)(
AH 0
0 C

)

=

(
0 M

−M̂H 0

)

.

In case of an orthogonal method Q̂ = Q and QHQ = I, in case of a bi-orthogonal
method Q̂HQ = I with a second matrix Q̂. In case of a long-term recurrence the
matrix C will be Hessenberg, in case of a short-term recurrence C = T will be
tridiagonal.

Not contained in this classification scheme are generalisations, like the modified
CG methods based on the normal equations, CGNE and CGNR. Also not contained
is the important class of Lanczos type product methods (LTPMs).

The Lanczos type product methods are based on the dual Lanczos method.
They have in common that they do not use the transpose (Hermitian) of A, and
use short recurrences. LTPMs are classified according to the polynomial they use
to construct the sequence of residual vectors.
The residual polynomial of an LTPM is composed as a product of the ordinary
residual polynomial ρk and a second polynomial φk. A subclass, the quasi-minimal
residual Lanczos-type product methods, or QMRLTPMs, minimise and iterate in
terms of the quasi-residual instead of terms of the true residual.

The orthogonal short-term recurrences are the most desirable ones. The meth-
ods we stated only apply to Hermitian A. For many normal matrices short-term
recurrences are known, for instance for symplectic or skew-symmetric matrices.

Faber and Manteuffel have analysed the conditions for the existence of an or-
thogonal short-term recurrence in detail. The results may be found in the Faber
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squared variants

LTPM relation of second polynomial to original polynomial

CGS φk = ρk
CGS2 φk = ρ̃k

shifted CGS φk = (1− αkt)ρk−1

stabilised variants

LTPM recursion formula for second minimising polynomial

BICGSTAB φk = (1− αkt)φk−1
BICG×MR2 φk = (βk + γkt)φk−1 + (1− βk)φk−2

BICGSTAB2 φk =

{
(1− αkt)φk−1, k even
(βk + γkt)φk−1 + (1− βk)φk−2, k odd

BiCGstab(`) φk =







(1− αkt)φk−1, k mod ` = 1
(βk + γkt)φk−1 + (1− βk)φk−2, k mod ` = 2

...
...

`–dimensional minimisation, k mod ` = `

QMR variants

LTPM minimises the quasi-residual polynomial of

TFQMR CGS
QMRCGSTAB BICGSTAB

Table 4.2: Classification of the Lanczos-type product methods

and Manteuffel paper (cf. [FM84]) and in the books of Greenbaum and Saad (cf.
[Gre97, Saa96]). The results are disillusioning, since only for very special classes of
matrices such recurrences can exist. Hence, only orthogonal or short-term recur-
rences can be used on general A.

It can be shown that in principle for every matrix A there exist two starting
vectors such that two dual short-term recurrences work without any breakdown,
but there seems to be no easy way to construct these vectors without knowing the
solution one wishes to compute. Nevertheless, some look-ahead technique would
have to be used in any case, to ensure the numerical stability.

In the analysis of finite precision Krylov methods another classification scheme
is valuable. In this case we will distinguish between methods directly based on
Hessenberg decompositions, methods based on two recurrences similar to Orthomin,
and LTPMs. The errors in this three classes behave similar and can, to some extent,
be analysed simultaneously. This will be done in part in the next section.

4.2 Finite Precision Krylov Methods

We already know that infinite precision Krylov methods are based on Hessenberg
decompositions,

AQm = QmCm

AQk = Qk+1Ck = QkCk + qk+1ck+1,ke
T
k ∀ k < m. (4.1)

What about the finite precision Krylov methods?
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In this section we analyse how the Hessenberg decomposition framework changes
due to execution in finite precision. In finite precision the order of execution is
crucial. To emphasise this, we re-order the Hessenberg decomposition,

Mk ≡ qk+1ck+1,keTk = AQk −QkCk. (4.2)

We refer to equation (4.2) as the governing equation of the Krylov method.

input : A, r0
output: Ck, Qk for all k ∈ N

for k ∈ N do
Compute the next iterate: rk ← Aqk
Compute the next column of moments:
for j ∈ J(k) do

cjk ← 〈q̂j , rk〉
end for
Compute the purged residual:
rk ← rk −

∑

j∈J(k) qjcjk
Compute the normalisation constant
and the new basis vector:
qk+1ck+1,k ← rk

end for

Algorithm 4.1: Direct Hessenberg decomposition

A broad class of methods uses the recurrence (4.1) directly to compute the basis
vectors Qk and the projected matrix Ck. This class compromises of the methods
for the eigenproblem and many methods for the solution of linear systems. The
Hessenberg decomposition together with a bi-orthonormal basis Q̂m is the means of
computation. We can represent all methods in this class in the abstract framework
given by Algorithm 4.1.

The notion J(k) is used to denote a set of indices. In case of a long-term
recurrence like the Arnoldi algorithm, J(k) = k. In case of a short-term recurrence
like the Lanczos algorithm, J(k) = {k − 1, k}. In case of restarts and truncation
the sets J(k) vary.

Methods implemented in this manner have two essential features. First, the
non-zero entries (j, k) (j ∈ J(k)) of the last computed column of Ck will be ap-
proximately equal to the corresponding entries in the exact projection, i.e.

〈q̂j , Aqk〉 ≈ cjk or eTj

(

Q̂H
k AQk − Ck

)

ek ≈ 0.

In long-term recurrences the non-zero entries are just the upper triangular part.
In short-term recurrences the non-zero entries are given by the main and upper
diagonal. Using error analysis, we can prove the forward error bound

|cjk − 〈q̂j , Aqk〉| ≤ γ2n|q̂Hj ||A||qk| ∀ j ∈ J(k).

Second, the vector recurrence

qk+1ck+1,k = Aqk −
∑

j∈J(k)

qjcjk + fk

will be fulfilled approximately. This means that the vector fk, introduced for bal-
ancing the local errors, is small. The actual size depends on the method. By
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application of Lemma 1.7, that is, Lemma 8.4 in Higham ([Hig96], p. 154) we
obtain the bound

|fk| ≤ γn|A||qk|+ γnnz(ck)|Qk+1||ck|
≤ γn|A||qk|+ γk+1|Qk+1||ck|.

This bound holds regardless of order of evaluation.
These two features imply two other. The recurrence can be interpreted as finite

precision two-sided Gram-Schmidt. This implies that the computed vectors qk+1
are approximately bi-orthogonal to the set {q̂j} , j ∈ J(k),

q̂Hj qk+1 ≈ 0.

This will be termed local orthogonality (local duality). This local orthogonality
ensures that the subdiagonal elements of the Hessenberg matrices are to some extent
close to the moments. We will not quantify this closeness because of its problem
dependence.

From now on we focus on our matrix approach. We introduce the error matrix

Fk =
[

f1, . . . , fk

]

collecting the local errors and obtain the finite precision variant of the governing
equation,

Mk = AQk −QkCk + Fk ⇔ AQk −QkCk =Mk − Fk. (4.3)

This proves that the quantities computed in a finite precision Krylov method fulfil
a finite precision analogue of a Hessenberg decomposition.

The first form of (4.3) shows how A, Qk and Ck and the unknown error term
Fk form the rank-one matrix Mk. The second form shows that when regarded
as subspace equation in Qk, the residual is composed of Mk (rank-one, changing)
and Fk (small, trailing columns unaltered). This equation is pictorially given by
figure 4.1.

A Qk − Qk

Ck

= 0 − Fk .

Figure 4.1: The governing equation in finite precision

The error term Fk can be bounded as follows:

Theorem 4.1 Let A ∈ Kn×n. Suppose that a Krylov algorithm based on the direct
approach of Algorithm 4.1 has been used and results in the perturbed Hessenberg
decomposition

AQk −Qk+1Ck = −Fk.
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Then the error matrix Fk can be bounded by

|Fk| ≤ γn|A||Qk|+ |Qk+1||Ck|Dγ

≤ γn|A||Qk|+ γk+1|Qk+1||Ck|
≤ γmax(n,k+1) (|A||Qk|+ |Qk+1||Ck|) ,

regardless of order of evaluation. Here the diagonal matrix Dγ is defined as

Dγ =






γ2
. . .

γk+1




 .

Furthermore, this error analysis is independent of a right diagonal scaling. This
feature can be used to scale the basis vectors to unit length.

Proof. The proof follows by iterated application of Lemma 1.7, i.e. by Lemma 8.4
in Higham. Note that the bounds can be sharpened in case of sparse A, since we
did not exploit the sparsity of A. ¤

This approach is directly comparable to the error analysis approach when consid-
ering GE or other triangular decompositions (cf. [Hig96]). The main difference
between the Krylov subspace method error analysis and the GE error analysis is
the lack of such notion as a growth factor in Krylov subspace methods.

Remark 4.2 The CGS and MGS variants of Arnoldi, most Lanczos variants and
methods based on those are based on Algorithm 4.1, e.g. FOM, GMRES, MinRes,
SymmLQ.

Furthermore, Orthores and Orthodir are based on Algorithm 4.1, e.g. Orthores,
Orthodir, CG-Ores, CG-Odir, CR-Ores, CR-Odir, Biores, Biodir.

The matrix Fk need not to be small in an absolute sense. This becomes obvious
when considering the methods based on Orthores. The implicit scaling depends on
the computed matrices Ck. This scaling may magnify the errors.

Methods that do not use an explicit Hessenberg decomposition consist of two or
more coupled recurrences for spanning the basis. There are two types of methods
that do not use the Hessenberg decomposition directly. On one hand, we have the
methods based on Orthomin, i.e. Orthomin, CG-Omin, CR-Omin and Biomin, the
Orthomin variant of BiCG. On the other hand, we have the LTPMs, the Lanczos-
type product methods. It is easy to show that we can transform coupled finite
precision recurrences to exhibit the form (4.3).

We will show that the methods based on Orthomin have an error term that is
composed of two terms, namely the errors of the of the residual recurrence times A
and the errors of the direction recurrence times a lower triangular matrix times the
computed Ck.

This follows by consideration of the finite precision recurrences

APkDα = Rk+1Lk + F
(R)
k , Rk = PkM

H
k + F

(P )
k .

We insert the second equation into the first one and obtain the perturbed Hessenberg
decomposition

A(Rk − F (P )k )M−H
k Dα = Rk+1Lk + F

(R)
k

⇒ A(Rk − F (P )k ) = Rk+1C
(o)
k + F

(R)
k L−1k C

(o)
k

⇒ ARk = Rk+1C
(o)
k − Fk,
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where we have defined Fk by

−Fk ≡ AF (P )k + F
(R)
k L−1k C

(o)
k .

We obtain an equation that has formally the same structure than in case of a
direct Hessenberg decomposition. The error matrix is the sum of two relative error
matrices.

A nice result can be obtained when we scale the residuals, i.e. the basis vectors
to have length one. Let the diagonal scaling matrix be given as

Dρ = diag(‖ri‖2).

Then the scaled decomposition looks like

AQk −Qk+1Ck = −AF (P )k D−1ρ − F
(R)
k D−1ρ DρL

−1
k D−1ρ Ck (4.4)

If we can show that the error vectors decay (and possibly grow) like the residual
vectors, i.e. if we can show that

‖F (P )k D−1ρ ‖ ≈ g(k)ε and ‖F (R)k D−1ρ ‖ ≈ h(k)ε

hold true for some slowly growing functions g and h, the error term can be bounded
by

‖Fk‖ ≤ g(k)ε‖A‖+ h(k)ε‖Ck‖ · ‖DρL
−1
k D−1ρ ‖.

If we can show further that ‖Ck‖ ≈ ‖A‖, we observe that the bound growth mainly
depends on the elements of

DρL
−1
k D−1ρ =

(‖rj‖
‖ri‖

)

ij

.

A similar result on the perturbation of the Hessenberg decomposition holds true
for the LTPMs. The error matrix Fk in all cases is composed of the relative errors
of the single recurrences times the factors used. Our general approach will be based
on the finite precision analogue (4.3) of a Hessenberg decomposition.

4.3 Outline of Error Analysis

In the last section we have shown that finite precision Krylov methods result in
perturbed Hessenberg decompositions

AQk −QkCk =Mk − Fk,

with Fk small compared to A, Ck and Qk. Additionally, Fk may be relative in some
sense. This justifies the use perturbed Hessenberg decompositions, or more general,
perturbed Krylov decompositions, as basis for an error model. In the remaining
part of this chapter we pre-assume only that the governing equation is fulfilled
approximately.

A Krylov method consists of a Krylov decomposition and a projection with a
second dual basis. Duality follows by induction and is very sensitive to rounding
errors. This will be the part we have to examine, that is, we have to investigate
when and how orthonormality, bi-orthonormality or duality is lost. The error anal-
ysis of finite precision Krylov methods is intimately connected to the orthogonality
properties of the basis vectors. We will mainly consider eigenproblem methods.

We consider two basic approaches to perturbed Krylov decompositions: First we
construct examples of perturbed Krylov decompositions and categorise the occur-
ring behaviour. Then we look for connections to related areas. We can diminish the



140 CHAPTER 4. A UNIFIED APPROACH

resulting gap between observed and predicted behaviour taking the special structure
into account.

The iterative character of the governing equation is used to construct a prop-
agation formula for the loss of orthogonality. This forms the basis for two back-
ward analysis approaches. Both approaches are based on splittings of the matrix
Wk ≡ Q̂H

k Qk, an additive and a multiplicative splitting.
We analyse the linear system, namely the Sylvester equation, underlying every

Krylov decomposition according to condition and sensitivity. This linear system is
a linear system in Qk. We analyse how the Schur and Jordan normal forms of A
and Ck can be used to express the Schur and Jordan normal form of the Sylvester
equation.

For theoretical purposes of more interest is the deviation in the basis vectors,
and not only the size of deviation in inner products. For this reason we consider
yet another forward error analysis approach. The Schur and Jordan normal forms
of the Sylvester equation indicate the importance of the eigenvalues. We analyse
the influences of the errors on the new basis vector qk+1 in terms of the eigende-
compositions of the system matrix A and the condensed matrix Ck. This forward
error analysis approach shows that we have a mangling of several methods. The
second method converges to a sophisticated mixture of desired but yet unconverged
and already converged data.

We may ask how the error vector of a certain step affects the recurrence from
this step on. This question is addressed in one section. In another section we
explore different stopping criteria and their relations to desired values. The main
result we whish to prove is that a loss of orthogonality implies prior convergence of
the method.

The preceeding analyses are then used to define a class of new Krylov methods
that only make sense in a finite precision environment. Here, a level of linear in-
dependency between basis vectors is defined such that the resulting matrices are
similar to slightly perturbed projections. In these new methods the level is com-
puted, or more cheaply, guessed. The basis vectors are re-orthogonalised whenever
the computed level indicates the necessity to do so.

4.4 Where are we?

In this section we are interested in constructing examples of perturbed Krylov de-
compositions. The examples help in understanding the behaviour to be expected in
a finite precision run of a Krylov method. To determine behaviour that can occur
in a finite precision Krylov method we use the governing equation as simple model.
We construct a series of examples of approximately fulfilled governing equations.
We start with a very simple example and refine it until it reflects enough of the ob-
served behaviour. We stress that no example comes from an actual finite precision
computation.

Every exact governing equation can be perturbed into an approximate. This
does not help in understanding what goes wrong. But it serves as the building
block for the first example.

Example 4.3 (glued invariant subspaces) A nice example with remarkable fea-
tures is constructed using exact governing equations

AQ̃i − Q̃iC̃i = 0, i ∈ l.

One may think of them as if obtained using a Krylov method of the class investi-
gated. These equations are glued together by introducing small errors. We define
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the block matrix Cm by

Cm =










C̃1 +∆11 ∆12 ∆13 · · · ∆1l
∆21 C̃2 +∆22 ∆23 · · · ∆2l

0 ∆32 C̃3 +∆33
. . .

...
...

. . .
. . .

. . . ∆l−1,l

0 · · · 0 ∆l,l−1 C̃l +∆ll










.

The block perturbations ∆ij have to fit the method characteristics. In case of a
symmetric method the perturbations have to be symmetric, i.e.

∆i,i+1 = ∆H
i+1,i ∀ i ∈ l − 1 ∆ij = 0 ∀ |i− j| > 1.

They have to be rank matching, i.e. for a block method of block-size one they have
to fulfil the constraints

∆i+1,i = δie1e
T
ki ∀ i ∈ l − 1.

With correctly chosen perturbations we can construct

AQm −QmCm ≡ A
[

Q̃1, . . . , Q̃l

]

−
[

Q̃1, . . . , Q̃l

]

Cm

=




∑

j

Q̃j∆j1, . . . ,
∑

j

Q̃j∆jl





≡ Fm,

an equation of type (4.3).

This first example may be enhanced by not only perturbing Cm, but also A and
Qm. This leads to a model showing essentially the same behaviour.

We could use a single subspace. This shows that we can expect eigenvalue
clusters approximating simple and well-conditioned eigenvalues, especially when
there are zero blocks in the upper part of Cm. At the same time we can expect the
columns of Qm to be linearly dependent, by no means orthogonal.

We remark that the orthogonality pattern in Q̂H
mQm and the small components

in the subdiagonal of Cm are closely connected to the occurrence of multiple eigen-
values. Local orthogonality turns out to play a crucial role in the error analysis
of short term recurrences. These observations clearly reveal what can be expected
from a error analysis using this model of behaviour. The good news is, numerical
experiments suggest that finite precision Krylov methods behave like this.

We state an enhancement of the first example for short-term recurrences. In
this case we can flip the tridiagonal from both sides, thus reordering the elements.

Example 4.4 (one flipped subspace) We restrict attention to short-term meth-
ods. We use one single subspace

AQ̃− Q̃C̃ = 0.

We build a matrix Cm like in Example 4.3, where the Q̃i are chosen from Q̃ and
flipped Q̃ alternating. The matrices C̃i change accordingly. In this restricted ex-
ample we additionally have local orthogonality.

The first two examples suffer from two cross-connected limitations. These are
the occurrence of small subdiagonal elements in Cm and the block-structure of the
loss of orthogonality in Q̂H

mQm.
We can extend this model further by allowing arbitrary similarity transforma-

tions in A and Cm.
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Example 4.5 (similarity transformations) We construct a perturbed govern-
ing equation with the aid of similarity transformations that change the errors in
prescribed ways,

AQm −QmCm = Fm

⇔ U−1
(
UAU−1

)
UQm −QmW

(
W−1CmW

)
W−1 = Fm

⇔
(
UAU−1

)
UQmW − UQmW

(
W−1CmW

)
= UFmW

⇔ ÃQ̃m − Q̃mC̃m = F̃m.

The subspaces need not be from the same class than the Krylov method investigated.
This is done by finding the right transformations. The errors in Ã and C̃m have
to be chosen to fit the requirements of the methods (structure of Cm, i.e. the rank
requirements, the symmetry).

This example removes a fault of the previous examples, i.e. the occurrence of small
lower diagonal elements which would lead to acceptance of the computed Cm before
step m and thus to early termination of the algorithm.

Suppose a similarity transformation has been chosen such that the lower diagonal
elements are not small. Then again we observe linearly dependent basis vectors
and multiple instances of simple eigenvalues. The convergence of the Ritz values
becomes blurred, i.e. smeared over the blocks.

It is an active line of research to find out whether these examples are rich enough
in modelling the possible behaviour. If this would turn out to be true, then all
computed eigenpairs (eigentriples) would correspond to different slightly perturbed
A. Formulated in yet another fashion: the behaviour of a finite precision method
might correspond to the behaviour of the exact (infinite precision) method when
applied to a larger matrix which has only eigentriples that in backward sense are
close to eigentriples of A.

This question has been answered positively only for the finite precision symmet-
ric Lanczos method by Greenbaum (cf. [Gre89], Theorem 1’, page 51). Even in this
case the bound proven to be correct seems to be an unrealistic overestimate. In
case of long-term recurrences based on the Arnoldi method even part of the usual
backward error analysis seems to work correctly. An example of such an analysis
may be found in the Ph.d. thesis of Rozložńık and the papers cited therein (cf.
[Roz97]).

4.5 Perturbed Krylov Decompositions

In this section we are concerned with different interpretations and alternate formu-
lations of perturbed Krylov decompositions of type

AQk −QkCk + Fk =Mk. (4.5)

There are various interpretations of equation (4.5). The first interpretations and
observations make no assumption on the structure of Ck. The last observation relies
on the Hessenberg structure of the matrix Ck.

Most natural is the interpretation of equation (4.5) as subspace relation. The
residual is given by Mk − Fk. As we have seen in Chapter 1, this residual can be
interpreted as backward error bound when Qk has orthonormal columns. Further-
more, if A and Ck are symmetric, we can use a theorem of Kahan to bound the
distance of the eigenvalues of Ck to some eigenvalues of A,

|λi − θj | ≤ ‖Mk − Fk‖ ≤ |ck+1,k|‖qk+1‖+O(ε) ∃ i ∀ j.
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A similar bound involving the smallest singular value of Qk holds true when Qk

has full column rank. When Qk is rank deficient, we can think of splitting Qk into
several parts with full rank. Accordingly we would have to split Ck and to use
known relations between Ck and the splitting matrices.

We can think of the subspace equation (4.5) as an exact subspace equation for
perturbed A. We assume the existence of the pseudo-inverse of Qk, i.e. we assume
that Qk has full rank. Then we can formulate the exact subspace relation

(

A− (Mk − Fk)Q†k
)

Qk −QkCk = AQk −Mk + Fk −QkCk = 0.

This proves that the eigenvalues of Ck are among the eigenvalues of

Ak = A− (Mk − Fk)Q†k.

This point of view brings in structured homotopic perturbation theory. Researchers
at CERFACS used homotopic perturbation theory as a tool for the understanding
of the Arnoldi method and other Krylov methods (cf. [CC00, CCTP00]).

In all cases the candidate for the invariant subspace is spanned by the columns
of Qk. The matrix Qk is determined linearly by the matrices A and Ck and the
right-hand side Mk − Fk. This linear equation is known as Sylvester equation and
can be re-written to expose its linear character,

(Ik ⊗A− CT
k ⊗ In)vec(Qk) = vec(Mk − Fk).

The condition of the Sylvester equation is given by the separation of the matrices
A and Ck. The separation of two matrices A and Ck has been defined in Chapter 1
to be

sep(A,Ck) ≡ min
X

‖AX −XCk‖
‖X‖ .

The norm may be arbitrary, of special interest are the cases of the 2-norm and the
Frobenius norm. The Frobenius norm can be expressed in terms of singular values,
the equality

sepF (A,Ck) = σmin(Ik ⊗A− CT
k ⊗ In)

holds true. The exact computation of the separation has a computational amount
of O(n3k3) and is usually cheaply estimated using O(n2k) operations (cf. [BDM91]).
In the context of large sparse systems and Krylov methods such a computational
amount is prohibitive.

Krylov decompositions, or more general, subspace equations, are closely con-
nected to block similarity of block matrices and perturbations of these. This follows
by rewriting equation (4.5) by adding a trivial block row and column as

(
Ck 0
Fk A

)(
Ik 0
Qk In

)

−
(
Ik 0
Qk In

)(
Ck 0
Mk A

)

= 0.

This is an exact subspace equation in higher dimension. The triangular block matrix
can be inverted explicitly,

(
Ik 0
Qk In

)−1

=

(
Ik 0
−Qk In

)

.

This is similar to a block Gauß algorithm. This far, we know that the block matrices
with Fk and with Mk in the lower left corner are block similar,

(
Ck 0
Mk A

)

=

(
Ik 0
−Qk In

)(
Ck 0
Fk A

)(
Ik 0
Qk In

)

.
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The block similarity implies that we have a change in the eigenvectors of the block
matrix. For the moment, we restrict ourselves to the infinite precision case. In
infinite precision, the block matrix Jordan normal form is given by

(
Ck 0
0 A

)(
Sk 0
0 V

)

=

(
Sk 0
0 V

)(
JΘ 0
0 JΛ

)

.

Due to the block similarity the eigenvectors of the block matrix are changed like

(
Ik 0
−Qk In

)(
Sk 0
0 V

)

=

(
Sk 0

−QkSk V

)

=

(
Sk 0
−Yk V

)

.

At this point, the matrix of Ritz vectors naturally enters the scene. The condition
of the block eigenvector matrix changes, depending on the convergence of Yk to
parts of V̂ H , the matrix of left eigenvectors of A.

In finite precision the matrix Fk is interpreted as a perturbation. This is not
rigid, since the deviation alters the entries of Ck. But, for a limited number of steps,
the influence on Ck may be negligible. In the finite precision case, we use in step k
the eigenvector matrix

(
Sk 0

−QkSk V

)

=

(
Sk 0
−Yk V

)

=

(
ŜHk 0

V̂ HQk V̂ H

)−1

corresponding to the unperturbed block matrix as approximate eigenvector matrix.
How is this quantity related to the exact eigenvector matrix?

We assume Xk to be the solution of the Sylvester equation

AXk −XkCk = Fk.

Then the eigendecomposition of the perturbed block matrix is given by

(
Ck 0
Fk A

)(
Sk 0

−XkSk V

)

=

(
Sk 0

−XkSk V

)(
JΘ 0
JΛ 0

)

.

After transforming the eigenvectors according to the block similarity we obtain the
true eigenvector matrix

(
Sk 0

−(Qk +Xk)Sk V

)

=

(
ŜHk 0

V̂ H(Qk +Xk) V̂ H

)−1

.

The error in the eigenvector matrix depends crucially on the magnitude of Xk. The
magnitude of Xk can be bounded using the separation of A and Ck, we have that

‖Xk‖ ≤ sep(A,Ck)‖Fk‖

holds true.
These comments reveal that the error analysis of finite precision Krylov subspace

methods is closely related to eigenvector sensitivity of block matrices. We remark
that this connection is well-known and may be found in the textbook by Horn
and Johnson (cf. [HJ94], Theorem 4.4.22). In the block matrix interpretation the
computed matrix Ck comes into play like the system matrix A, they can not be
distinguished any more. This may be considered as an indicator that part of the
computed quantities tries actually to converge to itself.

All considerations thus far were independent of any special structure. Thus, in
general, the results will be weak, since knowledge, for instance on the Hessenberg
structure and the length of the columns of Qk is not used. This far, only static



4.5. PERTURBED KRYLOV DECOMPOSITIONS 145

information has been used. The next result, to some extent, honours the iterative
character of the methods.

It is possible to construct other Krylov decompositions with the aid of polyno-
mials. These Krylov decompositions may be subject to a larger perturbation, but
due to the special structure they provide useful information. The results rely on
the fact that polynomials of Hessenberg matrices have a very special structure.

We first derive an expression on the accuracy of the subspace spanned by the
columns of Qk as approximate invariant subspace of polynomials of A. The polyno-
mial case is treated as linear combination of the monomial case. Our proof is based
on the factorisation

al+1 − bl+1 = al+1 − alb+ alb− · · ·+ abl − bl+1

=

(
l∑

i=0

ak−ibi

)

(a− b) (4.6)

of the bivariate polynomial al+1−bl+1. This result can be generalised for commuting
matrices. Observe that

(I ⊗A)
(
CT
k ⊗ I

)
= CT

k ⊗A =
(
CT
k ⊗ I

)
(I ⊗A)

holds true, i.e. the matrices I ⊗ A and CT
k ⊗ I commute. The powers of these

matrices can be transformed to powers in A and CT
k , respectively, since

(A⊗B)
l+1

= Al+1 ⊗Bl+1

holds true for general square A and B. We apply the polynomial factorisation (4.6)
to the term

(
I ⊗Al+1 − (CT

k )
l+1 ⊗ I

)
=

[
l∑

i=0

(I ⊗A)l−i
(
CT
k ⊗ I

)i

]

(
I ⊗A− CT

k ⊗ I
)
.

Next, we apply both sides of this matrix equation to the vector vec(Qk) and subse-
quently use the governing equation

(
I ⊗A− CT

k ⊗ I
)
vec(Qk) = vec(Mk − Fk).

We re-write the Sylvester form to an ordinary matrix equation and state the result
as lemma.

Lemma 4.6 Let A ∈ Kn×n and Ck ∈ Kk×k be general matrices. Suppose that the
equation

AQk −QkCk =Mk − Fk
holds true for some matrices Qk,Mk, Fk ∈ Kn×k. Then for all l ∈ N

Al+1Qk −QkC
l+1
k =

l∑

i=0

Al−i(Mk − Fk)Ci
k

=
l∑

i=0

Al−iMkC
i
k −

l∑

i=0

Al−iFkC
i
k (4.7)

holds true.

Summing monomials we obtain a similar result for polynomials in A. We refuse
to state this result in full generality, since we are only interested in a specially
structured case. In what follows, the matrix Ck is an upper unreduced Hessenberg
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matrix and Mk is given by a rank-one matrix that has the structure Mk = rke
T
k for

some rk ∈ Kn. Let Ij denote the matrix consisting of the first j columns of I. Let
Ij denote the space spanned by the first j standard unit vectors e1, . . . , ej ,

Ij = span(Ij) = span(e1, . . . , ej).

Multiplication with an unreduced upper Hessenberg matrix Ck maps any vector
zj ∈ Ij , j < k, to a vector zj+1 ∈ Ij+1, i.e. by induction

Ci
kIj ⊂ Ij+i.

When we take a closer look at the columns of MkC
i
k,

MkC
i
kIj = rke

T
k Ij+i,

we observe that the columns 1, . . . , j are zero when j + i < k. This proves that the
first k − i− 1 columns are identical zero. Now, an easy calculation shows that

Ck−1
k e1 = Ck · · ·Ck

︸ ︷︷ ︸

k−1 times









1
0
0
...
0









= Ck · · ·Ck
︸ ︷︷ ︸

k−2 times









?
c21
0
...
0









= · · · =









?
?
...
?
ζ









holds true, where ζ is given by

ζ =

k−1∏

p=1

cp+1,p.

Thus, we have shown that

MkC
0
ke1 = MkC

1
ke1 = . . . = MkC

k−2
k e1 = 0,

MkC
k−1
k e1 = rk

k−1∏

p=1

cp+1,p

holds true. More generally, we observe that

MkC
0
kel = MkC

1
kel = . . . = MkC

k−l−1
k el = 0,

MkC
k−l
k el = rk

k−1∏

p=l

cp+1,p

holds true.
Putting all this together, we have proven the following result:

Theorem 4.7 Let A ∈ Kn×n. Let Ck ∈ H(k). Let Mk be given as the rank-one
matrix Mk ≡ ck+1,kqk+1eTk . Suppose that the equation

AQk −QkCk =Mk − Fk

holds true for some matrices Qk, Fk ∈ Kn×k. Then for l ∈ k

Ak−l+1Ql −QkC
k−l+1
k Il =





k∏

p=l

cp+1,p



 qk+1e
T
l −

k−l∑

i=0

Ak−l−iFkC
i
kIl
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holds true.
Suppose further that χ ∈ Pk−l+1 is given by

χ(λ) ≡ αk−l+1λk−l+1 +
k−l∑

j=0

ajλ
j .

Then by linearity arguments in the polynomial case

χ(A)Ql −Qkχ(Ck)Il = αk−l+1





k∏

p=l

cp+1,p



 qk+1e
T
l

−
k−l∑

j=0

αj+1

j
∑

i=0

Aj−iFkC
i
kIl (4.8)

holds true. We stress the fact that the constant term α0 of the polynomial χ has no
influence on the right-hand side of equation (4.8).

Two cases deserve special attention. The first case is if the polynomial χ is chosen
such that

χ(Ck) = U

(
C̃l ?
0 ?

)

UH (4.9)

holds true for some unitary matrix U ∈ Kk×k. Then this polynomial can be used to
construct a smaller Krylov decomposition with a change of the set of basis vectors.
We state this case as a corollary:

Corollary 4.8 Let A, Ck, Mk, Qk and Fk be given as in the preceeding theorem.
Suppose that the polynomial χ has been chosen such that equation (4.9) holds. Define
Q̃l ≡ QkUIl.

Then

χ(A)Q̃l − Q̃lC̃l = q̃l+1c̃l+1,le
T
l −

k−l∑

j=0

αj+1

j
∑

i=0

Aj−iF̃lC̃
i
l

holds true. Here we have used the abbreviations

q̃l+1 ≡ qk+1, c̃l+1,l ≡ αk−l+1
k∏

p=l

cp+1,p and F̃l ≡ FkUIl.

This corollary forms the basis of implicitly restarted methods, like the implicitly
restarted Arnoldi method, IRA or IRAM for short.

The other case that deserves special attention is the general case for l = 1.
The result in this case becomes a useful tool in the convergence analysis of Krylov
subspace methods, especially in the solution process of linear systems [TY00]. We
also state this case as a corollary:

Corollary 4.9 Let A, Ck, Mk, QkQ and Fk be given as in Theorem 4.7. Suppose
further that l = 1 and χ ∈ Pk is given by

χ(λ) = αkλ
k +

k−1∑

j=0

αjλ
j

Then

χ(A)q1 −Qkχ(Ck)e1 = αk

(
k∏

p=1

cp+1,p

)

qk+1 −
k−1∑

j=0

αj+1

j
∑

i=0

Aj−iFkC
i
ke1
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holds true. Setting χ ≡ χCk annihilates the second term,

χCk(A)q1 −
(

k∏

p=1

cp+1,p

)

qk+1 = −
k−1∑

j=0

αj+1

j
∑

i=0

Aj−iFkC
i
ke1. (4.10)

When det(Ck) 6= 0, we can construct a polynomial χk−1 ∈ Pk−1 such that χk−1(Ck) =
‖r0‖C−1k . Defining xk ≡ ‖r0‖QkC

−1
k e1,

χk−1(A)q1 − xk = −
k−1∑

j=0

αj+1

j
∑

i=0

Aj−iFkC
i
ke1. (4.11)

holds true. In both cases the coefficients αj depend on Ck.

The right-hand sides of equations (4.10) and (4.11) are zero in infinite precision.
In finite precision they describe the occurring deviation. The error terms are com-
plicated, because of the dependence of the coefficients of the polynomials χCk and
χk−1 on the computed matrices Ck. For this reason we take another approach in
the next sections to understand the local and global deviation occurring in finite
precision.

4.6 Deviation from Nowhere?

In infinite precision, Krylov methods are based on Hessenberg decompositions. The
computation of the decomposition is chosen such that by an inductive argument
certain relations among all basis vectors hold true. We focus on the most impor-
tant relations among the basis vectors, i.e. the orthogonality and bi-orthogonality
relations.

In finite precision, the Hessenberg decomposition has to be replaced by a per-
turbed variant. In this section we examine what happens to the other relations. It
is obvious that when the (bi-)orthogonality is not forced explicitly by the method,
it will cease to hold. This was the reason why the methods were often used with
full re-(bi-)orthogonalisation in the sixties.

In this section we examine the dependencies between computed quantities and
the loss of orthogonality. First, we develop a recurrence formula for the loss of
orthogonality. Here, the modus operandi is based on an iterative point of view
which is more suitable to the iterative use of the methods. We conclude with two
backward results, based on an additive and a multiplicative splitting of the matrix
of the loss of orthogonality.

We consider long-term recurrences that fulfil the relation

AQk = Qk+1Ck − Fk, (4.12)

and coupled recurrences based on (4.12) and a second perturbed Hessenberg de-
composition that additionally fulfils the relation

AHQ̂k = Q̂k+1Ĉk − F̂k. (4.13)

These coupled recurrences usually will be short-term recurrences.
For reasons of brevity we introduce the matrix Wm = Q̂H

mQm. In infinite pre-
cision this matrix is identical to the identity matrix Im. The columns of Wm are
denoted by wl, l ∈ m, and the elements by wjl, l, j ∈ m. Leading submatrices of
order k are denoted by Wk.

We start with the relations between the matrix Wk+1 = Q̂H
k+1Qk+1 and the

computed quantities.
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Lemma 4.10 (The Error Relations) In case of a long-term recurrence the ma-
trix Wk+1 = Q̂H

k+1Qk+1 fulfils the relation

Wk+1Ck = Q̂H
k+1AQk − Q̂H

k+1Fk. (4.14)

In case of coupled (short-term) recurrences the matrix Wk+1 = Q̂H
k+1Qk+1 addition-

ally fulfils the relation

Ĉ
H

k Wk+1 = Q̂H
k AQk+1 − F̂H

k Qk+1. (4.15)

This implies that in case of coupled (short-term) recurrences Wk+1 = Q̂H
k+1Qk+1

fulfils the fundamental relation

Ĉ
H

k Wk+1,k −Wk,k+1Ck = Q̂H
k Fk − F̂H

k Qk. (4.16)

Proof. Equation (4.14) is obtained by left multiplication of the perturbed Hessen-
berg decomposition (4.12) with Q̂H

k+1. For latter purposes we strip of the last row
to obtain an equation involving quadratic matrices,

Wk,k+1Ck = Q̂H
k AQk − Q̂H

k Fk. (4.17)

Now we consider the case of two coupled (short-term) recurrences. We transform
the second perturbed Hessenberg decomposition (4.13) by multiplication with QH

k+1

from the left. Forming the Hermitian of the resulting equation we derive equation
(4.15). We strip of the last column to obtain an equation involving quadratic
matrices,

Ĉ
H

k Wk+1,k = Q̂H
k AQk − F̂H

k Qk. (4.18)

Subtracting equation (4.17) from equation (4.18) we arrive at equation (4.16). This
finishes the proof. ¤

We intend to show that for any Hessenberg decomposition the loss of orthogonality
or other deviation is a natural consequence of the recurrence. We first restrict
ourself to dual methods, i.e. methods where in infinite precision Q̂H

mQm = Im holds
true.

The first approach is a simple forward error analysis. It relates the loss of
orthogonality, given by the matrix Wk+1− Ik+1, to the influences. It results in two
simple amplification recurrences. The trick is to insert the computed Ck on both
sides of the equations.

Lemma 4.11 (The Error Sources) In case of a long-term recurrence the rela-
tion (

Wk+1 − Ik+1
)

Ck =
(

Q̂H
k+1AQk − Ck

)

− Q̂H
k+1Fk (4.19)

holds true. In case of coupled (short-term) recurrences, additionally the relation

Ĉ
H

k

(

Wk+1,k − Ik+1,k
)

−
(

Wk,k+1 − Ik,k+1
)

Ck =

Ck − ĈH
k + Q̂H

k Fk − F̂H
k Qk

(4.20)

holds true.

Proof. The relation (4.19) follows by subtracting Ck on both sides of (4.14). The
relation (4.20) follows by subtracting

ĈH
k − Ck = Ĉ

H

k Ik+1,k − Ik,k+1Ck
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on both sides of (4.16). ¤

The lemma above stated more informally says that the loss of orthogonality weighted
by the computed matrix Ck is equal to the sum of the projection error and a small
error term.

This far, all considerations did not honour the iterative character of the methods.
This fault is removed by the transformation of the Hessenberg decomposition to the
form of the governing equation,

Mk = qk+1ck+1,ke
T
k = AQk −QkCk + Fk.

When we multiply the Hessenberg decomposition from the left by Q̂H
k , we obtain

an iterative matrix expression for the loss of orthogonality.

Theorem 4.12 (The Matrix Error Recurrences) A matrix expression of the
recurrence of the loss of orthogonality is given by

Q̂H
k Mk = Q̂H

k AQk − Q̂H
k QkCk + Q̂H

k Fk

=
(

Q̂H
k AQk − Ck

)

−
(

Wk − Ik
)

Ck

+ Q̂H
k Fk. (4.21)

In case of methods based on coupled (short-term) recurrences the loss of orthogonal-
ity additionally fulfils

Q̂H
k Mk − M̂H

k Qk =
(

ĈH
k − Ck

)

+ ĈH
k

(

Wk − Ik
)

−
(

Wk − Ik
)

Ck

+
(

Q̂H
k Fk − F̂H

k Qk

)

. (4.22)

Next, we multiply equations (4.21) and (4.22) from the right by ek and right-divide
them by ck+1,k. This results in a vector recurrence for the loss of orthogonality.

Corollary 4.13 (The Vector Error Recurrences) A vector expression of the
recurrence of the loss of orthogonality is given by

Q̂H
k qk+1 =

(

Q̂H
k Aqk − Q̂H

k Qkck + Q̂H
k fk

)

c−1k+1,k

=
(

Q̂H
k Aqk − ck

)

c−1k+1,k

−
(

(Wk − Ik)ck
)

c−1k+1,k

+
(

Q̂H
k fk

)

c−1k+1,k. (4.23)

This is a recurrence on the columns of the matrix Wm − Im.
In case of methods based on coupled (short-term) recurrences the loss of orthog-

onality additionally fulfils

Q̂H
k qk+1 =

(

ĈH
k wk −Wkck + Q̂H

k fk − F̂H
k qk + M̂H

k qk

)

c−1k+1,k

=
(

ĈH
k ek − ck

)

c−1k+1,k

+
(

ĈH
k (wk − ek)− (Wk − Ik)ck

)

c−1k+1,k
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+
(

Q̂H
k fk − F̂H

k qk

)

c−1k+1,k

+
(

M̂H
k qk

)

c−1k+1,k. (4.24)

Like before, this is a recurrence on the columns of the matrix Wm−Im. Analogously
we obtain a second recurrence on the rows of the matrix Wm − Im.

In case of a method based on coupled (short-term) recurrences we observe that the
term involving M̂k has no influence on the first k − 1 equations, hence

q̂Hj qk+1 =
(

eTj Ĉ
H
k Q̂

H
k qk − q̂Hj Qkck + q̂Hj fk − f̂Hj qk

)

c−1k+1,k

=

(
j+1
∑

l=1

člj q̂
H
l qk −

k∑

l=1

q̂Hj qlclj

)

c−1k+1,k

+
(

q̂Hj fk − f̂Hj qk
)

c−1k+1,k

holds true for all j < k. The kth equation has the additional term čk+1,k q̂
H
k+1qk.

Usually, the method will be such that we have local orthogonality or local duality
and this term is negligible.

Representations (4.23) and (4.24) reveal three sources for the occurrence of any
loss of orthogonality. When we consider methods based on long-term recurrences,
the first ingredient is the accuracy of the last computed column of Ck,

Q̂H
k Aqk − ck =

(

Q̂H
k AQk − Ck

)

ek.

In a long-term recurrence like Arnoldi, this is just the way of computation of the
components of Ck. In this case it seems justified that this part is small. In case of
coupled (short-term) recurrences, the first ingredient measures tridiagonal structure
and whether the matrices Ĉk and Ck are adjoint,

ĈH
k ek − ck =

(

ĈH
k − Ck

)

ek.

Usually this part is identical zero, even in finite precision.
The second ingredient in case of long-term recurrences is the loss of orthogonality

that occurred prior to step k times the last computed column of Ck,

−
(

Q̂H
k Qk − Ik

)

ck = − (Wk − Ik) ck.

For coupled (short-term) recurrences it is the amplification of the loss of orthogo-
nality that occurred prior to step k by the matrices ĈH

k and Ck according to

ĈH
k (wk − ek)− (Wk − Ik)ck =

(

ĈH
k (Wk − Ik)− (Wk − Ik)Ck

)

ek.

These parts are the ones that may cause severe deviation. We remark that they
depend on the computed matrices ĈH

k and Ck.
The third and last ingredient is a measure of the orthogonality of the actual error

on the previously computed basis vectors, Q̂H
k fk. The actual error in general will

be small. The size of this term mostly depends on the length of the basis vectors.
All three terms are summed up and amplified by the inverse of residual estimator
c−1k+1,k. It is well-known that deviation may occur when any ck+1,k becomes small
(cf. [GvL96]).

The methods that are not bi-orthogonal can be inserted into this setting by
replacing the identity by Xk, where Xk is the exact left hand side of the pencil of
the projection. Essentially the same results hold true.
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Remark 4.14 The only terms we have influence on are the accuracy of the vector
recurrence and the accuracy of the non-zero moments. Suppose these terms are ‘as
small as possible’ and ‘random’. Then a severe deviation can only arise due to the
remaining term. This remaining term is given by

−
(

Wk − Ik
)

Ck or ĈH
k

(

Wk − Ik
)

−
(

Wk − Ik
)

Ck.

Thus, severe deterioration is due mainly to the amplification of previous errors.
Furthermore, this amplification is intrinsic, i.e. we can not influence the essential
behaviour without modifying the matrices Ck and ĈH

k .

So, we can finally give a partial answer to the question raised in the title of this
section:

Yes, a deviation from the exact quantities may occur, but we know
precisely where it has its origins.

We might be interested in an explicit computation of the matrix of the loss of
orthogonality.

Lemma 4.15 (Explicit Computation of Wk+1 − Ik+1) The matrixWk+1−Ik+1
in any case fulfils the linear system of equations

(CT
k ⊗ Ik+1)vec(Wk+1 − Ik+1) = vec(Q̂H

k+1AQk − Ck)

− vec(Q̂H
k+1Fk). (4.25)

Equation (4.25) enables us to compute explicitly the matrix Wk+1− Ik+1 whenever
we have access to the matrices Q̂H

k+1AQk − Ck and Q̂H
k+1Fk.

In case of coupled (short-term) recurrences the matrixWk−Ik additionally fulfils
the system of equations

(Ik ⊗ Ĉk − CT
k ⊗ Ik)vec(Wk − Ik) = vec(Ck − ĈH

k )

− vec(M̂H
k Qk − Q̂H

k Mk)

− vec(F̂H
k Qk − Q̂H

k Fk) (4.26)

Proof. Equations (4.25) and (4.26) are just the Sylvester equational forms of equa-
tions (4.19) and (4.22). ¤

Normally, we have no information at hand on the lower part of the matrix Q̂H
k+1AQk−

Ck. Usually, we have some extra information about the diagonal elements of
Wk+1−Ik+1. For some rows of the huge linear systems we can bound the right-hand
side. This is used in an additive splitting of Wk+1 − Ik+1. We emphasise that the
additive splitting approach does not depend on the rank of Wk+1.

We consider two special cases. First, we consider as an example the Arnoldi
method. In this case we know that the matrix Wk+1 is HPD. By the normalisation
we know that the diagonal elements of Wk+1− Ik+1 are close to zero. This fixes the
degrees of freedom.

Theorem 4.16 (The Loss in Arnoldi’s Method) Let A ∈ Kn×n. Let the ma-
trices Qk+1, Qk and Ck be computed by the Arnoldi method in finite precision.
Suppose that the error matrix Fk defined by

AQk −Qk+1Ck = −Fk
has small columns. Suppose further that the computed moments are accurate, i.e.
that

qHj Aqk ≈ cjk ∀ j ∈ k.
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The columns of Qk+1 will approximately have unit length. Let Rk be defined to be
the restriction operator

Rk : K(k+1)k → K(k+1)k/2

that maps vec(Ck) onto the vector that consists of the elements of Ck from the
strictly upper triangular part, indexed by columns.

Then

Rk((C
T
k ⊗ Ik+1)vec(Wk+1 − Ik+1)) = Rk(vec(Q̂

H
k+1AQk − Ck))

− Rk(vec(Q̂
H
k+1Fk)),

diag(Wk+1 − Ik+1) = small.

is an R–linear system of equations of size (k + 1)k/2 that describes the loss of
orthogonality in Arnoldi’s method as the solution vector of a matrix equation which
system matrix is composed of the computed moments and the right hand-side consists
solely of boundable small quantities.

Proof. We first count the number of unknowns and equations. The numbers
are collected in Table 4.3. The number of unknowns is due to the symmetry of
Wk+1 =WH

k+1.

unknowns in Wk+1 : 1 + 2 + · · ·+ k + (k + 1)
equations from (4.25) : 1 + 2 + · · ·+ k
equations from normalisation : (k + 1)

Table 4.3: The number of unknowns and equations for Arnoldi’s method

The arising system is square and of size (k + 1)k/2. When K = R, the system
is linear, since in this case the unknowns in Wk+1 are connected via wij = wji,
i, j ∈ k + 1. When K = C, we can still construct a real linear system of equations
by doubling the dimension, but the corresponding complex system of equations is
not C–linear. This is due to the fact that conjugation is R–linear, but not C–linear
and the elements in Wk+1 are connected via wij = wji, i, j ∈ k + 1. ¤

In general, this approach results in formulae for the loss of local orthogonality. In
this approach we use the fact that the diagonal elements are close to one by the
normalisation and the computed moments are accurate. It is applicable to restarted
and truncated methods and the symmetric Lanczos method. WhenWk+1 no longer
is Hermitian we have coupled recurrences. This again fixes the degrees of freedom
and can be applied to ensure local duality in the (non-symmetric) Lanczos method.

As second case, we consider the (non-symmetric) Lanczos method. In case of
such coupled short-term recurrences we can use a different approach of additive
splitting to obtain information on the global orthogonality. This approach is based
on the special structure of the computed matrices and an additive splitting of the
smaller matrix Wk − Ik = Q̂H

k Qk − Ik.

Theorem 4.17 (Paige, Bai) Suppose that ĈH
k = Ck = Tk is tridiagonal. Suppose

further that Wk − Ik = Lk +Dk +Rk, where Lk is used to denote the strictly lower
triangular part, Dk the diagonal and Rk the strictly upper triangular part ofWk−Ik.

Then equation (4.22) can be transformed to the form

TkRk −RkTk = triu(Q̂H
k Mk − M̂H

k Qk)

− triu(TkLk − LkTk)
− triu(TkDk −DkTk)

− triu(Q̂H
k Fk − F̂H

k Qk). (4.27)
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The right-hand side may be re-written to the more instructive form

TkRk −RkTk = Q̂H
k Mk − Etot

= Q̂H
k Mk − (Eloc + Erec) , (4.28)

where the right total error matrix Etot splits into right local error matrix Eloc and
right recurrence error matrix Erec. These error matrices are given by

Eloc = diag(wj+1,jγj − wj,j−1γj−1)
+ diag((wj+1,j+1 − wjj) γj , 1) (4.29)

Erec = triu(Q̂H
k Fk − F̂H

k Qk). (4.30)

We remark that we have an implicit connection between the right local orthogonality
and the right global orthogonality.

Similarly we obtain formulae for the lower triangular part, we have that

TkLk − LkTk = M̂H
k Qk − Êtot

= M̂H
k Qk − (Êloc + Êrec), (4.31)

where the left total error Êtot splits into left local error Êloc and left recurrence
error Êrec. These error matrices are given by explicit expressions similar to the
previously defined error matrices.

Proof. In the special case ĈH
k = Ck = Tk equation (4.22) takes the form

Tk(Wk − Ik)− (Wk − Ik)Tk = Q̂H
k Mk − M̂H

k Qk − Q̂H
k Fk + F̂H

k Qk.

When we insert the splitting Wk − Ik = Lk +Dk +Rk and consider only the upper
triangular part, equation (4.27) follows, since

triu(TkRk) = TkRk and triu(RkTk) = RkTk.

A short computation results in the explicit representation of the error matrices.
We stress that, for sake of simplicity, in the theorem we have used the additional
quantity γ0 = 0. ¤

The theorem proves that the global loss of orthogonality depends on the non-
orthogonality of the error vectors and the local loss of orthogonality, measured
by some sort of first discrete derivative of γjwjj (and βjwjj).

The next theorem uses knowledge on the eigenvectors of Tk to gain information
on the way how orthogonality is lost and in which direction the loss occurs, tailored
for coupled short-term recurrences.

Theorem 4.18 (Paige, Bai) Let all notations be as in the last theorem. We de-
fine the error quantities

εij ≡ ŝHi Etotsj , ε̂ij ≡ ŝHi Êtotsj (4.32)

for some left and right eigenvectors ŝHi and sj. In most cases these error quantities
will be small.

Then loss of orthogonality goes hand in hand with convergence, i.e.

ŷHj qk+1βkskj = εjj , ε̂jj = γkŝkj q̂
H
k+1yj . (4.33)

Transforming the relations further to

ŷHj qk+1 =
εjj
βkskj

,
ε̂jj
γkŝkj

= q̂Hk+1yj , (4.34)

shows that the loss of orthogonality that occurs when a left/right Ritz pair is con-
verging, is mainly in direction of the right/left Ritz vector.
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Proof. We multiply equation (4.28) from the left by a left eigenvector ŝHi and from
the right by a right eigenvector sj . This removes the dependence on the matrix Tk
and we obtain the equation

(θi − θj) ŝHi Rksj = ŷHi qk+1βkskj − ŝHi Etotsj .

We set i = j. Then the left-hand side is zero. By definition of εjj the remaining
equality is the first equation in (4.33).

Similarly, for the other recurrence, by applying eigenvectors of Tk to equation
(4.31) we obtain the set of equations

(θi − θj) ŝHi Lksj = γkŝkiq̂
H
k+1yj − ŝHi Êtotsj .

We again set i = j and obtain the second equation in (4.33).
The only remarkable thing about the reordering of the equations (4.33) to obtain

the equations (4.34) is the fact that the denominators can become zero only in case
of an exact breakdown. ¤

Theorem 4.18 is one of the main results of Paige’s analysis. The setting of the
theorem can be extended to take also care of the principal vectors. But in finite
precision, particularly with regard to the impacts of the theorem just proven, the
occurrence of multiple eigenvalues is unlikely. Thus we restrict ourselves to the
diagonalisable case.

The error quantities can also be used to express the accuracy of the (unnor-
malised) Rayleigh quotients. An easy calculation shows that

ŷHj qk+1βkskj = ŷHj Mksj

= ŷHj (AQk −QkTk + Fk) sj

= ŷHj (Ayj − yjθj) + ŷHj Fksj

= ŷHj Ayj − ŷHj yjθj + ŷHj Fksj

holds true. A similar formula holds true for the second recurrence.

Theorem 4.19 (Paige) Let all notations be as above. Despite any loss of orthog-
onality the absolute error of the unnormalised Rayleigh quotients

ŷHj Ayj − ŷHj yjθj = εjj − ŷHj Fksj

remains small. Because of the equality in this equations, this proves that the relative
error of the Rayleigh quotients

ŷHj Ayj

ŷHj yj
− θj =

εjj − ŷHj Fksj
ŷHj yj

will be very large, when the inner product of left and right Ritz vector is very small,
and vice versa.

An expression shedding light on the behaviour of these inner products is the formula
that can be obtained by forming ŝHi (4.28)sj :

Theorem 4.20 (Paige) Let all notations be as before. The inner product of a left
and right Ritz vector weighted by the distance between the corresponding Ritz values
is given by

(θi − θj) ŷHi yj = εii
skj
ski
− εjj

ski
skj
− ŝHi (Q̂H

k Fk − F̂H
k Qk)sj (4.35)
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Proof. The multiplication of equation (4.28) with eigenvectors from both sides
results in

(θi − θj) ŷHi yj = ŷHi qk+1βkskj − ŷHj qk+1βkski
− ŝHi (Q̂H

k Fk − F̂H
k Qk)sj .

By Theorem 4.18, equation (4.33), equation (4.35) follows. ¤

We observe that orthogonality can get lost when several Ritz values form a cluster.
In this case the loss of orthogonality will take part in the space spanned by the
corresponding Ritz vectors. This suggests that at least one inner product will be
large. When the Ritz values are well separated, loss of orthogonality can still occur
when skj and ski are very different in magnitude. In this case one Ritz pair has a
small backward residual estimator and the other one has not converged yet.

We focus on the loss of orthogonality. It turns out to be advantageous to multiply
the matrix Q̂H

k Qk from the left and the right with the left and right eigenvectors.

The deviation of the resulting matrix Ŷ H
k Yk from the identity matrix splits into

Ŷ H
k Yk − Ik = ŜHk (Lk +Dk +Rk)Sk.

We define the matrices

Xk = ŜHk RkSk and X̂k = ŜHk LkSk.

Neglecting the middle term involving the diagonal Dk, the departure from the
identity can be measured by the expressions Xk and X̂k. By derivation it is obvious
that the analysis for X̂k will be similar to the analysis for Xk. Now, the question
is, how can we measure the size or determine the behaviour of Xk?

Paige solved this problem with the use of the eigenvector – eigenvalue relations
of Chapter 2. He used the results for Hermitian matrices stated in the paper by
Thompson and McEnteggert (cf. [TM68]). A simplification for symmetric tridiago-
nals similar to our simplification of the Hessenberg case is included in Paige’s thesis
(cf. [Pai71])). Paige’s analysis is contained in his 1980 paper (cf. [Pai80]).

The equations in (4.34) can be transformed to matrix form, the first equation is
transformed to

Ŷ H
k qk+1 = ŜHk Q̂

H
k qk+1 =








ε11
βksk1

...
εkk
βkskk







,

or equivalently, to

Q̂H
k qk+1 =

1

βk
Sk

(

diag(sk1, . . . , skk)
)−1





ε11
...
εkk



 .

In the following we use upper indices (l) to denote the size of the matrix Tl whose
eigenvectors sj and error quantities εjj we are interested in. The preceeding repre-
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sentation is used to express the columns of Rk ≡ [r
(k)
1 , . . . , r

(k)
k ],

r
(k)
l =


















Q̂H
l−1ql

0
...
0


















=


















Sl−1










ε
(l−1)
11

/

βl−1s
(l−1)
l−1,1

...

ε
(l−1)
l−1,l−1

/

βl−1s
(l−1)
l−1,l−1










0
...
0


















=


















Sl−1 0

0 0



































ε
(l−1)
11

/

βl−1s
(l−1)
l−1,1

...

ε
(l−1)
l−1,l−1

/

βl−1s
(l−1)
l−1,l−1

0
...
0


















.

To simplify notation and to grasp the correct dimensions we define some auxiliary
matrix notations. We define abbreviations for the augmented matrices

S
(k)
l−1 ≡

(
Sl−1 0

0 0

)

∈ Kk×k,

D
(k)
l−1 ≡ βl−1

(
diag(eTl−1Sl−1) 0

0 I

)

∈ Kk×k,

and
g
(k)
l−1 ≡

(

ε
(l−1)
11 · · · ε

(l−1)
l−1,l−1 0 · · · 0

)T ∈ Kk.

With these abbreviations the relation may be stated as

r
(k)
l = S

(k)
l−1

(

D
(k)
l−1

)−1

g
(k)
l−1.

We note that the factor
(

D
(k)
l−1

)−1

can either be interpreted as an amplification

factor for the small errors g
(k)
l−1, or as scaling of the eigenvectors Sk to have a last

component equal to β−1l−1. The matrix of eigenvectors scaled to have last element

equal to β−1l−1 will be denoted by

S̃
(k)
l−1 ≡ S

(k)
l−1

(

D
(k)
l−1

)−1

,

and the amplified errors will be denoted by

g̃
(k)
l−1 ≡

(

D
(k)
l−1

)−1

g
(k)
l−1.

We use the Kronecker product formulation of the unknown quantities Xk,

Xk = ŜHk RkSk ⇒
vec(Xk) = (STk ⊗ ŜHk )vec(Rk) = (Sk ⊗ Šk)T vec(Rk).
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We define the shorthand notations

Gk =
[

g
(k)
0 , . . . , g

(k)
k−1

]

G̃k =
[

g̃
(k)
0 , . . . , g̃

(k)
k−1

]

.

This gives a first expression of the quantities in Xk:

Theorem 4.21 Let all notations be as before. The amplification of the local errors,
that is the local loss of orthogonality and the recurrence errors is given by

vec(Xk) = (Sk ⊗ Šk)T








S
(k)
0

S
(k)
1

. . .

S
(k)
k−1








vec(G̃k)

= (Sk ⊗ Šk)T








S̃
(k)
0

S̃
(k)
1

. . .

S̃
(k)
k−1








vec(Gk).

This expression is solely in terms of left and right eigenvectors of the condensed
matrices Tl of steps one to k. The amplification is large in magnitude, when a small

residual bound βls
(l)
lj has occurred previously.

One weakness of the theorem above is the dependence on all eigenvector components
of all steps. We are mainly interested in eigenvalues, not in eigenvectors. Thus we
seek alternate formulations that do not rely on all eigenvector components. As
first step, note that the second matrix – matrix product in the theorem can be
reformulated to take the form

(Sk ⊗ I)T








ŠTk S̃
(k)
0

ŠTk S̃
(k)
1

. . .

ŠTk S̃
(k)
k−1







.

The diagonal of the second matrix consists of block matrices formed of prolonged

right eigenvector matrices S
(k)
l and left eigenvector matrices ŠTk . By Theorem 2.25

in Chapter 2 it follows that

JkŠ
T
k S

(k)
l − ŠTk S

(k)
l J

(k)
l = βl

(
ŠTk el+1

)
(
STl el
0

)T

= βl
(
ŠTk el+1

) (

eTl S
(k)
l

)

(4.36)

holds true. Here the matrix J
(k)
l is defined to be the prolonged Jordan matrix

J
(k)
l ≡

(
Jl 0
0 I

)

.

The prolongation is such that the resulting matrix is invertible when Tl is invertible.
The relation (4.36) can be stated equivalently as

(

I ⊗ Jk − J (k)l ⊗ I
)

vec(ŠTk S
(k)
l ) = vec

(

βl
(
ŠTk el+1

) (

eTl S
(k)
l

))

.

Let

Jk,l =
(

I ⊗ Jk − J (k)l ⊗ I
)−1
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denote the inverse of the huge matrix of distances of Ritz values. From the compu-
tations thus far it follows that

vec(ŠTk S̃
(k)
l ) =

(

D
(k)
l ⊗ I

)−1

vec(ŠTk S
(k)
l )

=
(

D
(k)
l ⊗ I

)−1

Jk,l vec
(

βl
(
ŠTk el+1

) (

eTl S
(k)
l

))

= J̃k,l
(

D
(k)
l ⊗ I

)−1

vec
(

βl
(
ŠTk el+1

) (

eTl S
(k)
l

))

= J̃k,l vec

(
(
ŠTk el+1

)
βl

(

eTl S
(k)
l

)(

D
(k)
l

)−1
)

= J̃k,l vec

(

(
ŠTk el+1

)
(
e
0

)T
)

≡ vec
(

Š
(k)

Θ(l)

)

holds true. The matrix J̃k,l is defined by the constraint

(

J̃k,l
)−1 (

D
(k)
l ⊗ I

)

=
(

D
(k)
l ⊗ I

) (
Jk,l

)−1

and is given by

J̃k,l ≡
(

I ⊗ Jk − (D
(k)
l )−1J

(k)
l D

(k)
l ⊗ I

)−1

.

Everything simplifies, when we only have degenerate Jordan blocks. In this case
the diagonal scaling does not alter the matrix Jk,l, i.e. we have that in this case

J̃k,l = Jk,l holds true. Furthermore, in the diagonalisable case the matrix Š
(k)

Θ(l)

implicitly defined in the last line takes the explicit form

Š
(k)

Θ(l) =
[

(Θk − θ(l)1 )−1ŠTk el+1, . . . , (Θk − θ(l)l )−1ŠTk el+1
︸ ︷︷ ︸

l columns

, 0, . . . , 0
︸ ︷︷ ︸

k − l columns

]

.

Now we are able to state the correlation between the quantities describing local
errors and the quantities governing the behaviour of the Ritz vectors in another
form:

Theorem 4.22 Let all notations be as previously defined. The amplification of the
local errors can be expressed alternatively as

vec(Xk) = (Sk ⊗ I)T









Š
(k)

Θ(0)

Š
(k)

Θ(1)

. . .

Š
(k)

Θ(k−1)









vec(Gk)

=









s
(k)
11 Š

(k)

Θ(0) s
(k)
21 Š

(k)

Θ(1) · · · s
(k)
k1 Š

(k)

Θ(k−1)

s
(k)
12 Š

(k)

Θ(0) s
(k)
22 Š

(k)

Θ(1) · · · s
(k)
k2 Š

(k)

Θ(k−1)

...
...

. . .
...

s
(k)
1k Š

(k)

Θ(0) s
(k)
2k Š

(k)

Θ(1) · · · s
(k)
kk Š

(k)

Θ(k−1)









vec(Gk).

In this expression, the entries of the amplifying matrix are composed of products
of elements of the eigenvector matrices solely of step k and, at least in the diago-
nalisable case, the inverses of all distances of Ritz values prior step k to those of
step k.
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We made the observation that all elements of the huge matrix in the last theo-
rem are composed of products of left and right eigenvector components. In the
diagonalisable case, a way of writing the matrix elements is the notation

s
(k)
l+1,j Š

(k)

Θ(l) =

(

s
(k)
l+1,j š

(k)
l+1,i

θ
(k)
j − θ(l)p

)

{p,i∈k}

.

Here, the index p denotes the column (some elements are zero), l the block–column,
i the row and j the block–row. The entries of the left hand side are related to those
of the right hand side via

šTi Rksj =

k−1∑

l=1

s
(k)
l+1,j š

(k)
l+1,i

l∑

p=1

ε
(l)
pp

θ
(k)
j − θ(l)p

.

When j = i, the elements can be transformed to a representation composed solely

of eigenvalues ν
(l+1)
p of tridiagonals that are principal submatrices of Tk, since by

application of our eigenvalue – eigenvector relations of Chapter 2, Theorem 2.19,
page 69,

s
(k)
l+1,j š

(k)
l+1,j =

[χT1:l
χTl+2:k

χ′T1:k

] (

θ
(k)
j

)

=

∏

`

(

θ
(k)
j − ν(l+1)`

)

∏

`6=j

(

θ
(k)
j − θ(k)`

)

{

ν
(l+1)
`

}

`∈k−1
≡

{

θ
(l+2:k)
j

}

j∈k−l−1
∪
{

θ
(l)
j

}

j∈l

holds true. Hence,

s
(k)
l+1,j š

(k)
l+1,j

θ
(k)
j − θ(l)p

=

∏

`

(

θ
(k)
j − ν(l+1)`

)

(

θ
(k)
j − θ(l)p

)
∏

`6=j

(

θ
(k)
j − θ(k)`

)

=

∏

`6=pj

(

θ
(k)
j − ν(l+1)`

)

(

θ
(k)
j − θ(k)pj

)
∏

`6=j,pj

(

θ
(k)
j − θ(k)`

) .

In element-wise notation this takes the form

šTj Rksj =

k−1∑

l=1

s
(k)
l+1,j š

(k)
l+1,j

l∑

p=1

ε
(l)
pp

θ
(k)
j − θ(l)p

=

k−1∑

l=1

l∑

p=1

ε
(l)
pp

θ
(k)
j − θ(k)pj

∏

`6=pj

(

θ
(k)
j − ν(l+1)`

)

∏

`6=j,pj

(

θ
(k)
j − θ(k)`

) .

From these expressions we can conclude that orthogonality is lost, when one of three
equivalent conditions emerge. There is some small residual bound, a Ritz value of
step l, l < k is close to an Ritz value of step k, and, the third condition, there do
exist two close Ritz values. We remark that it is possible to expand the analysis to
some extent to deal with the case of clusters of Ritz values.

We switch back to the general case and consider the third error analysis ap-
proach. It relies on a backward error analysis and is based on a multiplicative
splitting of the matrix Wk = Q̂H

k Qk. This approach enables us to derive bounds,
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but only applies as long as the basis vectors remain linear independent. The bounds
are based on computed quantities and relate the computed pencil to a perturbation
of an exact pencil. This exact pencil in general looses the simple Hessenberg struc-
ture. This approach is based on Simon’s thesis, Theorem 2.3, page 40, Theorem
2.4, page 42 and Day’s thesis, Theorem 7, page 64 (cf. [Sim82, Day93]).

We first give a version of the main theorem using an LU-type decomposition:

Theorem 4.23 (Simon, Day) Let A ∈ Kn×n, Ck ∈ Kk×k and Mk ∈ Kn×k,
where Mk = ck+1,kqk+1e

T
k , be given. Suppose that

AQk −QkCk =Mk − Fk

holds true for some Qk, Fk ∈ Kn×k. Suppose that Wk+1 = Q̂H
k+1Qk+1 (for some

matrix Q̂k+1 ∈ Kn×(k+1)) can be decomposed without pivoting, Wk+1 = R̂H
k+1Rk+1.

Thus, obviously Wk = R̂H
k Rk. Denote by C sim

k the matrix that is triangular similar
to the computed Ck,

C sim
k ≡ RkCkR

−1
k .

Observe that the triangular similarity assures that the matrix C sim
k is Hessenberg.

Define the exact oblique projection

(C exact
k , Ik) ≡ (P̂H

k APk, P̂
H
k Pk) ≡ (R̂−Hk Q̂H

k AQkR
−1
k , R̂−Hk WkR

−1
k )

of A. Then C sim
k may be interpreted as a perturbation of C exact

k ,

C exact
k − C sim

k = ck+1,kR̂
−H
k Q̂H

k qk+1e
T
kR

−1
k − R̂−Hk Q̂H

k FkR
−1
k

=
ck+1,k
rkk






r1,k+1
...

rk,k+1




 eTk − P̂H

k FkR
−1
k . (4.37)

The perturbation can be bounded normwise by

‖C exact
k − C sim

k ‖2 ≤ ‖R̂−1k ‖2‖R−1k ‖2(‖ck+1,kQ̂H
k qk+1‖2 − ‖Q̂H

k Fk‖2).

Proof. The implicitly in the theorem defined projection matrices

Pk = QkR
−1
k , P̂k = Q̂kR̂

−1
k

are bi-orthogonal, since P̂H
k Pk = R̂−Hk Q̂H

k QkR
−1
k = Ik. Thus, the oblique projec-

tion of (A, I) onto the pencil

(A, I)→ (P̂H
k APk, P̂

H
k Pk) ≡ (C exact

k , Ik)

is exact. As a next step, we transform the pre-multiplied equation

Q̂H
k AQk − Q̂H

k QkCk = Q̂H
k Mk − Q̂H

k Fk, (4.38)

by inserting the LU decomposition of Wk = Q̂H
k Qk = R̂H

k Rk. When we multiply
equation (4.38) by the inverses of the triangular factors form the left and the right,
we obtain

P̂H
k APk −RkCkR

−1
k = P̂H

k MkR
−1
k − P̂H

k FkR
−1
k

= ck+1,kP̂
H
k Pk+1Rk+1ek+1r

−1
kk − P̂H

k FkR
−1
k .

Equation (4.37) follows, since the matrices P̂k+1 and Pk+1, defined in analogue to
P̂k and Pk, are bi-orthogonal. The bound follows upon application of norms. ¤



162 CHAPTER 4. A UNIFIED APPROACH

This theorem may be interpreted as finding the closest Hessenberg decomposition
to the computed one, such that the eigenvalues are good approximations, even if
this implies that the eigenvectors are bad. It is an indicator that this will be the
case whenever the loss of orthogonality has reached some limit.

The ingredients of the bound are of particular interest. The part depending on
the norms of the inverses of the triangular factors, ‖R̂−1k ‖2‖R−1k ‖2, is comparable to

the growth factor in the LU decomposition. When the matrix Q̂H
k Qk is Hermitian,

we can bound this part by a constant. The remaining part measures the new loss
of orthogonality corresponding to the last step times the next off-diagonal element
and the accuracy of the recurrence. This implies that when the loss is moderate,
the computed eigenvalues are as accurate as one can hope for.

Some comments on the behaviour of the eigenvectors are in order. The trian-
gular similarity transformation maps the computed eigenvectors onto the improved
eigenvectors

s simj ≡ Rksj .

The loss of orthogonality Wk as well as the size of the elements of the triangular
factors is usually gradual. It is gradual in the sense of having small elements close
to the main diagonal and large elements further apart. The eigenvectors corre-
sponding to well-converged Ritz values do not change drastically, since the sizes of
the elements are also graded. The eigenvectors corresponding to unconverged Ritz
values are changed. The main change is that the first component is damped, as if
the finite precision run corresponds to an exact one with a different starting vector
with a small component in direction of the corresponding eigenvector. This leads to
a delay of the convergence of the unconverged Ritz values. This, in turn, matches
the behaviour typically observed in finite precision when using a method based on
short-term recurrences.

Roughly speaking, we might say that the triangular similarity transformation
‘twists’ the tridiagonal matrix of a short-term recurrence like the Lanczos process
to a Hessenberg matrix. The finite precision run produces tridiagonal matrices.
Adding a grain of salt, we can think of the twist moving along the anti-diagonal to
the other side producing copies of the converging Ritz values. This is not predicted
by the theorem, since at that point the linear dependence among the basis vectors
is lost completely.

We might use any matrix Q̂k+1 and any triangular decomposition for this ap-
proach. As example we might use the LDMT decomposition. The assumption
that the decomposition exists is always the drawback of the multiplicative splitting
approach.

Corollary 4.24 (Day) Let A ∈ Kn×n, Tk ∈ Kk×k, Ωk ∈ Kk×k and Mk ∈ Kn×k,
where Mk = βkqk+1e

T
k , be given. Suppose that

AQk −QkΩ
−1
k Tk =Mk − Fk

holds true for some Qk, Fk ∈ Kn×k. Assume that Wk+1 = Q̂H
k+1Qk+1 (for some ma-

trix Q̂k+1 ∈ Kn×(k+1)) can be decomposed without pivoting,Wk+1 = L̂k+1Ω̃k+1Rk+1.
Thus, obviously Wk = L̂kΩ̃kRk. Denote by (C sim

k , Ω̃k) the pencil that is triangular
similar to the computed pencil (Tk,Ωk),

(C sim
k , Ω̃k) ≡ (Ω̃kRkΩ

−1
k TkR

−1
k , Ω̃k).

Observe that the triangular similarity assures that the matrix C sim
k is Hessenberg.

Define the exact oblique projection

(C exact
k , Ω̃k) ≡ (P̂H

k APk, P̂
H
k Pk) ≡ (L̂−1k Q̂H

k AQkR
−1
k , L̂−1k WkR

−1
k )
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of the pencil (A, I). Then the pencil (C sim
k , Ω̃k) may be interpreted as a perturba-

tion of the pencil (C exact
k , Ω̃k),

C exact
k − C sim

k = βkL̂
−1
k Q̂H

k qk+1e
T
kR

−1
k − L̂−1k Q̂H

k FkR
−1
k

=
βk
rkk

Ω̃k






r1,k+1
...

rk,k+1




 eTk − P̂H

k FkR
−1
k . (4.39)

The perturbation can be bounded normwise by

‖C exact
k − C sim

k ‖2 ≤ ‖L̂−1k ‖2‖R−1k ‖2(‖βkQ̂H
k qk+1‖2 − ‖Q̂H

k Fk‖2).

Proof. That the pencil (C sim
k , Ω̃k) is similar to the pencil (Tk,Ωk) follows by a

straight calculation,

(Tk,Ωk) ⇔ (Ω−1k Tk, Ik)

⇔ (RkΩ
−1
k TkR

−1
k , Ik)

⇔ (Ω̃kRkΩ
−1
k TkR

−1
k , Ω̃k).

The proof for the remaining part of the corollary is along the lines of the proof for
Theorem 4.23. The only difference is the occurrence of the diagonal scaling matrix
Ω̃k. ¤

The corollary is tailored to work for Day’s variant of the Lanczos method that
projects the pencil (A, I) to the pencil (Tk,Ωk). This corollary is the key result of
Day’s thesis and serves as basis for Day’s semiduality algorithm.

Both, the theorem and the corollary, rest upon strong assumptions in the sense
that they require Wk to be decomposable without pivoting, i.e. such that all leading
principal minors are non-zero. This can be weakened by applying GEPP or even
GECP. We state the result based on GECP as a second corollary:

Corollary 4.25 Let A, Ck, Mk, Qk and Fk be given as in Theorem 4.23. Suppose
that Wk = Q̂H

k Qk (for some matrix Q̂k ∈ Kn×k) can be decomposed with GECP,

Wk = O1L̂kRkO2. Denote by C sim
k the matrix that is similar to the computed Ck,

C sim
k ≡ RkO2CkO2R

−1
k .

Observe that when O2 6= I the matrix C sim
k will, in general, no longer be a Hessen-

berg matrix. Define the exact oblique projection

(C exact
k , Ik) ≡ (P̂H

k APk, P̂
H
k Pk) ≡ (L̂−1k O1Q̂

H
k AQkO2R

−1
k , L̂−1k O1WkO2R

−1
k )

of A. Then C sim
k may be interpreted as a perturbation of C exact

k ,

C exact
k − C sim

k = ck+1,kL̂
−1
k O1Q̂

H
k qk+1e

T
kO2R

−1
k − L̂−1k O1Q̂

H
k FkO2R

−1
k

The perturbation can be bounded normwise by

‖C exact
k − C sim

k ‖2 ≤ ‖L̂−1k ‖2‖R−1k ‖2(‖ck+1,kQ̂H
k qk+1‖2 − ‖Q̂H

k Fk‖2).

Proof. The proof is along the lines of the proof of Theorem 4.23. The formulation
expressing the first perturbation term in elements of the triangular factor Rk+1 in
general will not be possible, since the pivoting strategy might destroy the structure
between two successive matrices P̂H

k ≡ L̂−1k O1Q̂
H
k and P̂H

k+1. ¤
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To be applicable, the result of Theorem 4.23 has to be tailored to fit the character-
istics of the method to be used. These results have to be used with caution, since
there is a natural trade-off between a strong theorem and its domain of applicability.
The stronger the bound becomes, the more knowledge on the loss of orthogonality
has to be inserted to be of practical use. In case of an orthogonal basis, i.e. in case
of the Arnoldi method, including as a special case the symmetric Lanczos method,
Wk = QH

k Qk is HPD. Instead of the LU decomposition the Cholesky decomposition
should be preferred. In this case the norm of R−1k in the bounds is less equal 2,
which simplifies the analysis substantially.

This type of backward error analysis requires some justification. First of all, they
do not result in backward error formula, since they express the occurring loss of
orthogonality and the accuracy of the returned approximations in terms of computed
quantities. That is, simply using the results obtained, we have no clue why some
of the methods converge beyond the point where the assumptions of the theorems
are violated. Then, we can not predict by theory if they are good in describing the
actual behaviour. Even if numerical experiments suggest so, it would be nice to
actually prove that a backward error analysis can not apply and that the results of
this section are in some sense optimal.

For this reason, we first try to apply the standard backward error analysis to the
Sylvester equation. This is done in the next section and should clarify the role that
a standard error analysis can take. Then, in the proximate section, the recurrence
of the basis vectors is analysed in more detail. This analysis results in statements
that reveal the restrictions of all possible error analysis approaches.

4.7 The Sylvester Equation

In this section we interprete the governing equation

AQk −QkCk =Mk − Fk (4.40)

as a linear equation in Qk. This linear equation, i.e. the Sylvester equation, is
an ordinary matrix equation in higher dimension nk. We re-write the governing
equation using the Kronecker product and the vec operator,

(Ik ⊗A− CT
k ⊗ In)vec(Qk) = vec(Mk − Fk).

The system matrix is known as the Kronecker sum of the matrices A and −CT
k .

We want to apply stability analysis to the huge matrix of the Sylvester equation.
We are interested in the Schur and Jordan normal forms. The Schur form can easily
be obtained. Let the Schur forms of A and CT

k be given as

AU = UR and CT
kWk =WkRk.

Then the matrix of the Sylvester equation has Schur form

(Ik ⊗A− CT ⊗ In)(Wk ⊗ U) = Wk ⊗AU − CT
kWk ⊗ U

= Wk ⊗ UR−WkRk ⊗ U
= (Wk ⊗ U)(Ik ⊗R−Rk ⊗ In).

The matrix Ik⊗R−Rk⊗ In is upper triangular by inspection. The matrix Wk⊗U
is unitary, since

(Wk ⊗ U)(Wk ⊗ U)H = (Wk ⊗ U)(WH
k ⊗ UH)

= WkW
H
k ⊗ UUH

= Ik ⊗ In = Ink.



4.7. THE SYLVESTER EQUATION 165

Thus we have computed the Schur decomposition. This already shows that the
eigenvalues are given by the numbers λi − θj , i ∈ n, j ∈ k.

The Schur vectors are the columns of the matrix Wk ⊗ U ,

Wk ⊗ U =
[
w1 ⊗ u1, w1 ⊗ u2, . . . , wk ⊗ un

]
.

We observe that the right Schur vectors of the large matrix compromise of the right
Schur vectors of A and some sort of left Schur vectors of Ck.

Now we focus on the Jordan normal form of the matrix of the Sylvester equation.
Suppose that the Jordan normal forms of A and CT

k are given by

AV = V JΛ and CT
k Zk = ZkJΘ.

We use the Jordan normal form of CT
k , the transpose of Ck. The Jordan normal

form of the transpose can be obtained from the Jordan normal form of the matrix
Ck,

ŜHk Ck = JΘŜ
H
k ⇔ CT

k Šk = ŠkJ
T
Θ .

Every Jordan block is similar to its transpose via







θ
1 θ

. . .
. . .

1 θ







= J








θ 1

θ
. . .
. . . 1

θ







J−1,

where J is the flip-matrix

J = J−1 =





1

. .
.

1



 .

The matrix Zk of the eigendecomposition of CT
k is obtained from the matrix Šk by

a simple re-ordering of the column vectors. We use this strange re-ordering because
it simplifies notation.

We go on to proceed like in case of the Schur form,

(Ik ⊗A− CT
k ⊗ In)(Z ⊗ V ) = Zk ⊗AV − CT

k Zk ⊗ V
= Zk ⊗ V JΛ − ZkJΘ ⊗ V
= (Zk ⊗ V )(Ik ⊗ JΛ − JΘ ⊗ In).

The second huge matrix in the product of the right-hand side,

Ik ⊗ JΛ − JΘ ⊗ In, (4.41)

in general is no Jordan matrix. Nevertheless, the eigenvectors of the Kronecker sum
must to be constructible using the columns of Ṽ ≡ Zk ⊗ V , i.e. the vectors

ṽij ≡ zj ⊗ vi = vec
(
viz

T
j

)

as trial vectors. We distinguish the four cases that a simple (non-simple) block meets
a simple (non-simple) block and state the results as a series of three examples, one
lemma and two conjectures.

Example 4.26 (simple block meets simple block) Let A ∈ Kn×n. Let CT
k ∈

Kk×k. Let λi and vi be an eigenpair corresponding to a one by one Jordan block
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of A. Let θj and zj be an eigenpair corresponding to a one by one Jordan block of
CT
k . Then the trial vector ṽij and λij defined by

ṽij ≡ zj ⊗ vi = vec
(
viz

T
j

)
, λij ≡ λi − θj ,

is an eigenpair of the Kronecker sum of A and −CT
k , since

(
Ik ⊗A− CT

k ⊗ In
)
vec
(
viz

T
j

)
= vec

(
Aviz

T
j − vizTj Ck

)

= (λi − θj) vec
(
viz

T
j

)
.

This first example is covered by the following two examples. The first example is
important when A and Ck are both diagonalisable, which is the generic case when
considering matrices that are subject to small perturbations.

Example 4.27 (non-simple block meets simple block) LetA and CT
k be given

as in the preceeding example. Let Ji be an `× ` Jordan block of A,

Ji = Jλi =








λi 1

λi
. . .
. . . 1

λi







.

Suppose the corresponding subspace is spanned by

Vi ≡
[
vi, . . . vi+`−1

]
, AVi = ViJi.

Let θj and zj be an eigenpair corresponding to a one by one Jordan block of CT
k .

Then the block trial vector

zj ⊗ Vi ≡
[
zj ⊗ vi, . . . , zj ⊗ vi+`−1

]
,

compromising of the trial vectors

zj ⊗ vi+p−1 = vec
(
vi+p−1z

T
j

)
, p ∈ `

as columns spans an invariant subspace of the Kronecker sum of A and −CT
k to the

eigenvalue λij ≡ λi − θj , since
(
Ik ⊗A− CT

k ⊗ In
)
zj ⊗ Vi = zj ⊗AVi − CT

k zj ⊗ Vi
= zj ⊗ ViJi − zjθj ⊗ Vi
= (zj ⊗ Vi)(Ji − θjI`).

The columns of the block vector, i.e. the trial vectors, are the eigenvector of the
Jordan block and the corresponding principal vectors, respectively.

For the next example it is useful to observe that the negative of a Jordan block has
the Jordan decomposition

−Jλ = SJ−λS

where S is the sign matrix with diagonal elements alternating between plus and
minus ones that already appeared in Chapter 2.
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Example 4.28 (simple block meets non-simple block) LetA and CT
k be given

as in the preceeding examples. Let λi and vi be an eigenpair corresponding to a
one by one Jordan block of A. Let Jj be an `× ` Jordan block of CT

k ,

Jj = Jθj =









θj 1

θj
. . .

. . . 1
θj









.

Then the sign-changed block trial vector

(Zj ⊗ vi)S = ZjS ⊗ vi ≡
[
zj ⊗ vi,−zj+1 ⊗ vi, . . . ,±zj+`−1 ⊗ vi

]
,

compromising of the sign-changed trial vectors

(−1)p−1zj+p−1 ⊗ vi = (−1)p−1vec
(
viz

T
j+p−1

)
, p ∈ `

spans an invariant subspace of the Kronecker sum of A and −CT
k to the eigenvalue

λij ≡ λi − θj , since
(
Ik ⊗A− CT

k ⊗ In
)
ZjS ⊗ vi = ZjS ⊗Avi − CT

k ZjS ⊗ vi
= ZjS ⊗ viλi − ZjJjS ⊗ vi
= (ZjS ⊗ vi)(λiI` + J−θj ).

The columns of the block vector, i.e. the sign-changed trial vectors, are the eigen-
vector of the Jordan block and the corresponding principal vectors, respectively.

The next example is a little bit more involved and covers the previous three. We
split our approach into three smaller steps. In a first step, we construct in a first
lemma a set of eigenvectors. Then, in the second step, we go on to construct in a
second lemma a set of principal vectors that correspond to the eigenvectors already
constructed. In the last step, we count the vectors constructed to make sure we
have found the entire Jordan decomposition.

For ease of understanding we numerate the vectors simply by single indices.
This corresponds to A and CT

k having only one single Jordan block. The sizes of
the blocks are denoted as before by `A and `C , the subscript denoting the matrix
the index originates from. Since the trial vectors form a basis of the space, the
eigenvectors and the principal vectors have be representable by linear combinations
of them.

The eigenvectors in this representation can be found almost immediately:

Lemma 4.29 A set of min(`A, `C) unnormalised eigenvectors is given by

l∑

p=1

zl−p+1 ⊗ vp, l ∈ {1, . . . ,min(`A, `C)}.

Proof. These vectors are eigenvectors. This follows by straight calculation:

(
Ik ⊗A− CT

k ⊗ In
)

l∑

p=1

zl−p+1 ⊗ vp =

l∑

p=1

zl−p+1 ⊗Avp

−
l∑

p=1

CT
k zl−p+1 ⊗ vp
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= (λi − θj)
l∑

p=1

zl−p+1 ⊗ vp

+

l∑

p=1

zl−p+1 ⊗ vp−1

−
l∑

p=1

zl−p ⊗ vp

= (λi − θj)
l∑

p=1

zl−p+1 ⊗ vp.

In the above, indices which are zero refer to the zero vector. By construction the
number of eigenvectors of this type is min(`A, `C). ¤

We aim at constructing principal vectors of highest degree. Our ansatz is based on
linear combinations of trial vectors. To derive the explicit formula for the principal
vectors, we use a slightly different point of view, which is best introduced using a
small picture. We think of the trial vectors as the nodes of a grid, as is shown in
figure 4.2.
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Figure 4.2: The two-dimensional generalised eigenvector grid

Figure 4.2 is a small example, the Jordan block of A is of size five and the Jordan
block of Ck is of size four. Every grid point corresponds to one of the trial vectors,
sorted by degree. The grid point in the upper left corner for instance corresponds
to the trial vector composed of the principal vectors of highest degree, i.e. of degree
five and four, respectively. The plus and minus signs indicate how a single element
is transported through the grid.

The anti-diagonals of the grid deserve attention, since the constructed eigenvec-
tors are composed merely of trial vectors corresponding to diagonal elements. We
observe that when we form any linear combination of trial vectors whose nodes are
along one anti-diagonal, application of the Kronecker sum maps the anti-diagonal
to the next anti-diagonal, the new coefficient vector is the discrete derivative of the
old coefficient vector.
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We think of the grid prolonged to all sides and define the value for entries
outside the grid range to be zero. We interprete the coefficient vectors along the
anti-diagonals as arithmetic functions f : N 7→ N, f : n → f(n). By inspection
we see that the next anti-diagonal is computed as ∆f (n) = f (n+ 1) − f (n), i.e.
we compute the discrete derivative of the function f . Our requirement that the last
values in the range k are equal reads as

∆lf (i) = ∆
(
∆l−1f

)
(i)

=

l∑

j=0

(−1)l−j
(
l

j

)

f (i+ j)

= const ∀ i ∈ k.

When we look at a single nonzero element somewhere in the grid, we see that it is
propagated in terms of binomial coefficients. We define the binomial coefficients as
usual to be

(
r

k

)

=

{

r(r − 1) . . . (r − k + 1)
/

k! k ≥ 0

0 k < 0
∀ r ∈ C, k ∈ Z.

As a natural consequence of the observation of the binomial coefficients we try to
find a starting vector composed of binomial coefficients. This approach seems to
work, when the k non-zero elements of the starting vector along one anti-diagonal
are given by the Hadamard (Schur) product

f = fleft ◦ fright
of the two length k vectors

fleft =

((
n− k
0

)

, . . . ,

(
n− k + i− 1

i− 1

)

, . . . ,

(
n− 1

k − 1

))T

and

fright =

((
m− 1

k − 1

)

, . . . ,

(
m− i
k − i

)

, . . . ,

(
m− k

0

))T

.

The ith non-zero component, i ∈ k is given by the product of two binomial coeffi-
cients

f(i) =

(
n− k + i− 1

i− 1

)

·
(
m− i
k − i

)

.

This arithmetic function is defined for all values, because outside the range one of
the vectors, the left or right, is zero by definition of the binomial coefficients. To
use the discrete derivative we pad the vector with n− k zeros on the left and m− k
zeros on the right, such that the length of the vector now is m+ n− k.

Conjecture 4.30 (non-simple block meets non-simple block) The principal
vectors of degree s are given by the discrete derivatives

∆sf (i) =

s∑

j=0

(−1)s−j
(
s

j

)

f (i+ j)

=

s∑

j=0

(−1)s−j
(
s

j

)(
n− k + i+ j − 1

i+ j − 1

)(
m− i− j
k − i− j

)

,

where s runs from zero up to n+m− (2k − 1) = n+m− 2k + 1. The last vector
constructed this manner has constant coefficients along the anti-diagonal in the
range of interest, i.e. is one of the eigenvectors previously constructed.
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The proof might be based on the (n+m− 2k+2)th derivative. When the resulting
coefficients in the range of interest are zero, our conjecture has been proven to be
correct. In this case we have exactly min(`A, `C) Jordan blocks of sizes

(`A + `C)− 2k + 1, where 1 ≤ k ≤ min(`A, `C).

Thus, we would have constructed a complete Jordan decomposition of the Kronecker
sum, since

`A · `C =

min(`A,`C)∑

k=1

(`A + `C)− 2k + 1

= min (`A, `C) · (`A + `C)−min (`A, `C)
2

holds true.

Conjecture 4.31 (Kronecker sum: Jordan normal form) A Jordan normal
form of the Kronecker sum of A ∈ Kn×n and −CT

k ∈ Kk×k,

Ik ⊗A− CT
k ⊗ In,

can be constructed from the Jordan normal forms of A and CT
k ,

AV = V JΛ and CT
k Z = ZJΘ.

The right eigenvector matrix is given implicitly by the vectors constructed in exam-
ples (4.26)–(4.28), Lemma 4.29 and Conjecture 4.30. In complete analogy, also a
left eigenvector matrix can be constructed by interchanging the roles of A and Ck.

Proof. This theorem is unproven only because of the lacking proof for Conjec-
ture 4.30. ¤

We have proven that the eigenvalues of the Kronecker sum of A and CT
k are given

by λi−θj . When A and Ck are both normal, also the Kronecker sum is normal and
the condition number is given by

κ =
maxi,j |λi − θj |
mini,j |λi − θj |

.

The matrix Ck is used as an approximation to the matrix A, and so in case of
convergence the condition number of the Kronecker sum tends to infinity. Even
when A and CT

k are non-normal, the Kronecker sum will become singular whenever
there are two indices i0 ∈ n, j0 ∈ m such that λi0 − θj0 = 0.

Higham considered backward error analysis of the Sylvester equation (cf. [Hig93]).
He gives bounds for the backward error of an approximate solution of the Sylvester
equation. He also gives a new condition number that supersedes the obvious choice
of a condition number based on the interpretation as a linear system. The inter-
esting thing about the analysis is the dependence of the backward error and the
condition number on the (approximate) solution Qk. The backward error of the
Sylvester equation AQ − QC = M , where A ∈ Kn×n, C ∈ Km×m, Q,M ∈ Kn×m

and m < n, is defined as

η(Q̃) ≡ min{ε : (A+∆A)Q̃− Q̃(C +∆C) =M +∆M,

‖∆A‖F ≤ εα, ‖∆C‖F ≤ εγ, ‖∆M‖F ≤ εµ}

The occurring error matrices again fulfil a Sylvester equation, namely

(∆AQ̃− Q̃∆C)−∆M = R ≡M − (AQ̃− Q̃C).
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This equation can be re-written using the vec operator,

(α(Q̃T ⊗ In) −γ(Im ⊗ Q̃) µInm )











vec(∆A)

α

vec(∆C)

γ

vec(∆M)

µ











= vec(R)

This is a linear equation Bv = r. The backward error can be bounded using the
minimal residual solution B†r of this equation, that is by

1√
3
‖B†r‖2 ≤ η2(Q̃) ≤ ‖B†r‖2 ≤ ‖B†‖2‖r‖2.

Neglecting the influence of the right-hand side, i.e. the cross-dependencies between
the matrix B and the residual of the approximate solution, we observe that the
bound depends mainly on the smallest singular value of B times the Frobenius
norm of the residual. The smallest singular value of B can be expressed using the
smallest singular value σm ≡ σm(Q̃) of the approximate solution Q̃,

‖B†‖2 = (α2σ2m + µ2)−1/2.

For the direct proof we refer to Higham’s paper (cf. [Hig93], equation (3.7)). In
our case we set µ to zero, i.e. we are not concerned with any perturbations of the
right-hand side. This implies that an upper bound for the backward error is given
by

η2(Q̃) ≤ (ασmin(Q̃))−1‖R‖F .
The minimal perturbation to achieve equality is small, as long as the matrix Q̃ has
approximately orthonormal columns. The derivation of this bound clearly reveals
that this bound may grossly overestimate the size of the minimal perturbation
necessary to achieve equality.

Apart from the results based on constructing polynomial subspace equations,
the stability analysis in this section did not honour the special structure of the
right-hand side and the iterative character of the methods. In the next section we
will derive some results that make extensive use of the structure.

4.8 The Computed Basis Vectors

In this section we are interested in the local and global deviation of the computed
basis vectors qj . We state a variety of results expressing the deviation in terms of
different computed quantities.

We again use the governing equation

AQk −QkCk =Mk − Fk (4.42)

as the starting point of our examination. The convergence analysis in infinite pre-
cision is based on the eigendecomposition, thus we proceed by diagonalising the
governing equation.

Multiplying (4.42) by v̂Hi from the left and by sj from the right we obtain the
set

(λi − θj) v̂Hi Qksj = v̂Hi qk+1ck+1,kskj − v̂Hi Fksj ∀ i ∈ n, j ∈ k (4.43)

of equations. Here we have assumed that both A and Ck are diagonalisable.
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Reordering the set of equations (4.43), we obtain the set

v̂Hi qk+1 =
(λi − θj) v̂Hi Qksj + v̂Hi Fksj

ck+1,kskj
∀ i ∈ n, j ∈ k

= v̂Hi Qk

[
λi − θj
ck+1,kskj

]

sj + v̂Hi Fk

[
1

ck+1,kskj

]

sj . (4.44)

The vector yj = Qksj is the computed jth Ritz vector. This result relates a devia-
tion to convergence of a Ritz pair. The result applies also to non-diagonalisable A
and Ck, since for every eigenvalue at least one eigenvector must exist.

Theorem 4.32 Let A ∈ Kn×n. Let v̂Hi be a left eigenvector of A to eigenvalue λi.
Let q = q1 be the starting vector of a Krylov method that computed the perturbed
Hessenberg decomposition

AQm −QmCm = qm+1cm+1,me
T
m − Fm.

Let sj be a right eigenvector of Ck to eigenvalue θj, and yj = Qksj the corresponding
Ritz vector.

When (λi − θj) v̂Hi yj becomes as small as v̂Hi Fksj, the basis vector qk+1 starts
to deviate in direction v̂Hi ,

v̂Hi qk+1 =
(λi − θj) v̂Hi yj + v̂Hi Fksj

ck+1,kskj
.

The size of deviation is proportional to the inverse of the last component of sj.

In other words, a deviation can only occur when the method is converging. Fur-
thermore, the denominator ck+1,kskj is frequently used as indicator for convergence
in eigenproblem solvers. When the rounding errors are random, we almost surely
have a deviation in case of observable convergence.

When Ck is diagonalisable, we can say more about size and shape of the devia-
tion. The matrix of eigenvectors S ≡ Sk of course is invertible. We use this fact to
express the lth unit vector in terms of eigenvector entries:

I = SS−1 = SŠT ⇒ el = SŠT el ≡
k∑

j=1

šljsj .

Here again we used the shorthand notation š = ŝ.
We are interested in the contribution of the error between steps l and k+1. For

this reason we introduce the representation

k∑

j=1

(
ck+1,kskj šlj
λi − θj

)(
λi − θj
ck+1,kskj

)

sj = el

of the lth unit vector. We sum up equations (4.44) to pick up the single equation





k∑

j=1

ck+1,kskj šlj
λi − θj



 v̂Hi qk+1 = v̂Hi ql + v̂Hi Fk





k∑

j=1

(
šlj

λi − θj

)

sj



 . (4.45)

For l = 1 we obtain a formula that reveals how the errors affect the recurrence from
the beginning.
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Theorem 4.33 Let A ∈ Kn×n. Let v̂Hi be a left eigenvector of A to eigenvalue λi.
Let q = q1 be the starting vector of a Krylov method that computed the perturbed
Hessenberg decomposition

AQm −QmCm = qm+1cm+1,me
T
m − Fm.

Assume Ck, k ∈ m diagonalisable. Assume further that the right eigenvectors sj,
j ∈ k of Ck are normalised such that šTj sj = ŝHj sj = 1, where ŝHj , j ∈ k denotes
the left eigenvector to eigenvalue θj.

Then the part of the finite precision recurrence of the basis vectors in direction
of v̂Hi is given by





k∑

j=1

ck+1,kskj š1j
λi − θj



 v̂Hi qk+1 = v̂Hi q + v̂Hi Fk





k∑

j=1

(
š1j

λi − θj

)

sj



 .

Theorem 4.33 sheds some more light on the deviation. It can be interpreted as
follows: A deviation in direction of the ith eigenvector v̂Hi of A can only occur
when an eigenvalue θj approaches the corresponding eigenvalue λi. The size of the
deviation depends on the size of the first component of the left eigenvector ŝj of Ck
and the shape and size of the right eigenvector sj . When a Ritz value is converging,
the eigenvector component is damped when no errors are present. In the presence
of errors the picture changes. When we assume the Ritz value to be simple, we
observe the rate of deviation we already mentioned in Theorem 4.32. This rate may
be a crude overestimate in case of several close Ritz values.

We are usually more interested in Ritz values, than in Ritz vectors and thus in
eigenvectors of Ck. It turns out that it is possible to express part of the left-hand
side in terms of Ritz values and sub-diagonal elements instead solely in terms of
eigenvectors.

To see this, observe that the quantity ck+1,kskj šlj can be expressed in terms
of Ritz values and sub-diagonal elements. To be more precise, we have proven in
Chapter 2 that in case of diagonalisable Hessenberg matrices the relations

skj šlj =

∏k−1
p=l cp+1,p

∏
(

θ
(l−1)
i − θ(k)j

)

∏

i6=j

(

θ
(k)
i − θ(k)j

)

=

(
∏k−1

p=l cp+1,p

)

χCl−1
(θj)

χ′Ck(θj)
∀ l ∈ k

hold true. Thus, in the most interesting case l = 1,

skj š1j =

∏k−1
p=1 cp+1,p

χ′Ck(θj)
, i.e. ck+1,kskj š1j =

∏k
p=1 cp+1,p

χ′Ck(θj)

holds true. This proves the following theorem:

Theorem 4.34 Let A ∈ Kn×n. Let v̂Hi be a left eigenvector of A to eigenvalue λi.
Let q = q1 be the starting vector of a Krylov method that computed the perturbed
Hessenberg decomposition

AQm −QmCm = qm+1cm+1,me
T
m − Fm.

Assume Ck, k ∈ m diagonalisable. Assume further that the right eigenvectors sj,
j ∈ k of Ck are normalised such that šTj sj = ŝHj sj = 1, where ŝHj , j ∈ k denotes
the left eigenvector to eigenvalue θj.
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Then the part of the finite precision recurrence of the basis vectors in direction
of v̂Hi is given by





k∑

j=1

∏k
p=1 cp+1,p

χ′Ck(θj)(λi − θj)



 v̂Hi qk+1 = v̂Hi q1 + v̂Hi Fk





k∑

j=1

(
š1j

λi − θj

)

sj





We remark that close to every matrix with a non-simple Jordan block there is a
diagonalisable matrix with ill-conditioned eigenvectors.

The quantity χ′Ck (θj) (λi − θj) is simply the first nonzero term in the Taylor ex-
pansion around θj of χCk evaluated at λi, i.e.

χCk (λi) = χCk (θj)

+ χ′Ck (θj) (λi − θj)

+
χ′′Ck (φij)

2
(λi − θj)2

where φij lies somewhere between λi and θj . Of course, since the χ are polynomials,
we can determine the complete Taylor expansion and give another representation,
since many terms cancel.

The explicit expression of the expansion after cancellation took place is easily
obtained using a slightly different point of view. It is simple calculation to show
that when λi 6= θ` for all `,

(λi − θj) =
χCk(λi)

∏

`6=j(λi − θ`)

holds true. Thus, using the theory of polynomial interpolation, we observe that
we have obtained nothing but an interpolating polynomial in Lagrange form that
interpolates a constant function,

k∑

j=1

1

χ′Ck(θj)(λi − θj)
=

1

χCk(λi)

k∑

j=1

∏

`6=j(λi − θ`)
∏

`6=j(θj − θ`)

=
1

χCk(λi)
.

Our recurrence is then transformed into the equation

v̂Hi qk+1 =
χCk (λi)

∏k
p=1 cp+1,p



v̂Hi q1 + v̂Hi Fk





k∑

j=1

(
š1j

λi − θj

)

sj







 , (4.46)

a formula revealing explicitly the forward error in the finite precision counterpart
to the evaluation in infinite precision given in formula (2.11).

This formula clearly reveals that we will almost never compute a zero vector
when using a Krylov method in finite precision. A second message is that unless
the Arnoldi vectors are stored and orthogonalised explicitly, the orthogonality will
become lost whenever the method converges, and from formula (4.46) we see in
which direction the deviation occurs.

We can collect all eigenparts to rebuild the vectors qk+1. This results in the
following theorem:

Theorem 4.35 Let A ∈ Kn×n. Let q = q1 be the starting vector of a Krylov
method that computed the perturbed Hessenberg decomposition

AQm −QmCm = qm+1cm+1,me
T
m − Fm.
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Assume A and Ck, k ∈ m diagonalisable. Assume further that the right eigenvectors
vi, i ∈ n of A and sj, j ∈ k of Ck are normalised such that v̂Hi vi = 1 and šTj sj = 1,

where v̂Hi , i ∈ n and šTj , j ∈ k is used to denote the left eigenvectors.

Then the (k + 1)th basis vector has the representation

qk+1 =
χCk(A)

∏k
p=1 cp+1,p



q +





n∑

i=1

viv̂
H
i Fk





k∑

j=1

(
š1j

λi − θj

)

sj











 . (4.47)

This implies that the (k + 1)st basis vector qk+1 is the exact (k + 1)st basis vector
for a perturbed starting vector and a different Krylov method. Furthermore, this
theoretical Krylov method in general uses a different way to compute the matrices
Ck.

Theorem 4.35 implies that as long as no Ritz pair has converged and the matrices
Ck are computed in a stable manner, the computed basis vectors will be close to
the exact ones.

From now on we focus on the error term on the right-hand side of equation
(4.46). We want to derive a different representation of the complicated looking
error term, given by the vector

Fk





k∑

j=1

(
š1j

λi − θj

)

sj



 ≡ Fkwk.

First we consider the lth component wlk of the composed vector wk, where l ∈ k is
arbitrary. This component is given by

wlk = eTl wk = eTl





k∑

j=1

(
š1j

λi − θj

)

sj



 =

k∑

j=1

(
š1jslj
λi − θj

)

.

Again we make use of our eigenvector – eigenvalue relations we have obtained in
Chapter 2. We know that

š1jslj =

(
∏l−1

p=1 cp+1,p

)

χCl+1:k
(θj)

χ′Ck(θj)

holds true. The second tool again is polynomial interpolation. We rewrite another
interpolation polynomial slightly (note that l < k):

k∑

j=1

χCl+1:k
(θj)

χ′Ck(θj)(λi − θj)
=

1

χCk (λi)

k∑

j=1

∏

`6=j (λi − θ`)
∏

`6=j (θj − θ`)
χCl+1:k

(θj)

=
χCl+1:k

(λi)

χCk (λi)
.

This proves that the above mentioned lth component of wk is given by

wlk =
k∑

j=1

(
š1jslj
λi − θj

)

=

(
∏l−1

p=1 cp+1,p

)

χCl+1:k
(λi)

χCk(λi)
.

We express the final result for the recurrence as theorem:
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Theorem 4.36 Let A ∈ Kn×n. Let v̂Hi be a left eigenvector of A to eigenvalue λi.
Let q = q1 be the starting vector of a Krylov method that computed the perturbed
Hessenberg decomposition

AQm −QmCm = qm+1cm+1,me
T
m − Fm.

Then the part of the finite precision recurrence of the basis vectors in direction
of v̂Hi is given by

v̂Hi qk+1 =
χCk(λi)

∏k
p=1 cp+1,p

v̂Hi q1 +

k∑

l=1

[

χCl+1:k
(λi)

∏k
p=l cp+1,p

v̂Hi fl

]

. (4.48)

Proof. The derivation of the result covers only the cases where Ck, k ∈ m is di-
agonalisable. This restriction is not necessary, which will follow by the proof of the
next theorem. ¤

We noted that in infinite precision the basis vectors fulfil a recurrence that involves
a polynomial of the matrix A. By summing the eigenparts we conclude that the
finite precision methods still fulfils a perturbed equation of that type.

As we already mentioned, this result applies to general A and general unreduced
Hessenberg Ck:

Theorem 4.37 Let A ∈ Kn×n. Let q = q1 be the starting vector of a Krylov
method that computed the perturbed Hessenberg decomposition

AQm −QmCm = qm+1cm+1,me
T
m − Fm.

The vectors qj constructed to serve as a basis obey the relation

qk+1 =
χCk(A)

∏k
p=1 cp+1,p

q +

k∑

l=1

[

χCl+1:k
(A)

∏k
p=l cp+1,p

fl

]

.

This is similar to the relation

qk+1 =
χCk(A)

∏k
p=1 cp+1,p

q

that holds true in infinite precision. We stress the fact that the polynomials χCk
depend on the vectors constructed and thus differ from the exact ones whenever
Fk 6= 0. This also can be expected when several methods are used that compute
different Fk.

Proof. The proof relies on induction and on the structure of the Kronecker sum
of A and Ck. We know that in case of a simple (non-block) Krylov method Ck is
unreduced upper Hessenberg. Thus, the Sylvester equation

(
Ik ⊗A− CT

k ⊗ In
)
vec (Qk) = vec (Mk − Fk)

corresponds to the huge linear system











(A − c11I) −c21I 0 . . . 0

−c12I (A − c22I) −c32I
. . .

...
...

. . .
. . .

. . . 0
−c1,k−1I · · · −ck−2,k−1I (A − ck−1,k−1I) −ck,k−1I

−c1kI −c2kI · · · −ck−1,kI (A − ckkI)






















q1

q2

q3

...
qk−1

qk











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=











0
0
0
...
0

qk+1











ck+1,k −












f1

f2

f3

...
fk−1

fk












.

For q1 there is nothing to prove. Using the first row, for q2 the result obviously
holds true,

q2 =
(A− c11I)

c21
q1 +

I

c21
f1 =

χC1
(A)

c21
q1 +

χC2:1
(A)

c21
f1.

Next, assume that

qj =
χCj−1

(A)
∏j−1

p=1 cp+1,p
q1 +

j−1
∑

l=1

[

χCl+1:j−1
(A)

∏j−1
p=l cp+1,p

fl

]

holds true for all j ≤ k. Then using the last row and our induction hypothesis,
indicated by (?),

ck+1,kqk+1 =

k−1∑

j=1

−cjkqj + (A− ckkI) qk + fk

(?)
=

k−1∑

j=1

−cjk
[

χCj−1
(A)

∏j−1
p=1 cp+1,p

q1 +

j−1
∑

l=1

[

χCl+1:j−1
(A)

∏j−1
p=l cp+1,p

fl

]]

+ (A− ckkI)
[

χCk−1
(A)

∏k−1
p=1 cp+1,p

q1 +
k−1∑

l=1

[

χCl+1:k−1
(A)

∏k−1
p=l cp+1,p

fl

]]

+ fk

=





k∑

j=1

−cjk
χCj−1

(A)
∏j−1

p=1 cp+1,p
+ (A− ckkI)

χCk−1
(A)

∏k−1
p=1 cp+1,p



 q1

+

k−1∑

l=2





k∑

j=l

−cjk
χCl+1:j−1

(A)
∏j−1

p=l cp+1,p
+ (A− ckkI)

χCl+1:k−1
(A)

∏k−1
p=l cp+1,p



 fl

+ fk

(

=
χCk:k−1

(A)fk
∏k−1

p=k cp+1,p

)

=
χCk(A)q1
∏k−1

p=1 cp+1,p
+

k∑

l=1

[

χCl+1:k
(A)fl

∏k−1
p=l cp+1,p

]

.

The last line follows by block Laplace expansion of the block determinant by last
row for the matrix and all trailing principal submatrices. This block determinant is
well-defined, since all block entries of the Kronecker sum of A and −CT

k commute
and the determinant is uniquely defined for commutative rings. We stress the fact
that we have used expansion by cofactors and not by minors which are related by

χCj−1
(A)

∏j−1
p=1 cp+1,p

q1 = (−1)k−j χCj−1
(A)

∏j−1
p=1−cp+1,p

q1.

This finishes the proof. ¤

The finite precision version can be seen as a the additive mixture of several runs of
the method simultaneously, where the runs 2 to k take part with a starting vector



178 CHAPTER 4. A UNIFIED APPROACH

that has a small norm. In other words, a finite precision Krylov methods behaves
as if it were invoked several times (once every new step) with a new starting vector,
the result obtained is the sum of all runs implicitly done in the method. We remark
that the overlay of these methods is used in the normalisation step, i.e. the single
methods use different normalisations.

We note that Theorem 4.37 together with Corollary 4.9 implies a nice identity
we just want to state as a corollary:

Corollary 4.38 Let A ∈ Kn×n. Let Ck ∈ Hk. Let Fk ∈ Kn×k be such that for
some Qk ∈ Kn×k and Mk ≡ rkeTk , rk ∈ Kn

AQk −QkCk =Mk − Fk

holds true. Let the coefficients of the characteristic polynomial χCk of Ck be given
by

χCk(λ) = det(λIk − Ck) =
k∑

j=0

αjλ
j .

Then the identity

∑k−1
j=0 αj+1

∑j
i=0A

j−iFkC
i
k

∏k
p=1 cp+1,p

e1 =
k∑

l=1

χCl+1:k
(A)

∏k
p=l cp+1,p

fl

holds true. The left-hand side reveals the influences of the coefficients of the charac-
teristic polynomial, whereas the right-hand side reveals the influences of the columns
of the error matrix Fk.

The error vectors fj have severe impacts on the behaviour of the methods. The
preceeding considerations where in some sense related to a forward approach. From
the theorems in this section it is quite obvious that only in very limited cases the
methods can be predicted beyond the step where the first Ritz pair has converged.
Using the computed quantities, the errors can be described quite accurate. This
backward approach is considered in the next section in more detail.

4.9 Impacts of the lth Error

Let us once again consider the set of equations (4.44),

v̂Hi qk+1 = v̂Hi Qk

[
λi − θj
ck+1,kskj

]

sj + v̂Hi Fk

[
1

ck+1,kskj

]

sj .

Similarly to the formulae showing how the errors are amplified in the methods, a
formula expressing the error of the lth step in terms of quantities computed later
on can be obtained, because we can deduce from

I = SS−1 = SŠT ⇒ el = SŠT el ≡
k∑

j=1

šljsj

that the lth standard unit vector can alternatively be represented by

k∑

j=1

ck+1,kskj šlj
ck+1,kskj

sj = el.

Carefully choosing the appropriate linear combination of equations from (4.44), this
results in
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Theorem 4.39 Let A ∈ Kn×n. Let v̂Hi be a left eigenvector of A to eigenvalue λi.
Assume that a finite precision Krylov method computed the perturbed Hessenberg
decomposition

AQm −QmCm = qm+1cm+1,me
T
m − Fm.

Suppose that Ck, k ∈ m is diagonalisable. Assume further that the right eigenvectors
sj, j ∈ k of Ck are normalised such that šTj sj = ŝHj sj = 1, where ŝHj , j ∈ k denotes
the left eigenvector to eigenvalue θj.

Then the part of the error vector of step l < k in direction of v̂Hi can be recovered
from the exact quantities of A and the in step k computed approximations,

v̂Hi fl =





k∑

j=1

(θj − λi) šlj v̂Hi yj



 = v̂Hi Qk





k∑

j=1

(θj − λi) šljsj



 (4.49)

The error vectors fl, l < k can, even in the non-diagonalisable case, be recovered
by forming the linear combination

fl =

k∑

j=1

šljrj = Rk(Š
T
k el) (4.50)

of the residuals rj of step k. Here we have defined the matrix Rk of residual vectors
rj to be Rk ≡ YkJΘ −AYk.

Proof. The expression resulting from forming the appropriate linear combination
is given by





k∑

j=1

ck+1,kskj šlj



 v̂Hi qk+1 =





k∑

j=1

(λi − θj) šlj v̂Hi yj



+ v̂Hi fl (4.51)

= v̂Hi Qk





k∑

j=1

(λi − θj) šljsj



+ v̂Hi fl.

The bracket on the left-hand side turns out to be zero, since by definition of ŠTk =
S−1k obviously SkŠ

T
k = Ik. Thus the inner product of the vectors eTk Sk and ŠTk el,

i.e. the sum
∑k

j=1 skj šlj , is zero whenever l < k.
For the second part, observe that the multiplication of the governing equation

with Sk results in

−FkSk = AYk − YkJΘ −MkSk

−FkSk(ŠTk el) = (AYk − YkJΘ −MkSk)(Š
T
k el)

−fl = (AYk − YkJΘ)(ŠTk el)

This finishes the proof. ¤

We have products of left and right eigenvector components on both sides of equation
(4.51). Again we can express these parts of the equation with the products of
eigenvector components replaced by fractions composed of off-diagonal elements
and Ritz values. First, we focus on the left-hand side, even though we already know
that the sum is zero. By previous considerations the summands inside the brackets
can be expressed like

ck+1,kskj šlj =

(
∏k

p=l cp+1,p

)

χCl−1
(θj)

χ′Ck(θj)
∀ l ∈ k. (4.52)

This gives rise to the following corollary:
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Corollary 4.40 Let all notations be defined as before. As a direct consequence of
the bi-orthogonality of the eigenvectors, for all l < k





k∏

p=l

cp+1,p





k∑

j=1

χCl−1
(θj)

χ′Ck(θj)
= 0 (4.53)

holds true.

The eigenvalues of A played no role in determining the size of the term arising in the
right-hand side of equation (4.52). This enables us to consider a more geometric ap-
proach towards a better understanding of this term. Following Wilkinson ([Wil63],
chapter 2, section 7, pages 38–41), we can interpret the right-hand side as the first
order perturbation term of the simple zero θj when we perturb the polynomial χCk
by ε times the polynomial χCl−1

times a constant factor. In other words, when we

examine the zeros θ̃j of

χ̃Ck ≡ χCk + ε





k∏

p=l

cp+1,p



χCl−1
, (4.54)

we observe that for sufficiently small ε they behave according to

θ̃j = θj + ε

(
∏k

p=l cp+1,p

)

χCl−1
(θj)

χ′Ck(θj)
+O(ε2).

So, the sum on the left-hand side of equation (4.53) is the sum of the condition
numbers of the single zeros θj when the characteristic polynomial is subject to a
structured perturbation as indicated by equation (4.54). Equation (4.53) proves that
the single perturbations are by no means unstructured, since they have to sum up
to zero.

From now on, we focus on the right-hand side of equation (4.49). The vectors
(θj − λi) šljsj consist of products having the form

(θj − λi) šljs`j , ` ∈ k. (4.55)

These expressions can, in general, no longer be transformed using the eigenvector –
eigenvalue relations, since in case of Hessenberg matrices the occurring polynomials
are only easily computable whenever l ≤ `. There are two special cases we want
to focus on. In the first case we stick to the case of a Hessenberg matrix, which
seems to fix l ≡ 1, i.e. we are analysing the impacts of the first error vector on the
recurrence. In this case the terms (4.55) can be transformed into

(θj − λi) š1js`j = (θj − λi)

(
∏`−1

p=1 cp+1,p

)

χC`+1:k
(θj)

χ′Ck(θj)
∀ ` ∈ k.

Again, we may interpret this term as the condition number for the sensitivity of the
characteristic polynomial χCk when subject to a structured perturbation. This time
the perturbations are weighted by the distances of the Ritz values to an eigenvalue.
But, more interesting is the interpretation of the sum as a polynomial interpolation.
When ` > 2, we can re-write the sum with constant factors left out according to

k∑

j=1

(θj − λi)
χC`+1:k

(θj)

χ′Ck(θj)
=

k∑

j=1

χC`+1:k
(θj) (λi − θj) (θj − λi)
χ′Ck(θj) (λi − θj)
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≡
k∑

j=1

ψk−`+2(θj)

χ′Ck(θj) (λi − θj)

=
1

χCk(λi)

k∑

j=1

∏

s6=j(λi − θs)
∏

s6=j(θj − θs)
ψk−`+2(θj)

=
ψk−`+2(λi)

χCk(λi)
= 0.

In the above, we have used the abbreviation

ψk−`+2(θ) ≡ −χC`+1:k
(θ)(θ − λi)2.

The characteristic polynomial χC`+1:k
has degree k − ` by definition. Thus, the

polynomial ψk−`+2 has degree k−`+2. Interpolation is exact, whenever the number
of nodes exceeds the degree of the polynomial interpolated. Hence the last line
follows, since the assumption ` > 2 implies k > k− `+ 2. This proves that most of
the entries of the vector are zero.

The first two entries can still be re-written as an interpolation of the polynomial
ψk−`+2, but this time interpolation is not exact, and thus these entries in general
will not vanish. Nevertheless, this interpolational point of view might help in under-
standing the occurring phenomena, especially the sizes of the eigenvector entries.
Observe furthermore that the proof did not depend on the fact that the polynomi-
als χC`+1:k

are characteristic polynomials of submatrices. This observation is the
key result to extend the preceeding considerations. Thus far, they can be used to
shed some light on the relations between the first error vector f1 and subsequently
computed iterates:

Lemma 4.41 Let all notations be defined as stated in the last theorem. Then the
part of the first error vector in direction v̂Hi can be expressed with the aid of the
first two entries of the eigenvectors of step k > 1 and the first two computed basis
vectors,

v̂Hi f1 =

k∑

j=1

(θj − λi) š1j
(
s1j
s2j

)T(
v̂Hi q1
v̂Hi q2

)

=

k∑

j=1

(θj − λi)







χC2:k
(θj)

χ′Ck(θj)

c21
χC3:k

(θj)

χ′Ck(θj)







T

(
v̂Hi q1
v̂Hi q2

)

=
1

χCk(λi)

(
L [ζ1] (λi)
L [ζ2] (λi)

)T(
v̂Hi q1
v̂Hi q2

)

.

Here, the polynomials ζ1 and ζ2 are given by

ζ1(θ) ≡ −χC2:k
(θ)(θ − λi)2 and

ζ2(θ) ≡ −c21χC3:k
(θ)(θ − λi)2.

Furthermore, we used the short-hand notation L [p] (λ) to denote the value of the
(Lagrange) interpolation polynomial that interpolates the function p at the nodes θj,
j ∈ k, evaluated at λ,

L [p] (λ) ≡
k∑

j=1

∏

i6=j(λ− θi)
∏

i6=j(θj − θi)
p(θj).
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This shows that the first error vector corresponds to an error in an interpolation
process. The error vector is damped when the characteristic polynomial χCk has a
small value at λi and the interpolation processes are more accurate.

In case of l = 1 the interpolation terms can be handled explicitely. It is a well-
known fact that the Newton form of the interpolation polynomial can be used to
express the interpolation error explicitly. We are interested in the interpolation of
a polynomial p at knots θj , j ∈ k and wish to evaluate the resulting polynomial at
some value λ. Then one can show that the interpolation error is given by the next
summand in the interpolation at knot λ, i.e. by

(p− L [p])(λ) = ω(λ) p [θ1, . . . , θk, λ].

Here, the notation ω(λ) is used to denote the knot-polynomial, which simplifies in
our case to the characteristic polynomial of Ck,

ω(λ) ≡
k∏

j=1

(λ− θj) = χCk(λ).

The notation p [θ1, . . . , θk, λ] is used to denote the divided difference of p at knots
θj , j ∈ k and λ. Since both polynomials ζ1, ζ2 are zero when evaluated at λi, we
know that the interpolation error is equal to the negated evaluated interpolation
polynomial at λi, i.e.

−L [ζ1] (λi) = χCk(λi) ζ1[θ1, . . . , θk, λi],

−L [ζ2] (λi) = χCk(λi) ζ2[θ1, . . . , θk, λi].

To obtain a more convenient expression for the divided difference, we generalise
the well-known formula for the error in the real interpolation of sufficiently smooth
functions to the complex case. For this generalisation it is necessary to observe that
the polynomials ζ1 and ζ2 have degrees k + 1 and k, respectively.

Lemma 4.42 Let θj ∈ C, j ∈ k be k point in the complex plane. Let an additional
distinct point λ ∈ C and a polynomial p ∈ Pk be given. Then the interpolation error
can be expressed as follows:

(p− L [p])(λ) = ω(λ)
p(k)(ξ)

k!
.

Here, ξ is some value contained in the convex hull of the points θj, j ∈ k and λ.
This implies that the divided difference p [θ1, . . . , θk, λ] can be expressed as

p [θ1, . . . , θk, λ] =
p(k)(ξ)

k!
,

obviously for the same value ξ.

Proof. The proof is along the lines of the proof for the real case. We consider the
auxiliary function

f(λ) ≡ (p− L [p])(λ)− αω(λ).
Here, we choose the constant α such that λ is a root of f . We observe that the
function f is a polynomial of degree less equal k+1 by construction. Furthermore,
this polynomial has k root at the knots θj , j ∈ k and one at λ. By Lucas’ theorem
we know that the roots of the derivative of a polynomial are contained in the convex
hull of the roots of the polynomial, and thus we have a nested sequence of convex
hulls containing all roots of all derivative. Next, we form the kth derivative. When
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this derivative is zero, we can choose any point ξ in the complex plane, otherwise
we choose ξ to be the unique root. In any case, we obtain that

0 ≡ f (k)(ξ) = p(k)(ξ)− 0− αk!

holds true. This determines the constant α and shows that the interpolation error
is given by

(p− L [p])(λ) = ω(λ)
p(k)(ξ)

k!
.

This proves the first proposition of the lemma. Together with the Newton-type
interpolation error formula, this proves the second proposition. ¤

We will not consider this approach in full detail. We only state the reformulation
of Lemma 4.41 arising from the last lemma:

Lemma 4.43 Let all notation be as in Lemma 4.41. Denote the k− 1 roots of the

characteristic polynomial of C2:k by θ
(2:k)
j , j ∈ k − 1. Then

v̂Hi f1 = −
(
ζ1 [θ1, . . . , θk, λi]
ζ2 [θ1, . . . , θk, λi]

)T(
v̂Hi q1
v̂Hi q2

)

=
−1
k!

(
ζ
(k)
1 (ξ)

ζ
(k)
2

)T(
v̂Hi q1
v̂Hi q2

)

=

(

(k + 1)ξ − (2λi +
∑k−1

j=1 θ
(2:k)
j )

c21

)T(
v̂Hi q1
v̂Hi q2

)

(4.56)

holds true. The value ξ is contained in the convex hull of the eigenvalues of Ck and
λi. To be more precise, ξ is uniquely determined to be the arithmetic mean of the
eigenvalues of Ck and λi,

ξ ≡
λi + c11 +

∑k−1
j=1 θ

(2:k)
j

k + 1
=
λi + trace(Ck)

k + 1
. (4.57)

Proof. The first two lines are immediate consequences of Lemma 4.42. For the
third line, observe that the polynomial ζ1 has degree k+1 and has k−1 roots at the

eigenvalues θ
(2:k)
j , j ∈ k − 1 of C2:k and a double root at λi. The leading coefficient

is minus one. Thus, the explicit expression of the kth derivative is given by

ζ
(k)
1 (ξ) = −(k + 1)! ξ + k!



2λi +

k−1∑

j=1

θ
(2:k)
j





= −k!



2 (λi − ξ) +
k−1∑

j=1

(

θ
(2:k)
j − ξ

)



 .

Similarly, the polynomial ζ2 has degree k and leading coefficient −c21. Thus, the
the kth derivative of ζ2 is constant and given by

ζ
(k)
2 ≡ −k!c21.

To derive the explicit representation of ξ we observe that simple algebraic transfor-
mations on the governing equation ensure the validity of the relation

c21v̂
H
i q2 = (λi − c11)v̂Hi q1 + v̂Hi f1. (4.58)
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Comparing the coefficients of the scalar products in (4.56) and (4.58), we obtain
the relation

c11 − λi = (k + 1)ξ − (2λi +

k−1∑

j=1

θ
(2:k)
j ).

This proves the first part of equation (4.57). The second part follows by the invari-
ance of the trace of a matrix under similarity transformations. Assume that the
eigendecomposition of the trailing principal submatrix C2:k is given by

S−12:kC2:kS2:k = J2:k.

The matrix Ck is block-similar to the matrix

(
1

S2:k

)−1

Ck

(
1

S2:k

)

=

(
c11 ?
? J2:k

)

.

The latter has trace c11+
∑k−1

j=1 θ
(2:k)
j . This shows that this sum is indeed the trace

of Ck, which finishes the proof. ¤

Instead, we focus on the natural extension of Lemma 4.41 to all error vectors and all
Krylov methods, obviously with different polynomials. The polynomials are given
by the polynomials p`l defined in the derivation of the eigenvalue – eigenvector
relations, i.e. by

p`l = detLl`, where L = θI − Ck.
The case l ≤ ` can be handled by previous considerations. The case l > ` can be
handled by expansion of the determinant using Leibniz’ formula,

det(A) =
∑

σ∈Sn

(−1)sgn(σ)
n∏

i=1

aiσ(i).

The matrix Ll` looks in case l > ` as follows:

Ll` ≡






B`−1 ? ? ?
? ? −c`l ?
0 Bl−`−1 ? ?
0 0 ? Bk−l




 ∈ K(k−1)×(k−1),

where Bz, for some integer z, denotes a matrix that has symbolically the form

Bz ≡







θ + ? ? ? ?
? θ + ? ? ?

0
. . .

. . . ?
0 0 ? θ + ?






∈ Kz×z.

The symbol ? is used to denote the negative of some block, row, column or entry of
the original matrix Ck. Such a part is independent of the variable θ. This implies
that whenever c`l is non-zero, the polynomial p`l, given by

p`l = detLl` ≡ c`l θk−2 +
k−3∑

j=0

αjθ
j , (4.59)

has exactly degree k − 2. Thus, in case of l > `, the sum in the parentheses in the
second line of equation (4.51),

k∑

j=1

(θj − λi)šljs`j ,



4.9. IMPACTS OF THE LTH ERROR 185

will, in the generic case, be non-zero. Whenever the degree of the polynomial p`l is
strictly less than k − 2, the sum will be zero. This implies that in case of a generic
Hessenberg matrix we also obtain again a relation that builds upon a Hessenberg
matrix. A refined analysis actually proves that in the special case of a truncated
recurrence we also obtain again a truncated recurrence. The last observation in turn
implies that in case of a short-term recurrence again a short-term recurrence evolves.
We state the corresponding results for the case of Ck = Hk being a Hessenberg
matrix, e.g. for the Arnoldi method, and for the case of Ck = Tk being a tridiagonal
matrix, e.g. for the Lanczos method.

Theorem 4.44 Let A ∈ Kn×n. Suppose the relation

Fk = QkCk −AQk +Mk

holds true for some Fk, Qk ∈ Kn×k, Ck ∈ H(k) and Mk ∈ Kn×k, where Mk ≡
rke

T
k . Furthermore, let v̂Hi be a left eigenvector of A and λi be the corresponding

eigenvalue. Suppose that Ck is diagonalisable.
Then with the notation of Lemma 4.41

v̂Hi fl =

k∑

j=1

(θj − λi) šlj






s1j
...

sl+1,j






T 




v̂Hi q1
...

v̂Hi ql+1






=
1

χCk(λi)






L [ζ1l] (λi)
...

L [ζl+1,l] (λi)






T




v̂Hi q1
...

v̂Hi ql+1






=
−1
k!











ζ
(k)
1l
...

ζ
(k)
l−1,l

ζ
(k)
ll (ξ)

ζ
(k)
l+1,l











T








v̂Hi q1
...

v̂Hi ql−1
v̂Hi ql
v̂Hi ql+1









=









c1l
...

cl−1,l
(k + 1)ξ − υ

cl+1,l









T







v̂Hi q1
...

v̂Hi ql−1
v̂Hi ql
v̂Hi ql+1









holds true. Here, the polynomials ζ`l, ` ∈ l + 1 are defined by

ζ`l(θ) ≡ −p`l(θ)(θ − λi)2 where p`l = detLl`, L = θI − Ck.
The constant υ is given by

υ ≡ 2λi +

l−1∑

j=1

θ
(1:l−1)
j +

k−l∑

j=1

θ
(l+1:k)
j

and the value of ξ again is equal to the arithmetic mean of λi and the eigenvalues
of Ck,

ξ =
λi +

∑l−1
j=1 θ

(1:l−1)
j + cll +

∑k−l
j=1 θ

(l+1:k)
j

k + 1
=
λi + trace(Ck)

k + 1
.

Proof. First, we investigate the kth derivative of polynomials ζ`l where ` < l. From
equation (4.59) we can conclude that the polynomial ζ`l has (maximal) degree k and
that the leading term is given by c`l. The case ` = l+1 is treated analogously, using
the eigenvector – eigenvalue relation. In the remaining case ` = l, the polynomial
ζll takes the form

ζll(θ) = −χC1:l−1
(θ)χCl+1:k

(θ)(θ − λi)2

= −θk+1 +



2λi +

l−1∑

j=1

θ
(1:l−1)
j +

k−1∑

j=1

θ
(l+1:k)
j



 θk + . . .
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This fixes the kth derivative. The explicit expression for ξ follows, since again by
simple algebraic transformations the governing equation ensures that

v̂Hi fl =









c1l
...

cl−1,l
cll − λi
cl+1,l









T







v̂Hi q1
...

v̂Hi ql−1
v̂Hi ql
v̂Hi ql+1









holds true. By comparison of the coefficients, ξ has to be the arithmetic mean of
λi and the eigenvalues of Ck. ¤

The theorem simplifies when we are using a short-term recurrence, for example
when we analyse the symmetric or unsymmetric Lanczos method:

Theorem 4.45 Let matrices and notation be defined as in Theorem 4.44 and Lemma 4.41.
Suppose that the matrix Ck ≡ Tk is tridiagonal, diagonalisable and given by

Tk =








α1 γ1

β1 α2
. . .

. . .
. . . γk−1
βk−1 αk







∈ Kk×k.

Then

v̂Hi fl =

k∑

j=1

(θj − λi) šlj





sl−1,j
slj
sl+1,j





T 



v̂Hi ql−1
v̂i
Hql

v̂Hi ql+1





=
1

χCk(λi)





L [ζl−1] (λi)
L [ζl] (λi)
L [ζl+1] (λi)





T



v̂Hi ql−1
v̂i
Hql

v̂Hi ql+1





=
−1
k!






ζ
(k)
l−1

ζ
(k)
l (ξ)

ζ
(k)
l+1






T



v̂Hi ql−1
v̂i
Hql

v̂Hi ql+1



 =





γl−1
(k + 1)ξ − υ

βl





T



v̂Hi ql−1
v̂i
Hql

v̂Hi ql+1





holds true. Here, the polynomials ζl−1, ζl and ζl+1 are given explicitely by the
expressions

ζl−1(θ) ≡ −pl−1,l(θ)(θ − λi)2
= −γl−1χT1:l−2

(θ)χTl+1:k
(θ)(θ − λi)2,

ζl(θ) ≡ −pll(θ)(θ − λi)2
= −χT1:l−1

(θ)χTl+1:k
(θ)(θ − λi)2,

ζl+1(θ) ≡ −pl+1,l(θ)(θ − λi)2
= −βlχT1:l−1

(θ)χTl+2:k
(θ)(θ − λi)2.

The value of the auxiliary constant υ is

υ = 2λi +
l−1∑

j=1

θ
(1:l−1)
j +

k−l∑

j=1

θ
(l+1:k)
j

and ξ is given explicitely by

ξ ≡
λi +

∑l−1
j=1 θ

(1:l−1)
j + αl +

∑k−l
j=1 θ

(l+1:k)
j

k + 1
=
λi + trace(Tk)

k + 1
.



4.10. MEASURES OF CONVERGENCE AND DEVIATION 187

Proof. The proof is completely analogous to the proof for Theorem 4.44. ¤

The last two theorems clearly reveal the domain of influence of the local error vec-
tors. Depending on the type of method, i.e. the length of the underlying recurrence,
this domain is restricted to the same class. The relations confirm that there is a
strong connection between Krylov methods and interpolation, and that the local
errors are closely linked to the errors in a Lagrange-type interpolation. The results
are also, not to say, especially, of interest in case of infinite precision arithmetic.
In this case the right-hand side is zero, and the interpolation error vector must be
orthogonal to the first components of the final right eigenvector to eigenvalue λi.

We briefly mention the idea to write equation (4.44) in the alternate form

v̂Hi qk+1 =
1

ck+1,kskj




(λi − θj)






v̂Hi q1
...

v̂Hi qk




+






v̂Hi f1
...

v̂Hi fk











T 




s1j
...
skj




 . (4.60)

With the results of this and the preceeding section in mind, formula (4.60) explains
very nicely the influences of the single quantities on the part of the next basis vector
qk+1 in direction of the left eigenvector v̂Hi of the original A. From the error analysis
point of view we may regard the parts of the local error vectors in direction of v̂Hi
as constant and obtain a model that fits nicely the observed behaviour.

This way of representing the relations is of interest in the so-called inexact Krylov
methods, in which the errors are allowed to grow, depending on the decay of the
residuals of the quantities to be computed. Usually inexact Krylov methods are
used in context of the solution of linear systems. Similar conclusions also hold in
the context of eigenvalue computations. This is based on two observations. First,
assume that the method in infinite precision arithmetic succeeds to compute the
final Hessenberg decomposition

AQm = QmCm.

Now, observe that in this case the vector

v̂Hi Qm, λiv̂
H
i Qm = v̂Hi AQm = v̂Hi QmCm

is a left eigenvector of Cm. The next observation is that this vector is computed
componentwise starting with the first component. In finite precision, equation (4.60)
reveals the influences of the error vectors fl on the next component of the computed
left eigenvector. We assume that the Ritz values are more accurate than the Ritz
vectors, which is usually the case. Furthermore, we assume that we can neglect
the errors in previously computed components. Then, the deviation from the exact
counterpart can be described componentwise by

∣
∣
∣v̂Hi q

exact
k+1 − v̂Hi q computedk+1

∣
∣
∣ /

1

|ck+1,kskj |

k∑

l=1

‖v̂Hi fl‖|slj |.

When the eigenvector elements decay, the error vectors may be allowed to grow
without spoiling the accuracy of v̂Hi Qk+1. Caution has to be used in the non-
normal case, since we basically ignored the effects of the angles between left and
right eigenvectors, i.e. the eigenvalue conditions.

4.10 Measures of Convergence and Deviation

In this section we exploit the results of the preceeding sections to understand the
intimate relations between a convergence and a deviation, which not necessarily
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implies a deterioration of the process. The results presented are, to some extent,
rather rules of thumb than strict mathematical theory. Despite lack of rigour, most
observations could be treated and quantified by specialised perturbation theory. We
first consider the methods for the eigenproblem. We are interested in the accuracy
of Ritz values, Ritz pairs or even Ritz triplets. We aim at comparing the exact (a
priori unknown) quantities with their (a posteriori known) approximations. Then
we switch to the (Q)OR methods and briefly consider (Q)MR methods.

All insights are based on the general and very simple idea to look for quantities
that are supposed to become small in infinite precision. Then, in a subsequent step,
the appropriate linear combination of equations from the set of equations (4.44) is
formed. There are always (at least) two ways to construe the resulting formulae.
The first way is similar to the approach used in Section 4.8 and exhibits the impacts
of a convergence onto the deviation of the recurrence of the basis vectors. The
second way is of interest in the context of attainable accuracy. Here, the quantities
are ordered differently. The component measuring the convergence is written as an
overlap of a term involving the next basis vector, which is usually precisely the term
used as estimator for convergence, and an (amplified) error term.

The set of equations (4.44) applies directly in case we are interested in the
eigenvalues of the matrix A. In the beginning, when no deviation occurred, it
makes perfect sense to measure the terms (λi − θj)v̂Hi yj . In infinite precision these
terms will converge to zero. We depict the case that the Ritz pair (θj , yj) is chosen
as the closest one in backward sense to the (left) eigen-pair among all possible Ritz
pairs. Then the deviation of the computed basis vector qk+1 from the exact one is
described by

v̂Hi qk+1 =
(λi − θj)v̂Hi yj + v̂Hi Fksj

ck+1,kskj
. (4.61)

Suppose that no substantial deviation occurred. Then at least one of the terms
(λi − θj)v̂Hi yj will converge. The behaviour of the recurrence is dominated by the
error terms v̂Hi Fksj , when

|(λi − θj)v̂Hi yj | ≈ |v̂Hi Fksj |.
This will usually spoil the convergence. The best we can hope for, i.e. the least
attainable accuracy is given by the size of |v̂Hi Fksj |.

To give a grasp of the intimate connections between convergence and deviation
we give two pictures obtained by a finite precision run of the symmetric Lanczos
method. The matrix A is a Poisson matrix of order 100, i.e. the discrete Laplace op-
erator on the unit square. The starting vector was created by computing a random
vector and modifying the lower bits such that resulting vector upon multiplication
by 100 had only small integer components. The finite precision run was on an IBM
RS 6000 machine using Matlab 5.3 with IEEE double precision. Machine precision
was 2−53 ≈ 1.1102 ·10−16. A second run using Maple V 5.1 was done in exact arith-
metic with the same matrix and the same starting vector. The resulting quantities,
i.e. the tridiagonal matrix T and the basis Q were transferred to Matlab by round-
ing them, such that the relative error in the entries is at the level of the machine
precision.

The first picture, given by figure 4.3, plots on the right-hand side the upper
triangular part of the matrix QH

k Qk−Ik in semilogarithmical scale. This plot clearly
depicts the occurring loss of orthogonality. The left-hand side plots for the same
run the magnitudes of all residual estimators of all steps in semilogarithmical scale.
In step k we have k residual estimators, thus, also this matrix is triangular. The
residual estimators are plotted sorted according to the values of the corresponding
real eigenvalues.
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Figure 4.3: Symmetric Lanczos, loss versus convergence (I)

In the second picture, given by figure 4.4, the left-hand side plots the difference
between the in finite precision computed (Matlab) and exact (Maple) quantities.
The right-hand side of the plot is chosen like in the preceeding example. We observe
that the computed residual estimators start to differ from the exact ones a while
after the loss of orthogonality started. To be more precise, the deviation in the
residual estimators started when the first cluster of Ritz values appears. This,
apparently, is not obvious from the picture, but follows upon application of Paige’s
analysis.

The pictures suggest that the deviation in the matrix Ck is a second order effect
and the loss might be monitored by knowledge of the infinite precision behaviour.
We give an outline of some ideas in that direction.

In exact arithmetic, the Ritz vector will converge to (a multiple of) the right
eigenvector vi of A. To be more precise, when the Krylov methods runs to comple-
tion and the vector v̂Hi Qm is a left eigenvector of Cm,

v̂Hi AQm = λiv̂
H
i Qm = v̂Hi QmCm.

This implies that in exact arithmetic

(

λi − θ(k)j

)

v̂Hi Qksj

ck+1,ks
(k)
kj

=

(

θ
(m)
j − θ(k)j

)(

ŝ
(m)
j

)H
(

s
(k)
j

0

)

ck+1,ks
(k)
kj

= š
(m)
k+1,j

holds true. Neglecting the influences of the errors in prior steps, a deviation occurs
when

š
(m)
k+1,j ≈

v̂Hi Fksj

ck+1,ks
(k)
kj

.
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Figure 4.4: Symmetric Lanczos, exact versus floating point

This is of interest in a theoretical forward error approach, when we know the exact
left and right eigenvectors of Ck for all steps k. In this form, it does not tell anything
about the attainable accuracy of Ritz values. Results in that direction are based
on another observation. We can choose v̂i and vi such that the sequence of Ritz
vectors yj converges to vi and furthermore

‖sj‖
|v̂Hi yj |

→ ‖vi‖
|v̂Hi vi|

holds true. This is due to the fact that in case of successful termination of the infinite
precision Krylov method the computed Ritz vectors are eigenvectors. Suppose that
in step k the index j = j(i) is chosen to ensure that the sequence

θ
(k)
j → θ

(m)
j = λi

converges to λi. Next, suppose that the first k components of the final left eigen-

vector ŝ
(m)
j of Cm are close to the kth left eigenvector s

(k)
j of Ck. Putting in another

way, the Ritz value θj can come as close to an eigenvalue λi, as suggested by

|λi − θj | '
∣
∣v̂Hi Fksj

∣
∣

∣
∣v̂Hi yj

∣
∣
→ ‖v̂

H
i ‖‖Fm‖‖vi‖
|v̂Hi vi|

= κ(λi)‖Fm‖.

This is essentially the backward error when the matrix A is perturbed normwise by
‖Fm‖. Since we have control over the size of Fm, this is the best result we could
hope to achieve. When we look at the case of an early termination, i.e. the estimated
residual implies a backward error small enough to consider the Ritz pair as close
approximation to an eigenpair, the norm ‖Fm‖ my be replaced for any consistent
norm by ‖Fk‖. To have a rather crude estimate of the attainable accuracy, we can
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use the condition of the computed Ritz value,

|λi − θj | ' κ(θj)‖Fk‖,

or as a better estimate,

|λi − θj | '
‖ŝHj ‖

(
∑k

l=1 ‖fl‖|slj |
)

|ŝHj sj |
≥
‖ŝHj ‖‖Fksj‖
|ŝHj sj |

.

These estimates do only work as long as the basis vectors have not deviated too
much from the exact ones. This is the case when no significant convergence has
taken place. Therefore, the estimation works at least for one Ritz value, to be
precise, for the fastest converging one. When the eigenvalue λ is well separated
from the other eigenvalues and has a small condition number, the convergence of
the whole process to other eigenvalues is not spoiled, only delayed, and similar
conclusions can be drawn for the second Ritz value.

The bounds obtained stem from eigenvector components. In most cases we have
no easily accessible information on the real accuracy of the eigenvalues at hand.
We observe that a measurable convergence of Ritz values is closely connected to
the convergence of the corresponding right Ritz vectors. Perturbation theory can
be used to gain more information whenever information on gaps in the spectrum
and the conditioning of eigenspaces is at hand, for instance when the matrices are
symmetric and we apply Temple-Kato bounds.

For simple Krylov subspace methods, the natural measure of convergence of a
Ritz pair is given by the distance between the eigenvalue and the Ritz value times
the scalar product of left eigenvector and right Ritz vector. Because of its close
relation with the backward error, a natural estimator of convergence of a Ritz
pair is given by the size of the estimated residual, i.e. the last component of the
eigenvector corresponding to the Ritz pair we investigate.

To treat a more general case, instead of diagonalising the governing equation
(4.3) to obtain the set of equations (4.44), we block-diagonalise equation (4.3) to
obtain the set

v̂Hi qk+1 =
(
Jλi v̂

H
i QkSj − v̂Hi QkSjJθj + v̂Hi FkSj

) (
eTk Sj

)−1
(ck+1,k)

−1
(4.62)

of equations. We replace the absolute values of the quantities occurring in the simple
Krylov subspace method case by the singular values of the blocks occurring in the
block Krylov subspace methods. Again we can relate convergence to a deviation. A
more thorough treatment of block Krylov subspaces will be part of future research.

Similar to the approach used in Section 4.8, we alternatively can describe the
deviation in terms of the left eigenvector components of successive solution vectors
zk, zk. We first consider the methods that are based on the (Q)OR approach. We
assume for the moment that the matrix Ck is diagonalisable. The solution vector zk
can be described by the inverse of Ck applied to a multiple of the first unit vector
e1 of appropriate length,

zk
‖r0‖

= C−1k e1 = SkΘ
−1
k ŠTk e1 =

k∑

j=1

š1j
θj
sj .

Using this representation, we obtain a new expression for the estimated residual,
since the (pre-multiplied) last component of this vector is given by

ck+1,kzkk
‖r0‖

= ck+1,ke
T
kC

−1
k e1 = ck+1,ke

T
k SkΘ

−1
k ŠTk e1

= ck+1,k

k∑

j=1

š1jskj
θj

=

k∑

j=1

∏k
l=1 cl+1,l

θjχ′Ck(θj)
.
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We proceed by forming linear combinations of the equations from the set (4.44), for
convenience stated once again explicitely:

v̂Hi qk+1 = v̂Hi Qk

[
λi − θj
ck+1,kskj

]

sj + v̂Hi Fk

[
1

ck+1,kskj

]

sj .

In context of the (Q)OR methods, we use the identity

zk
‖r0‖

=

k∑

j=1

š1j
θj
sj =

k∑

j=1

(
ck+1,kš1jskj
(λi − θj) θj

)(
λi − θj
ck+1,kskj

)

sj

to choose the coefficients of the linear combination. This results in the following
theorem:

Theorem 4.46 Let A ∈ Kn×n. We are interested in the solution x = A−1b of the
linear system Ax = b. Suppose a finite precision Krylov method with starting vector
q = q1 ≡ b/‖r0‖ resulted in the perturbed Krylov decomposition

AQk −QkCk =Mk − Fk,

where Qk, Fk ∈ Kn×k, Ck ∈ H(k) and Mk is given by Mk ≡ ck+1,kqk+1eTk ∈ Kn×k.
Suppose further that A and Ck are diagonalisable. Let v̂Hi be a left eigenvector of A
to eigenvalue λi. Let š

T
j , sj and θj denote the jth left eigenvector, right eigenvector

and eigenvalue of Ck, respectively. We assume that an (Q)OR solution exists, i.e.
that Ck is non-singular. Let zk = C−1k e1‖r0‖ and xk = Qkzk.

Then the recurrence of the basis vectors can be described as a mixture of eigen-
components of the solution in step k and amplified errors,





k∑

j=1

ck+1,kš1jskj
(λi − θj) θj



 v̂Hi qk+1 =
v̂Hi xk
‖r0‖

+ v̂Hi Fk





k∑

j=1

(
š1j

(λi − θj) θj

)

sj





We observe that small eigenparts in the solution x ≡ A−1b will not be computed
accurately whenever they are less in magnitude than the error terms on the right-
hand side.

The representation of the perturbed process can be better understood in terms of
interpolating functions. By the transformation of the first term using the eigenvector
– eigenvalue relations, we arrive at

k∑

j=1

ck+1,kš1jskj
(λi − θj)θj

=

k∑

j=1

∏k
l=1 cl+1,l

χ′Ck(θj)(λi − θj) θj
.

This is nothing but interpolation of the function x−1 at knots θj , j ∈ k. As in the
last section, when all eigenvalues are real it is possible to express the interpolation
error in terms of derivatives. We proceed similarly for the components wlk of the
kth error amplification vector,

wk =

k∑

j=1

š1j
(λi − θj) θj

sj .

The eigenvector – eigenvalue relations assure that

wlk =

k∑

j=1

š1jslj
(λi − θj) θj

=

k∑

j=1

∏
cp+1,pχCl+1:k

(θj)

χ′Ck(θj)(λi − θj) θj
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holds true. Again we obtain interpolating functions for the inverse, this time
weighted by trailing characteristic polynomials.

To better understand the impacts of a convergence towards the true solution, it
is more convenient to express the error in terms of the eigenbasis suggested by the
computed Ck. The error in direction v̂Hi is given by

v̂Hi (x− xk) = v̂Hi A
−1b− ‖r0‖v̂Hi Qkzk

= ‖r0‖v̂Hi Qk

(
λ−1i Ik − C−1k

)
e1

At this point we insert the representation in terms of the eigenvectors sj ,
(
λ−1i Ik − C−1k

)
e1 =

(
Sλ−1i ŠT − SΘ−1k ŠT

)
e1

=
k∑

j=1

(
š1j
λi
− š1j

θj

)

sj .

This proves that the error, split into eigencomponents, can be written as

v̂Hi (x− xk)
‖r0‖

= v̂Hi Qk





k∑

j=1

(
š1j
λi
− š1j

θj

)

sj





= v̂Hi Qk





k∑

j=1

(
ck+1,kš1jskj
(0− θj)λi

)(
λi − θj
ck+1,kskj

)

sj



 .

We use the (rather strange) notation 0− θj to simplify the understanding of subse-
quent steps. The last line holds true, since by algebraic manipulation

1

λi
− 1

θj
=

λi − θj
(0− θj)λi

holds true. We insert this expression into the set of equations (4.44) to obtain the
following theorem:

Theorem 4.47 Let A ∈ Kn×n. We are interested in the solution x = A−1b of the
linear system Ax = b. Suppose a finite precision Krylov method with starting vector
q = q1 ≡ b/‖r0‖ resulted in the perturbed Krylov decomposition

AQk −QkCk =Mk − Fk,

where Qk, Fk ∈ Kn×k, Ck ∈ H(k) and Mk is given by Mk ≡ ck+1,kqk+1eTk ∈ Kn×k.
Suppose further that A and Ck are diagonalisable. Let v̂Hi be a left eigenvector of A
to eigenvalue λi. Let š

T
j , sj and θj denote the jth left eigenvector, right eigenvector

and eigenvalue of Ck, respectively. We assume that an (Q)OR solution exists, i.e.
that Ck is non-singular. Let zk = C−1k e1‖r0‖ and xk = Qkzk.

Then the recurrence of the basis vectors in direction v̂Hi can be split into a term
involving the kth error x− xk and an error term,





k∑

j=1

ck+1,kš1jskj
0− θj




v̂Hi qk+1
λi

=
v̂Hi (x− xk)
‖r0‖

+
v̂Hi Fk
λi





k∑

j=1

(
š1j

0− θj

)

sj



 .

This can be re-written to expose its dependency on determinants of trailing subma-
trices of Ck,

v̂Hi qk+1
λi

=
χCk(0)

∏k
p=1 cp+1,p

(
v̂Hi (x− xk)
‖r0‖

)

+
k∑

l=1

[

χCl+1:k
(0)

∏k
p=l cp+1,p

(
v̂Hi fl
λi

)]

.
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Proof. The first equation is the linear combination suggested by the preceeding
argumentations. The re-writing is based on the eigenvalue – eigenvector relations.
The first term in brackets can be re-written using

k∑

j=1

ck+1,kš1jskj
0− θj

=

k∑

j=1

∏k
p=1 cp+1,p

χ′Ck(θj)(0− θj)
=

∏k
p=1 cp+1,p

χCk(0)
.

Similarly, we proceed with the error vector components:

k∑

j=1

š1jslj
0− θj

=

k∑

j=1

(
∏l−1

p=1 cp+1,p

)

χCl+1:k
(θj)

χ′Ck(θj)(0− θj)
=

(
∏l−1

p=1 cp+1,p

)

χCl+1:k
(0)

χCk(0)
.

This finishes the proof. ¤

This result comes in a similar flavour as the results in Section 4.8. There, the re-
currence was re-written to expose its additive character as overlay of several (exact)
methods with wrong normalisation, here, the recurrence is re-written in terms of the
actual and estimated error with identical conclusions. We observe that we have an
overlap of several methods. Before we go into the details, we sum up the equations
to arrive at a vector recurrence:

Corollary 4.48 Let A ∈ Kn×n. We are interested in the solution x = A−1b of the
linear system Ax = b. Suppose a finite precision Krylov method with starting vector
q = q1 ≡ b/‖r0‖ resulted in the perturbed Krylov decomposition

AQk −QkCk =Mk − Fk,

where Qk, Fk ∈ Kn×k, Ck ∈ H(k) and Mk is given by Mk ≡ ck+1,kqk+1eTk ∈ Kn×k.
We assume that an (Q)OR solution exists, i.e. that Ck is non-singular. Let zk =
C−1k e1‖r0‖, xk = Qkzk and rk = b−Axk.

Then the recurrence of the basis vectors (pre-multiplied with A−1) can be written
as

A−1qk+1 =
χCk(0)

∏k
p=1 cp+1,p

(
x− xk
‖r0‖

)

+

k∑

l=1

[

χCl+1:k
(0)

∏k
p=l cp+1,p

A−1fl

]

.

If we are merely interested in the basis vectors, we obtain a recurrence involving the
true residuals rk,

qk+1 =
χCk(0)

∏k
p=1 cp+1,p

(
rk
‖r0‖

)

+

k∑

l=1

[

χCl+1:k
(0)

∏k
p=l cp+1,p

fl

]

.

This representation can be used to reveal when and why the error terms dominate
the recurrence, based on the size of the true residual.

Proof. In the diagonalisable case, the proof follows by summing the results in
the last theorem. The proof for the general case follows by the proof for the next
theorem. ¤

Some comments are in order. The recurrence behaves as if in every step a new a
Krylov method is invoked and the basis vectors are normalised by considering only
the additive overlay of the basis vectors of the single methods. In the beginning,
the first run, started with the vector q ≡ q1 dominates the recurrence. The other
runs are started with amplified error vectors, fl/cl. Clearly, we have a domination
of the recurrence by errors, whenever cl is considerably small. The other case where
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the errors gain influence is when the method is (partially) converging, that is when
(parts of) the approximate solution vectors tend to the true solution. In most
methods, these two cases coincide.

We re-consider the result from a slightly different point of view. When the
terms are sorted differently, we obtain a representation of the computed errors and
residuals,

Theorem 4.49 Let A ∈ Kn×n. We are interested in the solution x = A−1b of the
linear system Ax = b. Suppose a finite precision Krylov method with starting vector
q = q1 ≡ b/‖r0‖ resulted in the perturbed Krylov decomposition

AQk −QkCk =Mk − Fk,

where Qk, Fk ∈ Kn×k, Ck ∈ H(k) and Mk is given by Mk ≡ ck+1,kqk+1eTk ∈ Kn×k.
We assume that an (Q)OR solution exists, i.e. that Ck is non-singular. Let zk =
C−1k e1‖r0‖, xk = Qkzk and rk = b−Axk.

Then the kth true error x− xk is composed of two terms, namely

x− xk
‖r0‖

=

∏k
p=1 cp+1,p

χCk(0)
A−1qk+1 −

k∑

l=1





(
∏l−1

p=1 cp+1,p

)

χCl+1:k
(0)

χCk(0)
A−1fl



 .

This implies that the true residual rk can be expressed by

rk
‖r0‖

=

∏k
p=1 cp+1,p

χCk(0)
qk+1 −

k∑

l=1





(
∏l−1

p=1 cp+1,p

)

χCl+1:k
(0)

χCk(0)
fl



 .

Clearly, we can ask when and why the computed quantities are dominated by errors
and the recurrence might be stopped since we already have reached the ultimately
attainable accuracy. To complete this task, we have to compare the magnitudes of
the vectors (

k∏

l

cp+1,p

)

qk+1 and detCl+1:k fl l ∈ k.

This theorem is useful mostly in context of backward error analysis, since it is based
on the computed basis vectors.

Proof. We already have claimed that the results hold true also in the general,
non-diagonalisable case. This follows by a direct proof. We multiply the perturbed
Krylov decomposition by the scaled solution vector to obtain

Axk − b
‖r0‖

= ck+1,kqk+1e
T
kC

−1
k e1 −

k∑

l=1

eTl C
−1
k e1fl. (4.63)

The definition of the classical adjoint ensures that the entries of interest of the
inverse of the Hessenberg matrix Ck are given by

−eTl C−1k e1 = eTl (−Ck)−1 e1 =
eTl adj(−Ck)e1
det(−Ck)

=

(
∏l−1

p=1 cp+1,p

)

χCl+1:k
(0)

χCk(0)
.

Inserted into equation (4.63), this is precisely the representation given in the theo-
rem. ¤
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When the matrices Ck become singular, the size of the residuals grows. This seems
to be no problem, since both the part depending on the next basis vector, as well as
the error vectors are amplified. But, the size of the error vectors in many methods
depends heavily on the size of the residuals, e.g. Orthores. So, indeed, nearly
singular Ck are almost surely bad news.

This direct proof is also possible for (Q)MR solutions, but this time we have no
such nice representation of the elements of the pseudo-inverse:

Lemma 4.50 Let A ∈ Kn×n. We are interested in the solution x = A−1b of the
linear system Ax = b. Suppose a finite precision Krylov method with starting vector
q = q1 ≡ b/‖r0‖ resulted in the perturbed Krylov decomposition

AQk −QkCk =Mk − Fk,

where Qk, Fk ∈ Kn×k, Ck ∈ H(k) and Mk is given by Mk ≡ ck+1,kqk+1eTk ∈ Kn×k.

Let zk = C†ke1‖r0‖, xk = Qkzk and rk = b−Axk.
Then the true error x− xk can be expressed as composed of the terms

xk − x
‖r0‖

= ck+1,kA
−1qk+1e

T
kC

†
ke1 −

k∑

l=1

eTl C
†
ke1A

−1fl.

Similarly, the true residual can be expressed as

−rk
‖r0‖

= ck+1,kqk+1e
T
kC

†
ke1 −

k∑

l=1

eTl C
†
ke1fl.

To summarise the results obtained in this section, there is a certain measure of
convergence for every method and a measure of the deviation, like the loss of or-
thogonality or bi-orthogonality. Moreover, when the right way of measurement has
been chosen, the convergence and the deviation are reciprocals of each other.

4.11 Re-Orthogonalisation Techniques

The previous sections have shown that in general we can not hope to compute
bases that reflect the infinite precision behaviour. The most obvious remedy is to
use the methods with full re-orthogonalisation or some other form of re-inforcing the
lost infinite precision structure. This was proposed soon after the methods itself
had been published in the early years by Lanczos and Wilkinson. This has one
major drawback, they are no longer competitive with the direct methods developed
roughly the same time.

It is less well-known that this approach does not reconstitute the infinite preci-
sion behaviour. Consider as an example a matrix A with (geometrically) multiple
eigenvalues. The re-orthogonalisation, for instance in the method of Arnoldi, can
not prevent any deviation orthogonal to the converging Ritz vector. When we make
the natural assumption that errors occur in direction of the remaining eigenspace,
we observe that the method computes a small cluster of Ritz values located nearby
the multiple eigenvalue. At the same time, the existence of non-zero error vectors
will cause the Ritz values to move in small circles around the exact eigenvalues.
Because of the representation of the eigenvector components as polynomials in Ritz
values, this implies a large error in the relative accuracy of small eigenvector com-
ponents. We feel that this point is worth mentioning, since many authors use the
methods with (multiple) re-orthogonalisation as a model for the (unknown) infinite
precision behaviour.
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Nevertheless, the re-orthogonalisation can ensure backward stability. The pre-
ceeding argumentations actually explain when the original matrix has to be per-
turbed, and if so, how the perturbation affects the number of Ritz values in a cluster
and how to measure the accuracy of the computed Ritz values depending on the
step.

The analysis of how orthogonality is lost enables another approach. Based on the
error analysis of the last sections, Scott, Grcar, Simon and Bai developed methods
subsumed as semiorthogonalisation techniques. At the time of writing the tech-
niques apply only to Lanczos methods and are known as LanPR, LanSO, LanPRO
and ABLE. In infinite precision the methods reduce to classical Krylov meth-
ods. In finite precision they enforce a level of linear independency sufficient to
achieve backward stability. The methods are built upon the error analysis of the
preceeding sections. Matrix perturbation theory is used to determine computable
conditions how long the computed matrices are close to orthogonal or oblique pro-
jections. Whenever such a condition is violated, the basis vectors are (partially)
re-orthogonalised.

The first method, Lanczos with selective orthogonalisation, LanSO for short, was
developed by Scott and Parlett. This method applies to the symmetric Lanczos
algorithm and is based on Paige’s observation that the loss of orthogonality is
entirely in direction of the converging Ritz vector. Based on heuristic arguments,
the next basis vector is orthogonalised against all Ritz vectors that have converged
in the sense of |βkskj | ≤

√
ε, where ε denotes the machine precision.

The next method was developed by Grcar, also for the symmetric Lanczos
method. His method is known as Lanczos with periodic reorthogonalisation, LanPR
for short. He gives a sophisticated scheme that models the loss of orthogonality by
keeping track of a vector of length n. When one of the components of this vector
exceeds the square root of the machine precision, a complete re-orthogonalisation
against all previously constructed basis vectors is invoked.

Cheaper and more elegant is the method developed by Simon. Simon was the
first who observed that the computed matrix Tk is close to an exact projection of
the matrix A as long as the level of linear dependency, defined by

‖Q̂H
k Qk − Ik‖ ≡ level of linear dependency

does not exceed the square root of the machine precision. His ideas where gener-
alised by Day to the non-symmetric Lanczos method. The level of linear depen-
dency can be measured by Gerschgorins circle theorem or M-Matrix, to be more
precise, using H-Matrix theory on the matrix Wk = Q̂HQk of the loss of orthogo-
nality. These mathematical tools of trade are used to derive conditions how long
Wk admits Cholesky, LDLT, LDMT decomposition. Simon was also the one who
recognised that LanPR and LanSO were just instances of such methods.

These approaches are ‘as is’ very cumbersome to apply to methods for the solu-
tion of linear systems, especially to the LTPMs. Thus far, nobody considered the
application to truncated methods relying on Hessenberg structure, mostly methods
based on the Arnoldi recurrence. Block methods have only been considered by Bai
et.al. in the package ABLE.

The last idea that does not seem to fit into the scheme ‘re-orthogonalisation
techniques’ is to use the methods ‘as is’, i.e. with no re-orthogonalisation at all.
Only the stopping criteria and the picking of information from the computed ma-
trices is adapted to the finite precision behaviour. Methods of this class have been
developed and implemented by Cullum and Willoughby, but the algorithms are re-
stricted to the Lanczos variants. These methods are based on picking eigenvalues
and labelling them as ‘true’ or ‘spurious’ which can be considered as a form of
semi-orthogonalisation by hand. It is remarkable that their approach of identifying
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spurious eigenvalues is based on a comparison of the eigenvalues of Ck and those of
C2:k. An eigenvalue is labelled spurious, when it is an eigenvalue of both matrices.
By the preceeding error analysis, this is always the case, when the deviation is such
that the amplified errors result in Ritz values. What might be considered a major
drawback is that eigenvalues, whose corresponding eigencomponents in the starting
vector are below a certain threshold, are also labelled spurious. This is, to some
extent, justified, since the resulting Ritz vector consists mainly of amplified errors.



Chapter 5

Krylov Subspace Methods
in Finite Precision

In our derivation of the well-known Krylov methods as well in the proofs concerned
with statements on their behaviour the implicitly defined relations, like, e.g. the
orthogonality of the basis vectors, shows up to be very important. Chapter 4
reveals that these relations usually will not hold in a finite precision environment.
The results of Chapter 4 also imply that the methods will cease to converge at
least when the error matrix Fk has grown so large that the backward error of the
approximate solution is at about the same size.

Chapter 4 provides hints how tomeasure stability and how to ensure accuracy. In
the following we will use this knowledge to broaden and to unify the understanding
of the Krylov methods introduced in Chapter 3. We mainly give hints towards
existing literature on the subject and summarize the main results. We give some
numerical experiments to show up characteristic behaviour. What is typical in
numerical experiments is that a Krylov method deteriorates precisely when the
backward error becomes small.

5.1 Krylov Methods for the Eigenproblem

We distinguish between short-term and long-term methods and divide them fur-
ther into singular, orthogonal and bi-orthogonal methods. In long-term methods
(Arnoldi based) the orthogonality is typically enforced by explicit calculation. A
cure for the loss of orthogonality is, due to the accessibility of all computed basis
vectors, complete re-orthogonalisation. In short-term methods (Lanczos based) typ-
ically several copies of Ritz values are computed that correspond to single eigenval-
ues of A. Every time a Ritz pair converges, we observe a deterioration of the process.
This process essentially spoils the ultimately attainable accuracy and slows down
the convergence of the unconverged eigenvalues. Yet, due to the smaller amount
of storage and operations these methods are still competitive with the long-term
methods. The dual short-term methods suffer from near-breakdowns that cause
the error matrix Fk to grow unboundedly and thus may prevent accurate solutions.
We stress the fact that up to now no a-priori choice for the off-diagonal elements
of the unsymmetric Tk is known that delivers optimal results.

This is the trade-off between the three main approaches, i.e., the generally ap-
plicable Arnoldi method using an orthogonal projection and long-term recurrences,
the (with some restrictions) generally applicable dual Lanczos method using oblique
projections and short-term recurrences, and the intersection of both, the symmetric
or Hermitian Lanczos method that applies only to symmetric or Hermitian A. This
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trade-off is best explained with the aid of a little picture:

choose two . . .

generally applicable Krylov method

HHHHHH

fast Krylov method
©©
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robust Krylov method
¡
¡
¡
¡
¡
¡
¡
¡

Figure 5.1: Trade-off between fast, robust and general applicable

In the sequel, we will often use one of the main results of the last section, namely
that the basis vectors are constructed by

qk+1 =
χCk(A)

∏k
p=1 cp+1,p

q +

k∑

l=1

[

χCl+1:k
(A)

∏k
p=l cp+1,p

fl

]

,

where χCk denotes the characteristic polynomial of the Hessenberg matrix computed
by the method in use.

5.1.1 The Power Method

The power method might be considered one of the ‘simplest’ Krylov methods. Thus,
we might suspect that the error analysis is also very simple. Over more, the finite
precision power method paves way for the understanding of the more complicated
looking results of the other Krylov methods. The first analysis of the finite precision
power method is included in the the textbook by Wilkinson (cf. [Wil65]).

The finite precision power method can be interpreted locally as if we apply the
exact power method to a perturbed starting vector. We know that the character-
istic polynomials of the Hessenberg matrices constructed in the power method are
monomials:

qk+1 =
Ak

∏k
p=1 cp+1,p

q +

k∑

l=1

[

Ak−l

∏k
p=l cp+1,p

fl

]

=
Ak

∏k
p=1 cp+1,p

(

q +

k∑

l=1

[(
l−1∏

p=1

cp+1,p

)

A−lfl

])

.

Some of the components in the ‘new’ starting vector in direction of smaller eigen-
values are amplified such that the recurrence is slowed down. In any case, the
constructed basis vectors qj can not easily be related to a single perturbed matrix
A and a single perturbed starting vector. This implies that the basis vectors qj are
not computed in a backward stable manner in the finite precision power method.

Nevertheless, in case of a single, well separated eigenvalue of maximal modulus,
the recurrence is more likely to converge to the unique eigenvector in finite precision.
In case of a multiple or clustered eigenvalue of maximal modulus the recurrence will
also work, problems occur when there are distinct eigenvalues having approximately
the same (maximal) modulus. In infinite precision in this case we usually look for
a polynomial of small degree in A instead of the linear polynomial A − θjI that



5.1. KRYLOV METHODS FOR THE EIGENPROBLEM 201

maps the constructed vector to the zero vector, see the example of Wilkinson for
complex conjugate eigenvalues of real matrices (cf. [Wil65], chapter 9, section 12).
Depending on the degree of the polynomial we are looking for and the condition of
the eigenvalues and the normality of A the estimated polynomials may vary greatly
in the finite precision case.

The power method frequently is used with deflation to compute several eigen-
values with descending moduli. It is well-known that in infinite precision deflation
by erasing the component in direction of the exact eigenvector is sufficient, whereas
in finite precision we have to erase the corresponding component several times be-
cause the error vectors bring in a non-zero component and the method will otherwise
result in computing the dominant eigenvalue, i.e., the eigenvalue of maximal mod-
ulus twice. When the dominant eigenvalue is defective, convergence even in infinite
precision is slow.

In the context of large sparse matrices mostlyWielandt deflation is used. Wielandt
deflation changes the original matrix A by a rank-one update,

A← A− λvyH , where yHv = 1.

The new matrix is only implicitly defined and not computed explicitly. The action
of the transformed matrix on a vector q can be simulated by computing

(A− λvyH)q = Aq − λyHqv.

The special case y = v̂ is known as Hotelling deflation. This choice of y makes sense
in the normal case, since then y = v̂ = v is available for free. Hotelling deflation
might not be a good choice. The textbook of Saad contains a section on how to
choose the optimal y. Wielandt deflation has a natural extension to the case that
several eigenvalues have to be deflated. This extension is known as Schur-Wielandt
deflation because it is based on the (partial) Schur form AYk = YkRk of A. Schur-
Wielandt deflation changes the matrix by a rank-k update with k (approximate)
Schur vectors yj ,

A← A− YkRkY
H
k , where Y H

k Yk = Ik.

All these forms of deflation can be incorporated in the error vectors and have the
main effect to cause the error matrix Fk to grow.

The general message for the finite precision power method and its epigone, the
finite precision inverse iteration with shifts is that the small parts in dominant
eigenspaces are amplified. The dominant eigenspaces are what we are looking for.
Depending on the point of view, this may be beneficial, i.e., when we have no part
of the dominant eigenspace in the starting vector, or not, i.e., when we aim for the
eigenvalue of second largest modulus and deflation has to be done (almost) every
step.

5.1.2 Subspace Iteration

The subspace iteration is just the block variant of the power method, thus nearly
the same observations apply. In contrast to the simple variant, deflation is not
useful. Instead techniques known as locking and purging have to be used. Locking
just freezes the Schur vectors in the partial Schur form that are considered as being
converged. Subspace iteration is known to be very robust. The price one has to
pay for this robustness is that subspace iteration is slower than the other Krylov
subspaces.

Available packages are LOPSI by Jennings and Stewart dating to 1981 (cf.
[SJ81]), EB12 by Duff and Scott dating to 1993 (cf. [DS93, DS95]) and SRRIT
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by Bai and Stewart dating to 1997 (cf. [BS97]). All these packages are coded in
FORTRAN 77 and have been published in ACM TOMS.

The major effort in subspace iteration is in selecting the appropriate size of
the subspace and in a good decision rule how often to re-orthogonalise the vec-
tors. Moreover, a cheap and effective locking and purging strategy has to be used.
The codes mentioned above can be viewed as the working horses when a stable
algorithm for the computation of a few selected eigenvalues and eigenvectors for
(non-symmetric) matrices is needed.

Finite precision subspace iteration is considered a stable, but slow method to
approximate eigenvalues. Similar to the power method, the finite precision errors
are beneficial in ‘enriching’ the space such that usually all eigenvalues of interest
can be found. We stress that the convergence rate and the computed eigenvalue
approximations only weakly depend on the vectors spanning the actual starting
subspace, provided that errors in all directions occur. This seems to be the generic
case when we neglect diagonal and block-diagonal matrices A.

5.1.3 The Arnoldi Method

“Now it is essential that the ci should remain strictly orthogonal to
working accuracy or there will be no guarantee that cn+1 is null to
working accuracy. The difficulty which arises should not be attributed to
the cumulative effect of rounding errors.”

James Hardy Wilkinson,
The Algebraic Eigenvalue Problem (1965).

We have shown that the Arnoldi method is closely connected to one of the best-
understood and very stable algorithms, namely, the QR decomposition. More pre-
cise, we have shown in Chapter 3 that the (abstract) Arnoldi method can be ob-
tained from the QR decompositions of the Krylov matrices of subsequent steps,

[q,AQk] = Qk+1Rk+1

(
1 0
0 R−1k

)

= Qk+1

(
1
0

Hk

)

.

This is an iterated QR decomposition of the augmented matrix [q,AQk]. This is also
the way of computation in finite precision. Hence, the matrix is not fully defined
in the early stages, but is computed column by column in the algorithm. Thus, it is
an obvious idea to divide the errors into first order and second order effects. The
error analysis and a monitoring of errors is divided accordingly. This distinction
measures in the first stage how much the basis deviates and in the second stage
whether the QR decomposition fails to produce an orthogonal basis Qk. Both, the
first as well as the second stage may be empty.

The first stage has to incorporate the expansion of the basis. This basis expan-
sion in step k is given by the perturbed relation

Xk +∆Xk = AQk.

The error matrix ∆Xk is the result of a matrix product and can thus be bounded
by

‖∆Xk‖ ≤ γn‖A‖‖Qk‖, |∆Xk| ≤ γn|A||Qk|.
It remains to understand the loss of orthogonality. This loss is due to the QR
decomposition.

Despite the fact that in infinite precision ‘the’ Arnoldi method is uniquely de-
fined (up to some signs), there does exist a variety of different implementations
of the Arnoldi method. The behaviour of these implementations differs extremely
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when executed in finite precision. The menagerie of orthogonalisation schemes
available causes a whole bunch of implementations. Among those orthogonalisation
schemes we find schemes based on Householder reflectors, Givens rotations, the gen-
eralised Givens-Kahan rotations, CGS (classical Gram-Schmidt), MGS (modified
Gram-Schmidt), IGS (`) (iterated Gram-Schmidt, ` times) and as special case of
the latter, DOGS (double orthogonalisation Gram-Schmidt, i.e., IGS(2)). Iterated
Gram-Schmidt can be further divided into iterated classical and iterated modified
Gram-Schmidt. Iterated Gram-Schmidt algorithms, especially the classical variant,
are useful when orthogonalisation schemes are implemented on parallel architectures
and are currently an area of active research.

This implies that the main ingredient of the error analysis of a finite precision
implementation of the Arnoldi method is the error analysis of the orthogonalisation
scheme used. The information needed about the Householder, Givens and MGS
QR decomposition is easily accessible in modern textbooks on numerical linear
algebra (cf. [Hig96]), compare the results presented in Chapter 1. The results of
the error analysis of Householder QR are summarised in Lemma 1.13, Lemma 1.15
does the same for Givens QR, and some results on CGS and MGS are collected in
Lemma 1.16 and Lemma 1.17.

We need to define error matrices ∆Y e
k and ∆Yk to measure the accuracy of the

QR decomposition used. We use an exactly orthogonal Qe
k+1 to define ∆Y e

k by

Yk = [q,Xk], Yk +∆Y e
k = Qe

k+1Rk+1.

The computed Q factor Qk+1 is used to define ∆Yk by

Yk = [q,Xk], Yk +∆Yk = Qk+1Rk+1.

In the Householder variant, the error matrix ∆Y e
k is bounded by

‖∆Y e
k ‖F ≤ (k + 1)γcn‖Yk‖F , |∆Y e

k | ≤ n(k + 1)γcnG|Yk|, ‖G‖F = 1.

In the Givens variant, the error matrix ∆Y e
k is bounded by

‖∆Y e
k ‖F ≤ γc(n+k+1)‖Yk‖F , |∆Y e

k | ≤ nγc(n+k+1)G|Yk|, ‖G‖F = 1.

In the MGS variant, the error matrices ∆Y e
k and ∆Yk and the loss of orthogonality

are bounded by

‖∆Yk‖F ≤ c1ε‖Yk‖F ,
‖QH

k Qk − I‖2 ≤ c2εκ2(Yk) +O((εκ2(Yk))
2)

|∆Y e
k | ≤ c3εG|Yk|, ‖G‖F = 1.

In the CGS variant, we can only bound the error matrix ∆Yk,

‖∆Yk‖F ≤ c4ε‖Yk‖F .

Here, a term c, ci denotes a small constant independent of n. For MGS, explicit
constants can be found in the paper by Giraud and Langou (cf. [GL02b]). We can
put these pieces together to obtain the perturbed Krylov decomposition

AQk −Qk+1Hk = −Fk.

The error matrix Fk can be bounded by adding the bounds for the error matrices
∆Xk, ∆Yk:

‖Fk‖ ≤ ‖∆Xk‖+ ‖∆Yk‖.
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We stress that in some implementations (especially in the Householder variant),
the basis vectors are only implicitly defined and can be ‘better’ than it would be
possible in case the exact columns are known and stored in finite precision.

The MGS variant of Arnoldi has been analysed by Rozložńık in his thesis (cf.
[Roz97]). It is well known, compare Lemma 1.17, that the computed Q factor
will loose orthogonality depending on the condition of the matrix to be factorised.
Rozložńık showed that the condition of the augmented matrix [q,AQk] depends
on the condition of A and on the norm of the residual for the minimal solution
minz ‖q −AQkz‖2. To be more precise, he showed that as long as this minimum is
not too small and the machine precision is small enough,

κ([q,AQk]) ≤
√
21κ(A)

minz ‖q −AQkz‖2

holds true (cf. [Roz97], equation (5.5), page 38). This, in turn, can be used to
bound the loss of orthogonality. When we are only interested in the eigenvalues, we
need no error analysis of the Q factor, since the analysis shows that the computed
R factor, i.e., the matrix Hk and thus Hk, is close to the R factor constructed by
Householder QR.

The iterated CGS or MGS variants recently have caught attention by Czech and
French researchers. Two times iterated Gram-Schmidt is known to be stable when
we only have two vectors we want to orthogonalise against each other. This result
is known as Kahan’s “twice is enough” algorithm (cf. [Par98], page 115/116) and is
based on the observation that the loss of accuracy is due to a cancellation which can
only occur once. Giraud, Langou and Rozložńık proved that this “twice is enough”
algorithm is also stable in the case of several vectors (cf. [GLR02b]). Based on these
results, interesting relations for the singular values of the computed Qk have been
obtained (cf. [GL02b, GL02a, GLR02a]).

A very interesting relation of the singular values of Fn defined by

Fn ≡ Qn −Qe
n,

and the singular values of the matrix A whose columns are to be orthogonalised
by MGS was presented by Langou at the Milovy Conference (cf. [Lan02]). When
we label the singular values of A in decreasing order with negative indices, i.e.,
σ−1 ≤ · · · ≤ σ−n, the relation takes the simple form

σi(Fn)σ−i(A) /
2cu

1− cuκ(A)‖A‖2 ∀ i ∈ n.

Here, c = 18.53n3/2 is a moderate constant and u denotes the unit roundoff. This
shows that the singular values of Qn deviate one after the other from the singular
values of the exact unitary Qe

n without even interfering each other.

In the CGS QR decomposition little seems to be known. CGS seems to be too
unstable to be incorporated into a finite precision Krylov method based on Arnoldi.
Nevertheless, figure 5.2 and figure 5.3 depict that the loss of orthogonality is by no
means random, it occurs shortly after the first Ritz value has converged to sufficient
accuracy in any variant.

We have grouped the orthogonalisation schemes into three groups. Those, where
we know that the orthogonality is not lost (up to machine precision). Those, where
we know that a loss occurs, but at the same time we can describe, how and in which
direction. The last group, at the time of writing only the CGS Arnoldi variant,
consists of methods where we know that orthogonality is lost, and we do not know
when and how.
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The results on the QR decomposition stated above clearly reveal that the House-
holder and Givens variants of the Arnoldi method will result in approximately or-
thogonal (unitary) bases Qk. Thus, they are in the first group. This information
suffices to show that the eigenvalues of Hk tend to approximate the eigenvalues of
A and that the estimated (eigen)residuals are close to the exact (eigen)residuals.
What is less known, is that despite the methods deliver accurate results, the com-
puted space may be very far away from the exact Krylov subspace defined by the
starting vector (or any other starting vector). We will come back to this point later
on.

In case of (iterated) MGS and iterated CGS, we have cheap estimators at hand
to conclude how long the algorithm will produce accurate results. We already
mentioned that orthogonality is lost in (classical) Gram-Schmidt when severe can-
cellation occurs. In general, there is no easy way to see when this will be the case.
When Gram-Schmidt is applied to the augmented matrix [q,AQk], we can relate the
loss of orthogonality to the convergence of Ritz values. The loss will be in direction
of the left eigenvector. This knowledge may be used to invent a re-orthogonalisation
scheme to be incorporated into finite precision CGS Arnoldi.

We now switch to some explanatory numerical experiments. We have chosen
small sized toy problems that reflect enough of the numerical behaviour and allow
the explicit computation of the interesting quantities with backward stable algo-
rithms for dense systems. Essentially the same phenomena show up in case of large
sparse matrices, but then we can not compute the quantities we want to focus on.

Figure 5.2 and figure 5.3 show the results of a run of finite precision CGS, finite
precision MGS and finite precision DOGS Arnoldi. DOGS is an abbreviation for
double orthogonalisation Gram-Schmidt. The plots contain three different kinds
of curves plotted in a semilogarithmical scale on the y axis. For better readability,
three dotted straight lines are plotted additionally at the levels one,

√
ε and ε.

In both plots, the matrixA has been constructed from a diagonal matrixD of size
100, with diagonal elements equidistant between zero and one. The normal matrix
A used in the first plot was constructed by randomly choosing an unitary similarity
transformation U and setting A = UHDU . The non-normal matrix A used in the
second plot was constructed by randomly choosing a similarity transformation X
and setting A = X−1DX. All transformations where computed in Matlab 6.3 with
ANSI/IEEE floating point arithmetic, thus the eigenvalues of the resulting matrices
are only close to the elements of D. The computed (non-unitary) transformation
X had the approximate condition number κ(X) ≈ 1.1244 · 103.

The plots show the convergence to the largest eigenvalue λmax = 1. This conver-
gence is measured by the distance to the two Ritz values θmax and θmax−1 closest
to λmax, in the legends of the figures denoted by real convergence. These two curves
are plotted with dashed lines (– –). This is the information we are really interested
in. The information we have at hand is the size of the last entry of the eigenvector
smax times the last component hk+1,k of the expanded Hessenberg matrix Hk. In
infinite precision, as well as in the early stages of the finite precision algorithm, this
is a bound on the backward error of the Ritz pair, i.e., a scaled residual. In the
legends, this (hopefully) approximate bound is called the estimated residual. The
three curves resulting from the three Arnoldi variants used are scaled by ‖|A|‖2 and
plotted with solid lines (—).

In finite precision they describe, together with the unknown errors, the part of
the basis vectors in direction of the left eigenvector v̂max of A to eigenvalue λmax,

v̂Hmaxqk+1 =
(λmax − θmax) v̂Hmaxymax + v̂HmaxFksmax

hk+1,kskmax
. (5.1)

In the legends the part of the basis vector qk+1 in direction of v̂max is called the
actual eigenpart. The three curves resulting from the three Arnoldi variants used
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are scaled by ‖|A|‖2 plotted with solid dotted lines (—· ). The starting vector was
the same randomly chosen vector for all three runs.

All curves in both figures behave very similar in the early stages of all three
Arnoldi variants used. This is natural, since the error vectors are small in all
variants and where not yet amplified by the convergence of a Ritz pair.

By previous considerations, there are circumstances when the parts v̂Hmaxqk+1
are behaving similar to the (left) eigenvectors of the (exact) final Hm (cf. Chap-
ter 1, Theorem 1.22, page 26, Chapter 2, equation (2.11), page 66, Theorem 2.22,
page 70). Furthermore, parts of the eigenvectors of leading submatrices are good
approximations of the final eigenvectors, as is obvious by the description of the
eigenvectors using polynomial recurrences (cf. Chapter 2, Theorem 2.20, page 70).
When A is normal, the left and right eigenvectors coincide, thus we may expect
these parts of the basis vectors to decrease with the components of smax. When A
is non-normal, the dependencies are not that obvious. These results are used in the
sequel to interpret the plots and to highlight special phenomena.

In the first figure, i.e., figure 5.2, we are in the case of Arnoldi applied to a normal
matrix A. The convergence of the first Ritz pair takes place in steps 1 to 51. Until
step 51, the quantities computed behave almost as if they where computed in infinite
precision. The largest Ritz value θmax converges to the largest eigenvalue λmax with
approximately geometric convergence rate. The estimate hk+1,kskmax decreases
with a rate in size approximately equal to the square root of the convergence of θmax
to λmax. This can be interpreted using a Temple-Kato type bound, since the largest
eigenvalue is well-separated from the second largest eigenvalue. The size of the part
of the next basis vector qk+1 in direction of the (left) eigenvector v̂max ≡ vmax
decreases at a similar rate. When we assume that the lower diagonal elements
hj+1,j do not become small and the resulting Hessenberg matrix is normal, this
can be predicted by perturbation theory. Suppose for simplicity that the conditions

of Theorem 1.22 are fulfilled. Then, the leading components of the final ŝ
(m)
max =

v̂HmaxQm = smax are given (Chapter 2, Theorem 2.20, page 70) by the polynomial
recurrences

š
(m)
max(k)

š
(m)
max(1)

=
χHk−1

(θ
(m)
max)

∏k−1
l=1 hl+1,l

∀ k ∈ m,

whereas the last components of the intermediate smax = s
(k)
max are given by

š
(k)
max(k)

š
(k)
max(1)

=
χHk−1

(θ
(k)
max)

∏k−1
l=1 hl+1,l

. ∀ k ∈ m.

For indices, where the leading characteristic polynomial is insensitive to small
changes in θmax, the components do not vary greatly. This is especially the case
for the leading components since then the degree of the polynomial is small and
there is only one root close to the final θmax. Another difference is the scaling
by the first component. In infinite precision, when we consider only one maximal
well-separated eigenvalue and v̂Hmaxq1 is large enough, the trailing components will
be small. Thus, we may expect the scaling to be negligible.

The picture changes when we move on in the algorithm. Next, we discuss the
behaviour of the three Arnoldi variations under consideration in steps 51 to 74.
The Ritz value θmax does not move any more, which follows readably from equation
(5.1). This is the first difference from the infinite precision Arnoldi method. The
other, more important difference is that in the CGS and MGS variants the part of
the basis vectors in direction of the (left) eigenvector starts to increase with a rate
inverse proportional to the rate of hk+1,kskmax. Only the DOGS variant manages
to reflect the expected infinite precision behaviour. This describes in detail the
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Figure 5.2: Arnoldi, normal matrix, equidistant eigenvalues

occurring loss of orthogonality. Nevertheless, the rate of the estimate hk+1,kskmax
behaves as if the basis vectors where unperturbed. This is linked to the normality of
the matrix A. The perturbation mostly in direction of the eigenvector vmax = v̂max
has only the effect of moving the other Ritz values slightly (this is not visible in the
picture).

In steps 74 to 100, the picture changes again. In the CGS variant the estimate
hk+1,kskmax moves up in magnitude for a few steps and remains at a level of mag-
nitude approximately equal to 10−15. The true distance between θmax and λmax is
even slightly larger, almost 10−14. The size of the next basis vector qk+1 in direc-
tion of the eigenvector v̂max is all the time at the same high constant level, only
slightly lower than one. This is in contrast to the MGS and the DOGS variants
of Arnoldi. Here, the estimates hk+1,kskmax continue to decrease comparable to
each other (and to the infinite precision counterparts). The minimal distance of the
largest Ritz value θmax to the largest eigenvalue λmax moves around the machine
precision. This comes as no surprise for DOGS Arnoldi, since the DOGS Arnoldi
variant is stable enough to ensure that orthogonality is maintained up to the order
of the machine precision. When the Ritz vector is close to the right eigenvector,
the same accuracy is attained by keeping the loss of orthogonality restricted, such
that v̂Hmaxqk+1hk+1,kskmax ≈ v̂HmaxFksmax holds true. This is true, because the
restriction, together with equation (5.1), implies that

|λmax − θmax||v̂Hmaxymax| ≈ 2|v̂HmaxFksmax| = O(ε‖|A|‖2)

holds true. The picture reveals that the MGS Arnoldi variant assures the validity
of the restriction for the first converging Ritz pair.

Now, we switch to the second figure, i.e., figure 5.3. Here, we investigate what
happens when we apply the three variants CGS, MGS and DOGS of floating point
Arnoldi to a non-normal matrix. The line styles are all chosen as in the preceeding
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figure. That is, we plot the quantities we labelled real convergence with dashed lines
(– –), the quantities we labelled estimated residuals with solid lines (—) and the
quantities we labelled the actual eigenpart with solid dotted lines (—· ).

In the case of the normal matrix A we successfully identified three stages of the
finite precision behaviour. In figure 5.3, the first stage is easily identified to take
place in steps 1 to 50. At that point, the CGS variant completely looses track. The
MGS and DOGS variants do much better.

The second and third stage can not be identified with the aid of the picture.
The part of the basis vectors in direction of the left eigenvector does not decrease,
thus we can not see, that the MGS variant alters this part significantly. We observe
that the CGS variant clearly perturbs this part, since we obtain an almost constant
solid-dotted line between steps 50 and 100. Also the in the CGS variant computed
Ritz values θmax are only correct to the order of the square root

√
ε of the machine

precision, resulting in the almost constant dashed line. The estimates hk+1,kskmax
from the CGS variant are smaller than the distance between θmax and λmax and are
still decreasing.
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Figure 5.3: Arnoldi, non-normal matrix, equidistant eigenvalues

We give some rather philosophical comments on the behaviour finite precision
Arnoldi. We have to distinguish between normal and non-normal matrices, or to
be more precise, between normal and non-normal eigenvalues. This will become
obvious in a moment. Assume that the left eigenvectors v̂i are normalised, such
that ‖v̂i‖2 = 1. The relations

v̂Hi qk+1 =
(λi − θj) v̂Hi yj + v̂Hi Fksj

hk+1,kskj



5.1. KRYLOV METHODS FOR THE EIGENPROBLEM 209

show that a deviation from the theoretical quantities occurs every time a Ritz pair
is converging. Thus, convergence can not exceed a certain limit, since with the
usual normalisation of the basis vectors ‖qj‖2 ≈ 1,

1 ≈ ‖qk+1‖ > |v̂Hi qk+1|

surely is an upper bound. What happens after this bound has been ‘reached’,
depends on the normality of the eigenpair, since in the normal case the left eigen-
vector is also the right eigenvector. Then, at least as late as |v̂Hi qk+1| ≈ 1, i.e., when
qk+1 ≈ cv̂i = cvi, |c| = 1, a second Ritz value approximating λi has to emerge.

This can only happen, when the orthogonalisation scheme is not strong enough
to ensure sufficiently orthogonal basis vectors. But the good news in this case is,
that still we only will compute a second Ritz pair approximating the same eigen-
pair. If the orthogonalisation scheme is strong enough to prevent a repeated copy,
which is the case for all orthogonalisation schemes we (numerically) investigated,
the computed Ritz pair looses already gained accuracy. In the non-normal case, the
divergence is still bounded from above,

1 ≈ ‖qk+1‖ > |v̂Hi qk+1|,

but we no longer have the nice interpretation we had in the normal case.
We now switch to the accuracy of the computed basis. The computed basis

deviates whenever there is a cluster. As an example, we consider a multiple deroga-
tory eigenvalue. The starting vector defines only one eigenvector that should be
computed. The finite precision recurrence for the basis vectors,

qk+1 =
χCk(A)

∏k
p=1 cp+1,p

q +
k∑

l=1

[

χCl+1:k
(A)

∏k
p=l cp+1,p

fl

]

,

shows that any errors in direction of the eigenspace of the derogatory eigenvalue
orthogonal to the eigenvector defined by the starting vector will eventually blow up
and naturally are not removed by the orthogonalisation. That these error compo-
nents will blow up follows from the identity

v̂Hi qk+1 =
(λi − θj) v̂Hi yj + v̂Hi Fksj

hk+1,kskj
.

It is easy to extend this observation to clusters of eigenvalues, since for clusters,
(λi−θj)v̂Hi yj will be small for all eigenvalues λi in the cluster, when one Ritz value
approximates one eigenvalue in the cluster.

This proves that even if the computed matrices Qk are orthogonal to machine
precision, different methods will often result in very different Qk, since the error
vectors fj of two implementations are usually not related. The same holds true
for one implementation applied first to a given starting vector q and any slightly
perturbed vector q̃ = q +∆q.

This shows that all variants of finite precision Arnoldi are not forward stable in
computing the Krylov space and corresponding basis. We may ask for classes of
matrices such that finite precision Arnoldi stably computes the Krylov space and
basis. This class corresponds to the class of matrices, such that convergence of
all Ritz values is delayed until the last step. Accordingly, the basis and space is
accurate as long as no convergence occurred.

The Householder Arnoldi variant does not lie, i.e., the bounds on the accuracy
of the computed Ritz values (the estimated residuals) returned are close to the
true residuals as long as they are slightly larger than the backward error. The
convergence to single eigenvalues is comparable to the convergence of the infinite
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precision Arnoldi method. The same remarks apply to the Givens variant. With
respect to these remarks, we might consider the finite precision Householder and
Givens implementations for the computation of approximate eigenvalues ‘backward
stable’.

5.1.4 The Symmetric Lanczos Method

“[..]. However in computations comparing the accuracy of the computed
eigenvalues with the loss of orthogonality and the bounds on this, it
was found in many cases that several eigenvalues converged to great
accuracy despite complete loss of orthogonality. Startling examples of
this occurred when the number of steps far exceeded the dimension of
the matrix, as in such cases it often happens that repeated eigenvalues
of the tri-diagonal matrix correspond accurately with single eigenvalues
of the original matrix.”

Christopher Conway Paige,
The Computation of Eigenvalues and Eigenvectors of

Very Large Sparse Matrices (1971, page 87).

The history of the error analysis of the symmetric Lanczos algorithm is closely
connected to a complete series of theses starting with Paige’s thesis in 1971 (cf.
[Pai71]), followed by the theses of Scott (cf. [Sco78], 1978), Grcar (cf. [Grc81],
1981) and Simon (cf. [Sim82], 1982). Until 1971, it was believed that maintaining
global orthogonality is crucial. Unfortunately, global orthogonality and even
linear independency of the computed basis vectors is lost shortly after the first
Ritz pair has converged. As remedy, the Lanczos method was implemented with
full re-orthogonalisation and all computed vectors had to be stored. The resulting
algorithm is termed LanFO for short.

Inspired by observations made in the late sixties and the analysis of LanFO (cf.
[Pai69, Pai70]), Paige was the first to give a detailed error analysis explaining that
the computed eigenpairs are close to exact eigenpairs in case only local orthogonality
is maintained, i.e., he showed that local orthogonality is sufficient. To be more
precise, he showed that to every cluster of Ritz values there corresponds (at least)
one close eigenvalue, and that the estimated residuals are close to the true residuals.
Paige’s results can be summarised as follows:

a) A classification and criticism of the different implementations (including the
classical and modified Gram-Schmidt variants) of the finite precision symmetric
Lanczos method (cf. [Pai71, Pai72]). He pointed out the importance to compute a
symmetric tridiagonal.

b) The proof that the error matrix Fk in AQk = Qk+1T k − Fk is small. Paige
gave an explicit normwise bound and introduced the additive splitting that forms
the core of Theorem 4.17 (cf. [Pai71, Pai76]).

c) Paige used the splitting and the relations given in Theorem 4.18, Theorem 4.21
and Theorem 4.22 to show that the Ritz values converge to eigenvalues even if they
appear in multiple copies and the Ritz vectors deviate substantially from unit length
(cf. [Pai71, Pai80]).

Moreover, he showed that the Ritz values are contained in a slightly enlarged
version of the field of values of A, which is important for the convergence of CG.
These results are not included in Chapter 4, since they only apply to the symmetric
Lanczos method. The results in the article (cf. [Pai80]) are slightly stronger than
the results included in his thesis. We mention that a couple of results, some of them
on the deviation of the norm of Ritz vectors that correspond to clusters, are only
published in his thesis.
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Another approach was successfully used by Cullum and Willoughby (cf. [CW85a,
CW85b]). They tried to distinguish ‘good’ Ritz values from ‘spurious’ Ritz values.
Their approach is based on the connection of the Lanczos algorithm to the CG
method by Hestenes and Stiefel. They proved that Ritz values that are also Ritz
values of the tridiagonal matrix consisting of the second to last row and column
are due to the finite precision. If they are close to another converged Ritz value
they are accepted as duplicate, otherwise they are marked as spurious. This can be
compared with the role of the associated polynomials in the example of the Bessel
labyrinth given in Chapter 1. Paige’s analysis proves that no spurious Ritz values
exist.

Cullum and Willoughby where the first that attempted an interpretation of the
so-called Lanczos phenomenon (cf. [CW80]). The Lanczos phenomenon consists in
the following: Every eigenvalue of A tends to occur (under some circumstances) as
a Ritz value of Tk for ‘large’ k, k ≈ cn, 3 ≤ c ≤ 5. The interpretation is again based
on the connection of the Lanczos algorithm to the CG method.

Among other results, Paige showed that loss of orthogonality is in direction of
converging Ritz vectors. This knowledge was used by Parlett and Scott to derive
a variant of the Lanczos algorithm that re-orthogonalises against converging Ritz
vectors whenever necessary. This variant is known as Lanczos with selective re-
orthogonalisation or LanSO for short.

Grcar analysed in more detail the way orthogonality is lost and was the first to
show that loss of orthogonality occurs in groups of vectors of the Arnoldi basis. He
derived a strategy using one vector of length n to store estimators on the deviation of
the recurrence, and to re-orthogonalise when one of these has grown to a prescribed
size. This variant of the Lanczos algorithm is known as Lanczos with periodical
re-orthogonalisation, or LanPR for short. He also was one of the first to give hints
to examples of matrices where the Lanczos algorithm ‘as is’, i.e., without any re-
orthogonalisation, works fine.

Simon analysed the underlying three-term recurrence. He formed the Green
function and derived a recurrence for the errors Wk = QH

k Qk. This error recur-
rence is basically a generalised Casorati determinant. The error recurrence was
first discovered by Takashi and Natori and later independently rediscovered by Si-
mon (cf. [Sim82, Sim84]). When looking more closely, this recurrence is already
contained in Paige’s thesis. Simon used Gersgorin disks and Cholesky decomposi-
tion of the error matrix Wk to derive a variant of Lanczos he named Lanczos with
partial re-orthogonalisation, or LanPRO for short. This multiplicative (Cholesky)
decomposition is the core of Theorem 4.23. Simon was the first to realize that
LanSO and LanPRO are variants of the larger class of Lanczos algorithms where
semi-orthogonality of the basis vectors is maintained. The basis vectors are labelled
semi-orthogonal if the condition ‖QH

k qk+1‖2 ≤
√
ε is fulfilled.

Greenbaum showed that every finite precision recurrence may be continued to
lead to a value βn+m = 0 after at least n+m steps

AQn+m = Qn+mTn+m − Fn+m, Fn+m = [Fk, F
a
k ]

with some additional perturbations fal (cf. [Gre89], see also [GS92]). She concluded
from the results obtained by Paige that the size of the additional error vectors f al
can be bounded by

O
(

(n+m)
3
k3‖A‖

√
ε
)

or O
(

(n+m)
3
√

c3maxk‖A‖ 4
√
ε
)

where cmax is the maximal size of a cluster of Ritz values that has not converged
yet (cf. [Gre89], Theorem 1’, page 51). This, of course, is a very weak bound.

A result of Paige implies that the eigenvalues of Tn+m are bounded by these
expressions. We remarked that every Hessenberg matrix (symmetric tridiagonal
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matrix) is re-constructed by application of the infinite precision Arnoldi method
(symmetric Lanczos method). Thus, Greenbaum concluded that the finite precision
Lanczos algorithm behaves like an infinite precision algorithm applied to a larger
matrix Ã ∈ K(n+m)×(n+m), whose eigenvalues lie in clusters around the eigenvalues
of the original A ∈ Kn×n. The numerical experiments carried out in the paper
with Strakoš (cf. [GS92]) suggest that the crude bounds on the diameter of these
intervals may be replaced by O(‖A‖ε). Unfortunately, no rigorous proof has been
found yet to support this assumption.

In contrast to the general case in the Arnoldi method, the left eigenvector v̂ of A
is always equal to the right eigenvector v, because the symmetric Lanczos method
is restricted to symmetric (or Hermitian) matrices A. A major distinction from the
finite precision Arnoldi method is that the loss of orthogonality can happen ‘freely’
in the finite precision symmetric Lanczos method, since we never compute the inner
products of basis vectors whose indices are far apart from each other. Thus, the
loss of orthogonality will be recovered when the quantity vHqk+1 approaches the
‘sky’, since once vHqk+1 = O(1), a new Ritz value has to emerge and so forth. This
will become clear in the following examples.

Again, we give two plots resulting from a toy-sized problem. The problem has
been carefully chosen, such that the convergence of the largest Ritz value is very
fast and thus also the loss of orthogonality occurs almost immediate. The matrix
A has been chosen such that A ∈ R100×100, with elements randomly chosen (except
for the symmetry constraint) such that all {aij}100i,j=1 fulfil aij ∈ [0, 1]. This ensures
that A is non-negative, so we can apply Perron-Frobenius theory to conclude that
the spectral radius is equal to the largest eigenvalue, the so-called Perron root.

With this special choice, the matrix A may be considered as a perturbation of
the rank-one matrix

E =
1

2





1 · · · 1
...

. . .
...

1 · · · 1



 , A = E +∆E.

We sketch the general case where A ∈ Kn×n is chosen to fit the mentioned con-
straints. The matrix E has only one non-zero eigenvalue n/2 to the eigenvector
e, where e is the vector of all ones. In our case, the non-zero eigenvalue of E is
50 = 100/2.

The coefficients of the symmetric matrix 2∆E are independent and identically
distributed (iid) random variables in the range [−1, 1]. The normalised (λ/

√
n)

eigenvalues have limiting (n→∞) semicircle distribution given by

P (x) =

{
0, x 6∈ [−1, 1],

2

π

√

1− x2, x ∈ [−1, 1].

This result is known asWigner’s Semicircle Law. Thus, we may expect the eigenval-
ues of ∆E to be approximately semicircle distributed in the range [−√n/2,√n/2] =
[−5, 5].

By taking a closer look at Weyl’s Theorem and by preceeding arguments we may
expect the largest eigenvalue of A somewhere near 50, the second largest eigenvalue
near 5 and the remaining part of the eigenvalues in the interval [−5, 5]. The eigen-
vector by Perron-Frobenius theory has only non-negative entries and perturbation
theory ensures that it will be close to e. In our example, the Perron root was given
by 50.5877, the second largest eigenvalue was given by 4.1676 and the angle between
the computed Perron vector and e was 0.0379.

We chose a non-negative random starting vector. By Kaniel-Paige-Saad theory
we expect a very fast convergence towards the largest eigenvalue. The convergence
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history is shown in the first figure, figure 5.4. The line styles have been chosen as
in the examples for finite precision Arnoldi, that is, we plot the quantities |λmax −
θmax|/‖|A|‖2 we labelled real convergence with dashed lines (– –), the quantities
|βkskmax| we labelled estimated residuals with solid lines (—) and the quantities
vHmaxqk+1/‖|A|‖2 we labelled the actual eigenpart with solid dotted lines (—· ).

We observe a fast and almost linear convergence in the semilogarithmic plot in
steps 1 to 5. In step 5 the Ritz value θmax has converged to the largest eigenvalue
λmax with a relative accuracy up to machine precision. In this first range, the
actual eigenpart and the estimated residual are in theory and in the numerical
experiment close to each other with magnitude more or less given by the square
root of the distance between θmax and λmax. The last component skmax of the
actual smax is given by (Chapter 2, Theorem 2.20, page 70)

s
(k)
max(k)

s
(k)
max(1)

=
χTk−1

(θ
(k)
max)

∏k−1
l=1 βl
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Figure 5.4: Symmetric Lanczos, non-negative matrix, λmax

With our choice of starting vector, the scaling by s
(k)
max(1) will not vary greatly

with k. The evaluation at value θ
(k)
max of the characteristic polynomial of Tk−1

is insensitive to perturbations of roots (i.e., Ritz values) that are far away from

θ
(k)
max. The result, i.e., that skmax becomes only sensitive when errors cause a new
Ritz value close to θmax, also follows from the eigenvector – eigenvalue relations of
Chapter 2, since for symmetric matrices Tk

(

s
(k)
kmax

)2

=
χTk−1

(θ
(k)
max)

χ′Tk(θ
(k)
max)

=

∏

j

(

θ
(k)
max − θ(k−1)j

)

∏

j 6=max

(

θ
(k)
max − θ(k)j

) (5.2)
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holds true. In other words, as long as there is no other Ritz value close to θ
(k)
max, the

estimated residual curve decreases as the infinite precision counterpart would have
done.

This, together with a bound on the errors vHmaxFksmax, implies that the curve
corresponding to the part of qk+1 in direction of the eigenvector vmax will start to
increase as long as it has not reached substantial magnitude. This can be observed
in between steps 5 and 11. Remember that all the curves are only defined for
integer values. Keeping this in mind, we observe that we can ‘erase the wrong
edges’ between steps 5 and 6 in the vHmaxqk+1 curve and in the (relative) distance
between θmax and λmax. The increase in direction of the eigenvector causes the loss
of orthogonality shown in figure 5.5.
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Figure 5.5: Symmetric Lanczos, loss versus convergence (II)

As already mentioned, a new Ritz value has to appear that converges to the same
eigenvalue λmax. This happens in step 11. Remember that the rate of convergence
of the first converging Ritz value was almost linear and took about 5.5 steps. Then it
is obvious that the next Ritz value (as long as no other Ritz values interact with the
convergence) appears at step 11, the next one at step 22 and so forth. This is nicely
to see in the picture. We shortly go on to explain some important aspects of the
behaviour observable in the plot. Every Ritz value that has converged to attainable
accuracy can not move very far away once the estimated residual is small. This is
known as Paige’s Persistence Theorem and is the result of the backward errors of
tridiagonal eigensystems introduced in Chapter 2 and the perturbation theory of
Chapter 1. The convergence of the Ritz values follows again approximately Kaniel-
Paige-Saad Theory. This can be seen by introducing a ‘magic perturbation’. This
perturbation is defined by first multiplying the perturbed Krylov decomposition
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from the right by the matrix factor (Ik − smaxsHmax), resulting in

AQ̃k − Q̃kT̃k =Mk − F̃k,
where Q̃k = Qk(Ik − smaxsHmax), T̃k = Tk − smaxθmaxsHmax and the new error matrix
is defined by F̃k = Fk(Ik−smaxsHmax)+Mksmaxs

H
max. We note that the error matrix

has maximal growth given by |βkskmax|‖qk+1‖ ≈ |βkskmax| and that the matrix T̃k
has the same eigenvalues and eigenvectors as Tk, with the exception of θmax, which
has been replaced by zero.

As a last step, we transform the (non-tridiagonal) T̃k to tridiagonal form by a
similarity transformation U and set Qnewk = QkU . We seek U such that local or-
thogonality is not spoiled. This can be achieved using Householder transformations
backwards on T̃k,

UT newk UH = T̃k.

Let s
(1:k−1)
max denote the reduced vector consisting of the first k− 1 elements of smax.

Then, the first k − 1 components of the last column of Hermitian T̃k are given by

wk−1 = skmaxs
r
max + βk−1ek−1.

This shows that the last column of U , given by the last column of the first House-
holder matrix H defined by Hwk−1 = ‖wk−1‖2ek−1, is very close to the last unit
vector ek−1. Furthermore, βk−1 − ‖wk−1‖2 is small. The size of the error matrix
is not altered by multiplication with a unitary matrix. The recurrence continues
without touching and altering the other quantities we have already transformed,
especially, MkU = Mk. We only have increased the bound on the error matrix
and removed the largest Ritz value. Putting things together, this implies that the
newest Ritz value will converge approximately like its predecessors with about the
same rate of convergence.

Once we have several Ritz values approximating one eigenvalue, the correspond-
ing estimated residual curves βkskj will all move in a similar fashion, since they only
differ in the point of evaluation of the polynomials given in equation (5.2). That is,
when a new Ritz value is converging and then as long as no new Ritz value appears,
the curves are decreasing, and when a new Ritz value comes close, the curves are
all increasing. Since βkskj is used as estimate for the residual, we may (wrongly)
think that we are far away from desired accuracy when we are in the latter case.

Next, we consider a more complicated case. The first case resulted in such
beautiful pictures, because no other Ritz value converged substantially in the steps
1 to 30. We focus on the interactions between converging Ritz values. To do so
without discarding previously obtained information, we simply plot the curves for
the convergence of the second largest eigenvalue of the same matrix A. To better
see the interactions with the convergence of the largest eigenvalue, we also plot the
curves corresponding to this case in a dotted line style. The convergence of the
second largest eigenvalue takes more steps, we chose to show steps 1 to 80. The
resulting plot is given by figure 5.6.

We summarise the main changes. The curves are only irritated every time the
deviation in the basis vectors is largest, i.e., every time a new Ritz value starts to
converge to the largest eigenvalue. This effect is due to the normalisation of the
basis vectors.

Let us assume that the basis vectors are expanded in the eigenbasis, qj = αjivi,
where αji = vHi qj . Then by Theorem 4.32, page 172, the loss in direction of vmax
adds to the (un-normalised) vector rk = βkqk+1 expanding the Krylov space,

vHmaxrk =
(λmax − θmax)vHmaxymax

skmax
+
vHmaxFksmax
skmax

.
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Figure 5.6: Symmetric Lanczos, non-negative matrix, λmax−1

It appeals to be more natural to consider only the first summand. Since the nor-
malisation can not distinguish which part of the vector rk comes from errors and
which is locally correct, the norm of rk measures mainly the dominating errors in
direction of vmax and results in αj,k+1 having too small magnitude for all j 6= max .
This is corrected once the convergence of this newly arisen Ritz value takes place.

Depending on the distance of the Ritz value to the converging one, i.e., on the
gap between two neighbouring Ritz values, the residual estimator curves may move
up slightly. This follows by the normalisation of the eigenvectors and also by the
representation of the last components according to the eigenvector – eigenvalue
relations of Chapter 2 as stated above, equation (5.2),

(

s
(k)
kmax−1

)2

=
χTk−1

(θ
(k)
max−1)

χ′Tk(θ
(k)
max−1)

=

∏

j

(

θ
(k)
max−1 − θ

(k−1)
j

)

∏

j 6=max−1

(

θ
(k)
max−1 − θ

(k)
j

) .

Here, with some abuse of notation, θmax−1 is not necessarily the second largest Ritz
value, but the first Ritz value that converges to the second largest eigenvalue of A,
denoted λmax−1. We label the Ritz values approximating the largest eigenvalue by
θmax,i. When a new Ritz value θmax,i close to λmax occurs, the term

(θ
(k)
max−1 − θ

(k−1)
max−1)

(θ
(k)
max−1 − θ

(k)
max,i)

dominates the representation and causes a jump in the quantity sk,max−1 of height

approximately given by
√

dist/sep, where dist denotes the distance between two

successive Ritz values θ
(k−1)
max−1 and θ

(k)
max−1 that approximate the second largest

eigenvalue λmax−1, and sep denotes the (smallest) spectral separation between the
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approximations θ
(k)
max,i and θ

(k)
max−1, approximating the largest eigenvalues λmax and

λmax−1.

This proves that the distraction of the curve skj depends on the square root of
the speed of convergence (dist) divided by the separation (sep) to the other, faster
converging, Ritz value. The curve βkskj also depends on the norms βk of the residual
vectors. The computed βk is (by previously stated arguments) dominated by errors
in direction of the eigenvector vmax corresponding to the largest eigenvalue. Thus,
this βk will, in this setting, be a large overestimate over the ‘better’ βk taking into
account only the components that measure convergence.

In the above, we neglected the variation of all other Ritz values. This is in order,
since most Ritz values in the example are slowly converging. Only the largest Ritz
value already has converged, but this Ritz value can not vary greatly as is implied
by Paige’s Persistence Theorem.

All the above results apply to infinite precision and clusters. Essential the same
behaviour can be observed. Here, we can interpret the clustered eigenvalues as
perturbed single eigenvalues of Ã = A+∆A and define the perturbation term ∆AQm

as error matrix. This interpretation nicely explains the so-called misconvergence of
the symmetric Lanczos method. The phenomenon entitled ‘misconvergence’ is based
on the observation that a Ritz value approximating a cluster moves comparably
fast to a certain value and then, after stagnating a while, starts to move on to
approximate a single eigenvalue of the cluster. The period of stagnation corresponds
exactly to the number of steps it takes for the part of the basis vectors in direction
of the eigenvectors to be amplified sufficiently.

This can be memorised as the following rule of thumb:

The symmetric Lanczos method is short-sighted with respect to multi-
plicity or clustering of eigenvalues.

In the first steps, the symmetric Lanczos algorithm ‘sees’ only one single eigenvalue,
realises soon that there are at least two, then begins to ‘see’ the whole spectrum.

This holds true for the infinite precision symmetric Lanczos method. In case
of execution in an finite precision environment, we can say moreover (even more
loosely speaking):

The finite precision implementations of the symmetric Lanczos algo-
rithm tend to forget about the locations of eigenvalues they already
have determined as accurate as possible before.

The intimate connection between the convergence rate and the loss of orthogonality
is the reason for the frequently observed behaviour that Ritz values to the same
eigenvalue occur almost periodical, i.e., almost every 2` steps, where ` is the number
of steps necessary to converge once to attainable accuracy.

5.1.5 The Non-Symmetric Lanczos Method

“If the Lanczos process is carried out in practice [..], then the strict
bi-orthogonality of the two sequences ci and c∗i is usually soon lost.
Whenever considerable cancellation takes place on forming a vector bi or
b∗i , a catastrophic deterioration in the orthogonality ensues immediately.
To avoid this it is essential that re-orthogonalisation is performed at each
stage.”

James Hardy Wilkinson,

The Algebraic Eigenvalue Problem (1965).
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The different non-symmetric Lanczos algorithms are very close to their symmetric
counterpart. This holds also true for part of the error analysis. The names that
are connected with the error analysis of the non-symmetric Lanczos algorithms are
Bai and Day. Bai extended some of the first results of Paige to the non-symmetric
case (cf. [BDM91, Bai94, BDY99]). These extensions are all based on the additive
splitting approach of the matrix Q̂H

k Qk into diagonal, strictly upper and strictly
lower part (Chapter 4, Theorem 4.17, page 153, Theorem 4.18, page 154, equation
(4.33), page 154). Day extended Simon’s results, namely the multiplicative splitting,
to the non-symmetric Lanczos variant baring his name. The development of Day’s
Lanczos variant and the error analysis can be found in his thesis (cf. [Day93]), or
in shorter form in an article (cf. [Day97]). For sake of completeness, we note that
Cullum and Willoughby used their identification and rejection scheme also in the
non-symmetric case.

All in one, the most important parts of the error analysis of the non-symmetric
Lanczos process can be handled similar to the error analysis of the symmetric Lanc-
zos process, the major change is that the condition of the eigenvalues, and more
serious, the condition of the Ritz values comes into play. By now, no final variant
has been elected that has been proven to be the ‘best’ variant, for instance with
respect to minimising the condition number of the Ritz values computed.
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Figure 5.7: Non-symmetric Lanczos, Jordan-block of size 10

Important for the understanding of the success of the non-symmetric Lanczos
algorithm is that the convergence of the right Ritz vector leads to a loss in the
left basis vectors that will be recovered because of the normalisation, and vice
versa with the roles of right and left switched. When the wrong normalisation has
been chosen, the errors will become very large and prevent a high accuracy. This
need not be the case, as can be seen in the plot of figure 5.7. The plot shows
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the eigenvalues of a 1000 by 1000 tridiagonal matrix obtained by application of a
finite precision non-symmetric Lanczos algorithm to a Jordan block of size 10 with
single eigenvalue one. Some more aspects of the floating point behaviour of the non-
symmetric Lanczos algorithm (together with Arnoldi and the symmetric Lanczos
algorithm) have already been discussed in part in an article by Zemke (cf. [Zem01])
in the Dagstuhl proceedings [ARRY01].

Nearly all comments made on the runs of the finite precision symmetric Lanczos
method apply also to the non-symmetric variants. We only have to ensure that
the quantities βkskj , that gave estimates for residual bounds in the symmetric
variant, are still bounds for enlarged tridiagonal matrices. In the backward sense
this remains true as an easy calculation shows. Thus, a non-symmetric version
of Paige’s Persistence Theorem holds true. This is apparent from the theorem
of Kahan, Parlett and Jiang (see Chapter 1, Lemma 1.35, page 38, Lemma 1.36,
page 38). The major distinction from the symmetric Lanczos method is that the
error vectors may grow unbounded (with respect to a priori bounds), or in case of
Day’s variant, the computed inner products ωk may become arbitrarily small.

We just state as a rule of thumb that all computed Tk are small perturbations
of exact oblique projections (in general not resulting in a tridiagonal matrix) as
long as the condition of the eigentriplets is not too large and the errors have not
amplified yet. We remark that there is plenty room for improvement in the results
that can be found in the literature on the subject. These improvements might be
based on the generalised eigenvalue – eigenvector relations we have presented in this
thesis.

5.2 Krylov Methods for Solving Linear Systems

Krylov methods for linear systems tend to deviate like their eigenproblem coun-
terparts. Residuals that span the orthonormal basis of the Krylov subspace loose
their orthogonality. Direction vectors loose their A-conjugacy. In general, the bases
that correspond to short-term methods based on Lanczos variants will loose linear
independency and the methods based on long-term methods based on Arnoldi will
deviate depending on the orthogonalisation scheme. This is quite obvious from the
connection to the appropriate Krylov eigensolvers.

Long-term methods will produce residuals of the same magnitude depending on
the size of the error matrix, i.e., on the quality of the orthogonalisation scheme and
on the magnitude of arising intermediate quantities. Short-term methods will often
still converge, but the finite termination property is lost. This means that we can
use them only as an iterative solver. We have to ask for the rate of convergence, i.e.,
when will the method reach a prescribed level of accuracy, and for the ultimately
attainable accuracy. We have to investigate how close the cheap estimates returned
in finite precision are to bounds. If they deviate significantly, we have to find another
way to measure the accuracy of the residual cheaply, that is, without explicitly
computing it directly.

5.2.1 Richardson Iteration and Polynomial Acceleration

The finite precision Richardson iteration is stable as long as the spectral radius of
the iteration matrix I − A is bounded by a constant somewhat less than one. The
method introduces no new errors, since all quantities necessary to use Richardson
iteration are given a priori. The errors due to execution in finite precision can be
interpreted as perturbations Ã = A+∆A of the system matrix A. The method will
converge as long as all perturbed methods fulfil ρ(Ã− I) < 1. This robustness has
to be paid for by an extremely slow rate of convergence.
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The same comments apply to the more complicated polynomial accelerations
like Chebychev acceleration. Here, we have to be sure that the parameters we chose
a priori are such that the method converges for all slightly perturbed Ã = A+∆A.
This can be accomplished, at least in theory, by choosing the parameters such that
the polynomials dampen all values in an ε-pseudospectrum of A, where ε will in
most cases be a small multiple of the machine precision, the constant depending on
the number of steps we want to make and the degree of the polynomial we use.

Since in these ‘parameter-dependent’ polynomial acceleration methods all knowl-
edge has to be given a priori and is not altered during the algorithms, the methods
are stable when the parameters have been chosen carefully, but at the same time
slow. The good news is that the rate of convergence can be predicted quite sharply.
We will not consider a detailed error analysis of such methods.

5.2.2 Orthores/Orthomin/Orthodir

In this section we consider the general forms of the three algorithmic families Or-
thores, Orthomin and Orthodir. The derivation of these three methods in Chapter 3
already shows many aspects of the numerical behaviour to be expected.

The class Orthores of Krylov subspace methods for the approximation of the
solution of a linear system had been obtained by a re-scaling of the basis vectors,
such that the basis vectors are not parallel to, but are the residual vectors. This
scaling is equivalent to a diagonal similarity scaling of the Hessenberg matrices
of any Krylov decomposition to achieve zero column sums in the resulting new

Hessenberg matrix C
(0)
m . The diagonal of the scaling is the vector y obtained as the

solution of a system with the original Hessenberg matrix,

yTCm = αeTm.

Thus, whenever the solution of this system has very small components, the error
vectors will have large components. This prevents the method from converging to
a high relative accuracy, since the approximate solution vectors xk are obtained

by a linear combination of the residual vectors, Rk = −Xk+1C
(0)
k . The vector y

is the (scaled) last row of the inverse of the Hessenberg matrix (when defined),
since yT = αeTmC

−1. With knowledge on the relations between the elements of the
inverse of Cm and exploiting the proof for Theorem 4.49, i.e., equation (4.63) we
could improve this analysis.

The usual choice of orthogonal residuals in case of a general matrix, i.e., the
Orthores method, is known to be less stable than GMRES and has larger operation
count per step. Orthores is mostly preferred to GMRES only when one wants
to apply some form of truncation strategy, which is easier for Orthores. From
a computational point of view, the difference between (standard) Orthores and
GMRES is the difference between orthogonalisation and orthonormalisation of the
basis vectors.

Orthomin is based on a splitting approach of the Hessenberg matrix. We have
shown in Chapter 4 (equation (4.4), page 139) that this (after scaling the columns
of the basis to have unit length) results in a special structured error matrix,

−Fk = AF
(P )
k D−1ρ + F

(R)
k D−1ρ DρL

−1
k D−1ρ Ck.

We define the short-hand notations

L
(res)
k ≡ DρL

−1
k D−1ρ , E

(P )
k ≡ F (P )k D−1ρ and E

(R)
k ≡ F (R)k D−1ρ .

In the context of eigenvalues, we achieve a relative accuracy as long as L
(res)
k is
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small, since the convergence and deviation relation takes the form

v̂iqk+1 =
(λi − θj)v̂Hi yj + v̂Hi Fksj

ck+1,kskj

=
(λi − θj)v̂Hi yj + λiv̂

H
i E

(P )
k sj + θj v̂

H
i E

(R)
k L

(res)
k sj

ck+1,kskj
.

The error terms are multiplied by either an eigenvalue or a Ritz value. If we consider
a Ritz value that converges to the eigenvalue, the terms in the numerator will have
the same order. This is better than the eigenvalue bounds in the approaches that
are not based on a splitting of the Hessenberg (tridiagonal) matrix. We remark
that the result implied by this observation, i.e., that computations of eigenvalues
(and eigenvectors) based on the already factored matrix gives better results than
computations based directly on the matrix, is mainly the result underlying Dhillon’s
relatively robust representations.

Thus, we may expect Orthomin to be more stable than Orthores, even if the
implicit scaling in Orthomin is the same than in Orthores. Nevertheless, in the
general long-term recurrence setting, the method is unstable. This is due to the
fact that the scaled error matrices

E
(P )
k = F

(P )
k D−1ρ and E

(R)
k = F

(R)
k D−1ρ

may (and usually will) grow.
Orthodir uses the Hessenberg decomposition for the computation of the direction

vectors. Again, the scaling used to define Orthodir will introduce vectors of different
length. Furthermore, Orthomin and Orthodir with the usual choice of Hessenberg
decomposition are closely related. They differ only in the way the basis is expanded.
Orthomin uses the next residual vector, Orthodir uses the vector Apk, where pk is
last direction vector. These vectors are A-orthogonalised against the previously
computed vectors. The next vector in Orthomin uses one multiplication with A
more than Orthomin does. This is prohibitive when A has a comparable large
condition number.

Summarised for all three methods, we observe that all three are more or less
unstable. This is because the update formula used for the residual and/or direction
vectors uses linear combinations of previously computed vectors of in general greatly
varying length. At least the residual vectors should converge to zero. When we
expect them to have a small norm for larger indices k, the recurrences are dominated
by cancellation, i.e., by error terms. The winner among Orthores, Orthomin and
Orthodir is Orthomin. The methods are usually stopped when we have reached
a sufficient level of accuracy. If only a relatively large-sized residual is wanted,
for instance in restarted methods, all three types of methods could be applied,
preferably Orthomin.

5.2.3 FOM/GMRES

FOM and GMRES by Saad and Schultz (cf. [SS86]) had been introduced to over-
come the inherent instabilities in Orthores/Orthomin/Orthodir and to generalise
the pair SymmLQ/MinRes. No scaling of the Hessenberg decomposition is needed.
FOM and GMRES are directly based on the Arnoldi recurrence ‘as is’. Thus, we can
plug in the results for the finite precision Arnoldi recurrence, and add facts about
the solution of small Hessenberg linear systems of equations and small Hessenberg
least squares problems.

First we focus on some aspects of FOM. Even though the matrix A may be
perfectly regular, the matrix Hk may be singular, even in infinite precision. In



222 CHAPTER 5. KRYLOV METHODS IN FINITE PRECISION

infinite precision, this can only be the case, when zero is in the field of values of A.
When the field of values of A is far from zero, the in infinite precision computed
Hessenberg matrices Hk will be non-singular. The remarkable fact about the FOM
approach is that the solution of the small system is usually done in a backward
stable manner, mostly with Givens rotations. The backward stability takes the
form

r
(H)
k = ‖r0‖e1 −Hkzk, ‖r(H)k ‖2 = O(‖Hk‖2ε).

This ensures that all solutions that are well-defined by Hessenberg systems with a
small condition number are computed quite accurately. This, in turn, implies that
the true residual of xk ≡ Qkzk is given by

r
(A)
k ≡ r0 −Axk = Qk‖r0‖e1 −AQkzk

= Qk(Hkzk + r
(H)
k )−AQkzk

= Qkr
(H)
k −Mkzk + Fkzk.

When the orthogonalisation scheme is sufficient to ensure that the norm of Fk is
small, let us assume the norm has order O(‖A‖ε), as is the case for all variants we
have considered so far, we observe that the deviation of the true residual from the
estimated residual is small,

‖r(A)k − (−hk+1,k)qk+1zkk‖2 = O((‖Qk‖2‖Hk‖2 + ‖A‖2)ε).

When the orthogonalisation is also sufficiently strong to ensure numerical orthogonal
basis vectors, the kth approximation will be close to a kth approximation with
roughly the same residual. This will be the case for the Householder Arnoldi variant.

In the minimal residual case, we have to compute the solution of the small least
squares system

‖H̃kzk − e1‖ = min .

This is done in a iterative manner, and is stable as long as the condition of the
computed Hk is not too large. Rozložńık worked on GMRES in his thesis (cf.
[Roz97]). He proved that the Householder GMRES variant is backward stable (cf.
[Roz97], Theorem 4.6, page 34). Rozložńık also considered MGS GMRES and
proved that the orthogonality is lost inverse proportional to the norm miny ‖q1 −
AQky‖ of the best approximation to q1 in the space spanned by AQk. He then
proved that the norm of the true residual rk = b − Axk and the norm of the
Hessenberg residual have the same order of magnitude as long as this term reaches
a level proportional to κ(A)ε (cf. [Roz97], Theorem 5.5, page 40, Theorem 5.6,
page 43).

5.2.4 Truncated and Restarted Methods

When we consider truncated and restarted methods, the underlying Hessenberg de-
compositions have zeros in the upper part. This removes the constraints on the
inner products of the basis and the constraint vectors. When executed in finite
precision, every component in direction of these constraints is not removed, regard-
less how good the (orthogonalisation) scheme works. This will often result in an
amplification of parts in the basis vectors that already had been removed form the
recurrence.

As an example, we might consider the finite precision Arnoldi method ‘as is’
applied to a symmetric matrix A ∈ Kn×n. Then, the method will compute a
Hessenberg matrix, where the upper part is not zero as it would be in infinite
precision. When we assume that the Householder variant has been used, we obtain
at least in the nth step an approximation that is very close in backward sense
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to the exact solution. When we now truncate the recurrence to obtain a three-
term recurrence, we obtain the finite precision Lanczos recurrence. This introduces
multiple Ritz values and we will re-do parts of the solution process again and again.
Mostly, the method will converge in a number of steps that is a multiple of the
dimension of the problem.

We refuse to consider truncation and restart in full generality, since no general
way of choosing the optimal parameters has evolved in the infinite precision context.
Thus, we may suspect that it will take a while until the development of these method
classes has settled enough to make a finite precision error analysis useful.

5.2.5 CG/CR

The three variant of CG and CR have different finite precision behaviour. We
consider mainly the Orthomin variant. The finite precision Orthomin variant of
CG is closely related to finite precision symmetric Lanczos, like in infinite precision.
The relation is not bijective. For an SPD matrix A, the way from the finite precision
Lanczos method to a perturbed Orthomin CG variant is contained in an article by
Cullum and Willoughby (cf. [CW80]) and, using heavily Paige’s results, in the book
by Cullum and Willoughby (cf. [CW85a], pages 101–118). The correspondence is
based on constructing residual vectors by a scaling of the basis and direction vectors
by an LDLT decomposition of Tk. In a second step, Cullum and Willoughby prove
that this results in a perturbed CG method with approximately locally A conjugate
direction vectors. Cullum and Willoughby use this correspondence to show that
eventually all eigenvalues of A become approximated by (certain) Ritz values, i.e.,
eigenvalue of Tk for large values of k.

The other way, from finite precision CG to a perturbed Lanczos method is
given in the section on Orthomin. The CG method may also be considered for
indefinite symmetric matrices, but the underlying LDLT decomposition behaves
frequently forward unstable. This results often in large multipliers which raises the
ultimately attainable accuracy to a higher level, often such that the method can
not converge any further. The relative (i.e., multiplied with A and the implicitly
computed Tk) error matrices of such a coupled two-term recurrence suggest better
numerical properties than the three-term recurrence forms Orthores and Orthodir
of CG. This was analysed by Gutknecht and Strakož in a technical report (cf.
[GS97], see also [GS00]). In this report and paper, the authors prove that coupled
two-term recurrences in general have better numerical properties than three-term
variants.

The minimising property of the CG method, i.e., viewing CG as an optimisation
procedure shows that locally the method is still optimising. It can be shown that
CG with restart after n steps will converge. The Cullum and Willoughby approach
shows that when the Orthomin variant of CG converges, the eigenvalues of A have
to be found. The error analysis for CR is similar. CR is seldom used, mostly MinRes
is preferred.

5.2.6 SymmLQ/MinRes

When it comes to the solution of indefinite symmetric linear systems of equations,
SymmLQ for the OR solution and MinRes for the MR solution by Paige and Saun-
ders are more suitable. These methods can be seen as special forms of FOM and
GMRES. SymmLQ uses the tridiagonal Tk from the finite precision Lanczos algo-
rithm and performs an LQ decomposition. This decomposition is backward stable
and gets along with only small additional storage. MinRes is based on the LQ
decomposition of the enlarged tridiagonal matrices T k. Also this part is backward



224 CHAPTER 5. KRYLOV METHODS IN FINITE PRECISION

stable. Thus, the accuracy in both methods depend basically on the size of the
error term Fk of finite precision Lanczos.

Sleijpen, van der Vorst and Modersitzki have analysed the differences and the
ultimately attainable accuracy in SymmLQ, MinRes and a specially adopted GM-
RES variant using the (non-orthonormal) basis constructed by the finite precision
Lanczos algorithm (cf. [SvdVM97, SvdVM01]). The only computational difference
between MinRes and the adopted GMRES is the order of evaluation of the compu-
tation of the approximation xk:

xk = Qk(L
−H
k yk), (adopted GMRES),

xk = (QkL
−H
k )yk, (MinRes).

Here, yk = Ik,k+1‖r0‖Uk+1e1 denotes the transformed right-hand side of the least
squares problem

‖T kzk = ‖r0‖e1‖ = min, T k = UH
k+1L

H
k .

Concerning storage, the difference between MinRes and the adopted GMRES is
that MinRes uses short recurrences (Vk = QkL

−H
k ) and the adopted GMRES uses

all previously computed vectors.
The authors pre-assume that the error Fk in the perturbed Hessenberg decom-

position is bounded, i.e., they use the results of Paige. They give relative bounds on
the accuracy of the computed approximations. These bounds are of order κ2(A)ε for
both the adopted GMRES and SymmLQ, which is to be expected. The bound for
MinRes is of order κ22(A)ε. Numerical experiments support the claim that adopted
GMRES and SymmLQ really are superior to MinRes with respect to the ultimately
attainable accuracy, i.e., the magnitude where the true and estimated residual de-
viate from each other.

5.2.7 Biores/Biomin/Biodir

The method of choice amongst Biores, Biomin and Biodir is often Biomin, to most
people known as ‘the’ BiCG method. The finite precision Biomin variant of BiCG
has been abandoned by many researchers, because of the irregular convergence prop-
erties. No minimisation like in the SPD case is behind BiCG, thus even in infinite
precision the method computes residuals, direction vectors and approximations of
different magnitudes. This increases the size of the error matrix Fk.

A bound on the error term Fk is given in the error analysis of finite precision
BiCG (Biomin) algorithm by Tong and Ye (cf. [TY95, TY00]), where Tong and Ye
re-scale and glue together the finite precision Biomin recurrence to obtain the usual
form of a perturbed Hessenberg decomposition. They show that the columns of the
error matrix Fk in the unscaled form are bounded (componentwise) by

|fi|
u
≤ ((n+ 6)|A|+ 1

|αi|
+
|βi|
|αi−1|

)|ri|+ (2n+ 7)|A||pi|+O(u).

In the sequel, Tong and Ye go on to derive general applicable results, by no means
restricted to the BiCG/Biomin case. Some of the basic results contained in their
paper are stated in this thesis in a more general setting (Chapter 4, Corollary 4.9,
page 147).

5.2.8 QOR/QMR

QOR as it would be the counterpart of FOM is seldom used. Mostly one of the
(mathematical) equivalent Biores, Biomin and Biodir variants of BiCG are used.
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Finite precision QMR shows better numerical properties than the BiCG implemen-
tations. This is due to the fact that we have at least a quasi-minimisation in
contrast to BiCG variants applied to general (non-symmetric) matrices. The mul-
tiplication by the non-orthogonal basis makes is quite hard to give explicit results
on the behaviour of finite precision QMR.

5.2.9 Look-Ahead

We shortly mention some impacts of the execution of the non-symmetric Lanczos
method in finite precision with look-ahead. Look-ahead is usually applied when the
inner products, or, more general, the smallest singular values of the actual blocks,
are to close to zero. This, of course, results in a more stable variant of the non-
symmetric Lanczos method. A small inner product (singular value) results in large
components in the error vectors which diminishes the chances for a small ultimately
attainable accuracy in the eigenvalue case, as well as in the linear system case.

In the look-ahead context, the ‘final’ strategy has not been found, like in the
case of truncated and restarted methods based on Arnoldi. But, the state of the art
in look-ahead is far more superior in look-ahead methods than in truncation and
restart. Thus, we are not that far from a working running error analysis. Due to the
indeterminacies underlying these methods, i.e., the choice of the starting vectors,
the choice of normalisation and the choice of optimal look-ahead parameters, we
may suspect that we will not succeed in constructing an a priori error analysis.

5.2.10 Lanczos-Type Product Methods

Thus far, no error analysis of LTPMs has evolved that gives substantial results.
The error analysis will, in general, be involved. We might think of re-writing the
recurrence equations in the form of a single perturbed Hessenberg decomposition.
The entries in the upper triangular part of the Hessenberg matrix will mostly be non-
zero and are algebraically defined by the recurrence coefficients. Similar terms will
occur in the assembling of the error matrix Fk. Just putting these relations together
already is hard work. Then, in a second step, relations between the eigenvectors
and eigenvalues of these matrices and submatrices and the similar error matrices
have to be devised. This might be even harder, if not intractable.

Nevertheless, the methods will work fine until the first Ritz pair of the assembled
Hessenberg matrix has converged to a certain accuracy, determined by the size of
the assembled error matrix in direction v̂i and sj . This point of deviation may be
easier to predict in context of LTPMs.

5.2.11 CGNE/CGNR

When it comes to the application of CGN methods to non-symmetric systems of
equations, we observe a squaring of the condition number in practice. When A
well-conditioned, these methods can be applied quite safely. The deviation will be
like in the CG case, especially, the Orthomin variants of CGNE and CGNR will be
more stable and will have ultimately attainable accuracy of smaller magnitude.

5.3 Krylov Methods and Preconditioning

We just give a few comments on how one might proceed in order to obtain a form
of error analysis for preconditioned Krylov subspace methods.

First, consider that the preconditioner in use is static, i.e., is such that it does
not change from step to step. In this case, we can incorporate the error of the
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preconditioning scheme into the error matrix Fk. Without major changes, all error
analysis results stated in this thesis apply. The speed-up in the rate of convergence
is payed by (in general) a larger ultimately attainable accuracy.

In inexact Krylov methods we wish to use in the first steps a very accurate
preconditioning, then we wish to relax as soon and as strong as possible. Here,
application of general results on the successful completion of the methods in a finite
precision environment may be fruitful in determining the relaxation parameters.
For GMRES, for example, the results on the MGS variant by Rozložńık suggest
that the relaxation parameter can be chosen inverse proportional to the actual size
of the residual.

When we consider inner-outer iterations, where both iterations are based on
Krylov subspaces, we could (at least theoretically) consider them as a new Krylov
method and design a new (more appropriate) form of error analysis. This area of
methods is closely connected with the LTPMs, the Lanczos-type product methods,
since some of them perform a mixture of GMRES and the non-symmetric Lanczos
method. This point of view might be an alternative approach to a successful error
analysis of LTPMs.



Chapter 6

Krylov Methods: Miscellanea

This chapter is devoted to some of the more philosophical aspects that arise when
one is concerned with numerical analysis and especially with Krylov methods. First
of all, the previous investigations reveal that Krylov methods and terms like back-
ward and forward stability do not go hand in hand when we try to apply the usual
definitions of these terms. The first part of the following comments is devoted to
a brief treatment of how terms might be defined alternatively to assure a form of
stability.

As the title of the thesis already suggests: many aspects discussed are heavily
influenced by the execution of the algorithms in a finite precision environment. We
consider the implementation of the methods in alternate arithmetics and apply the
results of chapters three and four. Especially, we consider shortly the execution of
the methods in symbolic computations, in a multiple precision environment and in
a variable precision environment, the latter closely related to the hot topic of the
so-called inexact Krylov methods.

A special kind of arithmetic is interval arithmetic. Interval arithmetic can be
used to free the user from the necessity of supplying additional information and to
built a black-box solver that indicates whether the algorithm can be used to achieve
the goal indicated. The resulting algorithms are usually termed self-validating al-
gorithms. We give the sketches of two self-validating algorithms for linear systems
based on short-term methods.

6.1 Krylov Methods and Stability

The results of chapter four make it obvious that the terms backward error and sta-
bility are not applicable ‘as is’, i.e., new meanings of these terms have to be coined.
Furthermore, Krylov methods compute a variety of quantities and several relations
are fulfiled in infinite precision. We have to define precisely, which computed quanti-
ties we want to relate to which unperturbed quantities, and how we want to measure
the occurring deviation. We just give a rough sketch of the quantities we are usually
interested in, and those we are not interested in.

Krylov methods compute (at least)

• a basis of the Krylov space,

• a representation of A on the space spanned by that basis,

• approximations to

– eigenvalues,

– invariant subspaces and

– solutions to linear systems.

227
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The relations used to define the methods hold approximately in a finite preci-
sion environment. This is mainly the Hessenberg decomposition, in case of split
Hessenberg decompositions the residual and the direction vector recurrences.

In the beginning, Krylov methods were used to compute normal forms, i.e.,
tridiagonal and Hessenberg matrices, of the general matrices A that are inserted
into the methods. This computation can only be stable in general for long-term
methods, since any convergence of a Ritz pair in a short-term method will cause a
huge deviation from the exact tridiagonal matrix.

Then, Krylov methods were considered as a good choice for the computation of
single eigenpairs and approximate solution to linear systems of equations. These
computations are more stable, and we might look for methods that are backward
stable in this sense. But, this does by no means imply that the methods compute
appropriate approximations. The Ritz vectors that are good approximations in the
backward sense returned by one run of one Krylov method of a symmetric matrix
will not neccessarily be orthogonal, especially, when the corresponding eigenvalues
are close to each other. Usually, they will be as worse as possible, i.e., the variation
in the eigenvectors will be inverse proportional to the spectral separation of the
eigenvalues.

When it comes to the solution of linear systems, we may ask, whether the
approximate solutions returned in finite precision can be small perturbations of
approximate solutions returned by an infinite precision Krylov method. For short-
term methods this is seldom the case, in the long-term setting this can happen, for
instance when we consider the Householder variant of GMRES. Nevertheless, we
can ask for conditions, such that a finite precision Krylov method based on short-
term recurrences returns eventually a backward stable solution. By eventually we
think of a larger number of steps than any infinite precision short-term method
would need.

6.1.1 Can Krylov Methods be Backward Stable?

All major aspects of the error analysis of problems related to dense matrices are
more or less satisfactorily solved, when numerical analysts can show that the method
is backward stable, i.e., the solution computed in the final step is the solution of
a near-by problem. The problem of identifying ‘useful’ solutions is transferred to
condition estimation. Under the given circumstances this is possible, since the
algorithms are direct methods and the solution process directly is influenced by
the conditioning of the problem. In context of Krylov methods, this, for two main
reasons, no longer makes sense:

• Despite the fact that infinite precision Krylov methods are finite termination
methods, they are almost never carried out this far. Krylov methods are
carried out until a user-specified threshold has been reached, usually selected
proportional to the backward error.

• The information whether the finite precision Krylov method reaches the de-
sired level of accuracy is not that important. More important is the infor-
mation, when this will be the case. In general, this information can only be
retrieved when considering more general methods (Ritz-Galerkin type meth-
ods) instead of the investigated Krylov method.

Formulated in another fashion, Krylov methods proceed in two steps. The first step,
the computation of a basis frequently is unstable. The second step, the computation
of the desired approximations may still be stable.
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6.1.2 All Krylov Methods are Forward Unstable

As mentioned, a Krylov methods first computes a basis and then computes the
quantities related to the projection. When the first step is forward unstable, the
method will be. The computation of the basis vectors is forward unstable, this fol-
lows readily from Chapter 4, Section 4.8. The computation of the basis vectors can
only be forward stable as long as no Ritz pair has converged, compare Theorem 4.32:

v̂Hi qk+1 =
(λi − θj) v̂Hi yj + v̂Hi Fksj

ck+1,kskj
.

It is not sufficient to predict the behaviour by bounding the error terms from above
and below, because the resulting interval will blow up when the convergence esti-
mator ck+1,kskj becomes small.

We can not be sure if there does not exist a Krylov method such that the method
converges, but the convergence estimators remain relatively large. We consider
Theorem 4.37, page 176 in a slightly rewritten form,

qk+1 =
χCk(A)

∏k
p=1 cp+1,p

q +
k∑

l=1

[

χCl+1:k
(A)

∏k−1
p=l cp+1,p

fl
ck+1,k

]

.

It is obvious that the method becomes forward unstable when one ck+1,k becomes
small, or one fl becomes large. In general, the method becomes unstable, when the
error terms are amplified sufficiently by the polynomials of trailing submatrices.

6.1.3 Most Krylov Methods are not Backward Stable

Short-term methods do not compute inner products related to basis vectors (residual
vectors, direction vectors) that have indices that differ greatly to each other. This
leaves plenty of freedom in the variation of the vectors, such that orthogonality
and A-conjugacy is lost completely. The only chance to cure the occurring loss of
orthogonality lies in the computation of a new Ritz value that converges to the
same eigenvalue. Thus these methods, even if they might compute backward stable
eigenpairs, can, in the generic case, never compute a backward stable basis of the
Krylov space and a corresponding projection.

Essentially the same holds true in methods that fail to ensure orthogonality
of the basis vectors or other desired property. Here, some methods even fail to
produce backward stable eigenpairs, like counterexamples obtained by application
of the CGS variant of the Arnoldi method show.

6.1.4 Which Krylov Methods are Stable

There are some Krylov methods that are backward stable in the usual sense. These
methods will, by nature, be long-term methods. The best example is the House-
holder variant of GMRES. When carried out n steps, the solution computed is a
backward stable solution under mild circumstances. In the Householder variant,
the computed basis vectors share the property of orthogonality (up to machine pre-
cision) with the exact basis vectors. This correspondence is lost in the MGS variant
of GMRES. But, even in this case, the solution computed seems to be backward
stable. The same seems to hold true for GMRES variants based on iterated Gram-
Schmidt.

6.1.5 Where Krylov Methods are Stable

Various authors have pointed out the existence of matrices (and starting vectors)
that result in a stable computation of the Krylov subspace. By preceeding analysis
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these matrices coincide with the matrices (and starting vectors) where the conver-
gence is delayed to the final step. More general, some Krylov methods are stable
when applied to matrices from some class, when a generic starting vector has been
chosen. A generic vector is one that has non-negligible portion in direction of all
eigenvectors and principal vectors. The matrices that can be safely used in finite
precision Krylov methods, are those, whose eigenvalues do not converge rapidly, and
the convergence estimators drop simultaneously below a certain threshold after some
steps. To the authors knowledge, the existence of such matrices has been discussed
for the first time in a paper by Scott and in Grcar’s thesis (cf. [Sco79, Grc81]).

Scott explicitly constructed matrices for the symmetric Lanczos algorithm, such
that convergence is delayed to the last step (cf. [Sco79]). The eigenvalues where
distributed at Chebyshev points, i.e., he used matrices with eigenvalues given by
the zeros of Chebyshev polynomials Cn,

Cn(x) =
{

cos(nacos(x)) x ∈ [−1, 1],
cosh(nacosh(x)) x 6∈ [−1, 1].

A typical and prominent example is the matrix

T =








2 −1
−1 2

. . .
. . .

. . . −1
−1 2








resulting from discretisation of the second derivative on the real axis. The class of
matrices can be slightly generalised, one can use matrices with eigenvalues clustering
quadratically at both ends of the spectrum, i.e., matrices with eigenvalues that are
the result of a projection to the real axis of a perturbed equidistant distribution on
the half circle.

For the non-symmetric orthogonal variant (e.g. Arnoldi) normal matrices of this
class are those that have eigenvalues on a circle or an ellipse in the complex plane.
When the eigenvalues are distributed equidistantly on the border of the unit circle,
then the convergence is delayed to the last step.

When the matrix A is given, one may ask if there exists a starting vector such
that the convergence is delayed until the last step. Scott gave a partial answer
for the case of A = AH , i.e., symmetric Lanczos. In this case one can compute
explicitly the starting vector corresponding to a selected distribution of Ritz values
in the n − 1th step. He concluded from some examples that the starting vectors
with the property of delaying the convergence to the last step have very small
components (absolute size O(10−30)) in some eigendirections. In finite precision
execution it will be very unlikely that these components are not replaced by errors
of order O(10−16) when the first error vector has to be introduced.

6.1.6 Alternate Notions of Stability

The considerations thus far make it obvious that the usual forward, backward and
mixed error analysis is not applicable to (short-term) finite precision Krylov sub-
space methods, at least ‘as is’. Greenbaum has given a new notion of backward
stability that better fits the framework of short-term Krylov subspace methods.
Short-term Krylov methods frequently return accurate approximations to eigen-
pairs, but get in trouble when it comes to multiplicity and an appropriate choice of
basis of the invariant subspaces of clusters. Thus we may think of the (finite dimen-
sional) operator A replaced by some other (finite dimensional) operator Ã with not
necessarily the same dimension, but with similar spectral properties. In the normal
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case this is sufficient to understand the behaviour of finite precision Lanczos and
CG methods, like was proven by Greenbaum (cf. [Gre89]) and demonstrated three
years later by Greenbaum and Strakoš (cf. [GS92]). A corresponding interpretation
as backward stability with enlarged ‘patchwork’ operator Ã has not yet evolved for
general non-normal A.

6.2 Krylov Methods and Other Arithmetics

This far, we only have considered Krylov subspace methods executed with the aid
of IEEE floating point arithmetic. Iterative methods are (and necessarily will be)
used with a growing amount. So we may ask, if the trouble lies not in the methods
itself, but in the chosen computer arithmetic. We try to give a partial answer in
considering some of the usual alternatives, i.e., exact and symbolic computation,
multiple precision, variable precision, stochastic and interval arithmetic. The start-
ing point is the choice that guarantees that no errors at all can occur, e.g. exact
and symbolic computations.

6.2.1 Exact/Symbolic Arithmetic

The computation of the Hessenberg decomposition relies purely on algebraic opera-
tions. When we postpone the normalisation of the basis vectors to a second stage,
or use a rational scaling, the computation of a (obviously differently scaled) Hes-
senberg decomposition relies only on rational operations. Thus, we may use integer
arithmetic to compute an exact Hessenberg decomposition when the matrix and the
starting vector are integers. This can be used to compute the minimal polynomial
of the matrix A with respect to the starting vectors. This was the basic idea be-
hind Krylov’s paper. Variants of this approach are still used in Computer Algebra
Systems, short CAS. The Hessenberg decomposition may be used in further steps
to compute the Frobenius normal form, to determine the rank of matrices and to
determine the solution to linear systems.

These approaches naturally extend to fields other than K = Q, i.e., to finite
fields like Galois fields. In this context, the algorithm of Wiedemann is frequently
used to solve large sparse matrix equations. Given a matrix A ∈ Kn×n, this method
computes a sequence of field numbers

ai = uTAiq, i ∈ k
with randomly chosen u ∈ Kn (and q ∈ Kn) and uses the minimal linear generator
of this sequence to almost surely compute the minimal polynomial of A. This
knowledge is used in a second stage to solve linear systems of equations.

Wiedemann’s algorithm is, like every other Krylov method, only based on the
action of A on vectors. In contrast to the numerical analysis notion matrix-free
methods, the computer algebra community sticks more closely to the term black-
box methods. Wiedemann’s algorithm has been generalised by Coppersmith to
block form. Wiedemann’s method is incorporated into several software products,
we mention as example the method linalg::wiedemann in the CAS MuPAD (cf.
[Fuc96]) and the implementation of Wiedemann’s algorithm in LinBox (cf. [DGG+]).

When the field of interest is R or C, the execution of Krylov subspace methods
using symbolic or exact computations makes the methods to slowly to be competi-
tive for most applications.

6.2.2 Multiple Precision Arithmetic

There are several ideas how to use a given higher precision than double precision
(so-called extended precision) or to implement quadruple or higher precision with
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IEEE double precision (cf. [Knu98], Chapter 4). Regardless of implementational
details, all error analysis applies to higher precision, since the error analysis was only
based on the IEEE arithmetic rounding error model and on the machine precision.
Nevertheless, the number of steps necessary to obtain a small residual might be
reduced drastically, especially in case of outliers of eigenvalues, for example in the
solution of elliptic PDE.

The analysis of preceeding chapters gives crude estimations on how accurate the
machine precision has to be when we prescribe an eigenvalue distribution (or only
the condition number) and a level of accuracy we want to reach. When we have a
lower bound ρk on the rate of convergence of the fastest converging Ritz pair,

(

λi − θ(k)j

)

v̂Hi y
(k)
j ≥ ρk,

we can assure that the infinite precision properties carry over to the multiple preci-
sion properties in the first m steps when the machine precision is sufficiently small,

ρm À ε ⇒ v̂Hi qk+1 ≈

(

λi − θ(k)j

)

v̂Hi y
(k)
j

ck+1,ks
(k)
kj

∀ k ∈ m.

When the (multiple) machine precision only is small, the convergence scenario still
may change drastically. This is due to the underlying non-linearity of the relations
between convergence and deviation. So, it may be advantageous to figure out the
precision that increases the speed of convergence without spoiling the execution
time due to the implementational aspects to much. This has been experimentally
investigated by Facius in his thesis dating to 2000 (cf. [Fac00]). Facius uses the
notion variable precision in favour to multiple precision to make clear that the
methods can be executed in arbitrary, but fixed precision.

6.2.3 Variable Precision Arithmetic

Another idea is to change the precision in every step. This is an idea that stems
from the field of inexact Krylov methods. In inexact methods, accurate matrix
vector multiplies are (very) costly. So, to decrease the overall cost of the algorithms,
variable precision is used to compute the matrix vector multiply only as accurate
as necessary.

Usually, this has nothing to do with the machine precision, but comes from the
characteristics of the problem. An example of such costly matrix vector multiplies
comes from Quantum Chromodynamics (QCD), where one has to multiply vectors
with the sign of a matrix. Nevertheless, this makes sense when the given matrix is
not accurately representable with the aid of the floating point numbers of the ma-
chine precision. Then, the precision in the beginning has to be high (e.g. quadruple
precision), but this constraint may be relaxed once the method has started to con-
verge.

6.2.4 Stochastic Arithmetic

Stochastic arithmetic utilises the idea that errors due to finite precision computa-
tions are ‘more or less’ random. An operation using stochastic arithmetic is based
on switching the rounding mode of the machine and returning the distribution that
models the behaviour. When applied to Krylov subspaces methods, this reveals
the sensitivity of the method. This is particularly useful in linear system solvers,
since this kind of arithmetic reveals when the ultimately attainable accuracy has
been reached. A forward stochastic approach known as the CESTAC method has
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been developed in 1974 by La Porte and Vignes (cf. [LV74]). A backward stochas-
tic approach known as PRECISE has been implemented by Chaitin-Chatelin and
co-workers (cf. [CCF96]).

6.2.5 Interval Arithmetic

Interval arithmetic also is concerned with control over errors, but is by no means
restricted to floating point errors. Interval arithmetic is based on some ideas by
Kahan, was introduced in Moore’s book and was propagated by Kulisch and Mi-
ranker (cf. [Moo66, KM81]). Implementations of interval arithmetic include the
(X)SC packages developed by researchers at Karlsruhe and Wuppertal (cf. [XSC])
and PROFIL/BIAS by Knüppel (cf. [Knü94]). Matlab add-ons include b4m (BIAS
for Matlab) by Zemke (cf. [Zem99]) and Intlab by Rump (cf. [Rum98]). The prime
source for interval arithmetic software and related areas is the Internet address (cf.
[Int]) of the reliable computing mailing list (cf. [Rel]).

In interval arithmetic, instead of working with real numbers a ∈ R, we work
with (real) intervals [a]. A (real) interval [a] ⊂ R is defined by

[a] ≡ [a, a], a, a ∈ R, a ≤ a.

When a = a, such that [a] contains just one single value a, we talk of a degenerate
interval. The real numbers are identified with degenerate intervals. Thus, the space
of real numbers R is embedded in the space IR of all intervals,

R ⊂ IR ≡
{
[a], [a] is an interval

}
.

Intervals are used to bound errors. Thus, as a natural extension of the functions
◦ ∈ {+,−, ∗, /} defined on elements in R, the corresponding interval operations are
defined by

[a] ◦ [b] =
[
min

{
a ◦ b, a ◦ b, a ◦ b, a ◦ b

}
,max

{
a ◦ b, a ◦ b, a ◦ b, a ◦ b

}]
.

There are some remarkable facts about this way of computing with intervals. The
most prominent property is the inclusion property. This property states that when
a ∈ [a] and b ∈ [b], then also a ◦ b ∈ [a] ◦ [b]. The bad news is that the algebraic
properties are lost to some extent. In general only

0 ∈ [x]− [x] = [−diam([x]),diam([x])] and 1 ∈ [x]/[x].

This is known as the dependency problem, since interval arithmetic treats the same
interval as if it were two different intervals. The quantity diam([x]) is the diameter
of the interval [x].

The distributivity law has to be weakened to the so-called sub-distributivity :

[a] ([b] + [c]) ⊂ [a][b] + [a][c].

The algebraic properties are lost as soon as we are working with non-degenerate
intervals.

There are two main approaches to represent intervals. One is the so-called
infimum-supremum form

[a] = [a, a] = {x ∈ R, a ≤ x ≤ a},

the other the so-called midpoint-radius form

〈a〉 = 〈m, r〉 = {x ∈ R, |x−m| ≤ r}
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of intervals. The radius r necessarily is a non-negative number. When they are used
to represent real line segments, they are equivalent representations. The midpoint-
radius form of the interval [a] = [a, a] is given by

〈a〉 = 〈mid([a]), rad([a])〉,

where

mid([a]) ≡ a+ a

2
, rad([a]) ≡ diam([a])

2
=
a− a
2

denotes the midpoint and the radius of the interval [a], respectively.

The representation of subsets of C changes depending on the use of the former
or the latter. The former, i.e., the infimum-supremum form is based on a partial
ordering in C induced by the isomorphism to R2. This representation results in boxes
in the complex plane. The midpoint-radius form carries over without changes, the
result being circles in the complex plane. In either case, the resulting set of subsets
(‘intervals’) of C is denoted by IC.

This definitions are extended similarly to vectors v ∈ Kn and matrices A ∈
Kn×m. An interval vector in infimum-supremum form for instance, is defined by

[v] ≡ [v, v] = {x ∈ Kn, v ≤ x ≤ v}, v, v ∈ Kn.

The less equal sign is interpreted componentwise. This results in the interval vectors
being boxes in Kn. The set of all interval vectors is denoted by IKn. An interval
matrix in midpoint-radius form looks like

〈A〉 ≡ 〈M,R〉, M ∈ Kn×m, R ∈ Rn×m
≥0 ,

= {X ∈ Kn×m, |X −M | ≤ R}.

Absolute value and less equal sign again have to be interpreted componentwise.

In higher dimensions a second serious problem of näıve interval arithmetic oc-
curs, the so-called wrapping problem. It occurs even when we compute the narrowest
(infimum-supremum) interval inclusion of A · [v], where A ∈ Kn×n and [v] ∈ IKn.
Suppose that A is unitary, such that the SVD of A, A = UΣV H = U is very simple.
Then the multiplication of [v] with U more or less rotates the box [v]. When we
apply powers of A to an interval vector by forming Ak · [v] = A · (Ak−1 · [v]), the
problem becomes obvious and more serious, see the illustration drawn in figure 6.1.
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Figure 6.1: The wrapping effect in R2

Even though both representations (denoted by inf-sup and mid-rad) can be used
to compute enclosures of solutions, there are two major differences, concerning the
implementational details and the achievable accuracy. A standard implementation
of a mid-rad interval arithmetic, as example consider the implementation of a mid-
rad arithmetic in the Matlab add-on Intlab (cf. [Rum98]) by Rump, overestimates
the sharp bounds returned by an inf-sup interval arithmetic by a factor of at most
1.5. More precise, overestimation occurs only in case of multiplication (and division,
since division is based on multiplication). The overestimation is not too large when
we are interested in the solution of point problems, i.e., problems defined with
degenerate interval data.

We have been a little bit to sloppy in the considerations thus far to talk of the
implementational aspects. The by far most important aspect is that the endpoints
can not be elements of R (Rn, Rn×m). The domain of elements is naturally restricted
to elements from F (Fn, Fn×m). So, in the computation of the endpoints (midpoints,
radii), we are restricted to floating point numbers. In order to fulfil the inclusion
property, we have to ensure that the endpoints are rounded correctly, i.e., we have
to achieve outward rounding. Switching rounding is part of ANSI/IEEE 754, but
the implementation still is a somewhat non-trivial task, because there is no direct
support from high level languages and compilers. The rounding mode switches have
frequently to be coded in assembler language.

One of the bottlenecks in (self-validating) algorithms based on interval arith-
metic lies in the (interval) matrix times (point) matrix multiplication. We give the
aspects of three different implementations of matrix times matrix when we want to
compute an enclosure of the product [C] ← R · [A] where R is a point matrix, i.e.,
composed of degenerate intervals. The example and the pseudo-code for the three
implementations originates from slides of a talk given by Rump.

The implementations are given in a Matlab-style pseudo-code. The routines
SetRoundDown and SetRoundUp switch the rounding mode to round towards minus
infinity (down) and towards plus infinity (up), respectively. The näıve implemen-
tation (inner loop: single operations) is given as Algorithm 6.1. The more sophis-
ticated approach by Knüppel that is used in PROFIL/BIAS moves the rounding
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input : [A]=[Ainf,Asup],R

output : [C]=[Cinf,Csup]

for i=1:n

for j=1:n

Cinf(i,j)=0;

Csup(i,j)=0;

for k=1:n

if R(i,k)>=0

SetRoundDown

Cinf(i,j)=Cinf(i,j)+R(i,k)*Ainf(k,j);

SetRoundUp

Csup(i,j)=Csup(i,j)+R(i,k)*Asup(k,j);
else

SetRoundDown

Cinf(i,j)=Cinf(i,j)+R(i,k)*Asup(k,j);

SetRoundUp

Csup(i,j)=Csup(i,j)+R(i,k)*Ainf(k,j);
end

end
end

end

Algorithm 6.1: Näıve implementation of [C]← R · [A]

mode switches out of the inner loop (new inner loop: scalar products). This enables
the use of BLAS level 1. The resulting algorithm is given as Algorithm 6.2. This
algorithm is substantially faster than the first, näıve implementation.

The PROFIL/BIAS library (cf. [Knü94]) is known to be very fast when compared
to other available interval arithmetic software libraries. The key to fastness is to
use rounding mode switches as seldom as possible and to use higher level (BLAS)
routines as often as possible. The shifting of rounding mode switches makes it
possible to use optimisation switches (i.e., -O2, or even -O3 when the compiler is
part of the GCC, the Gnu Compiler Collection, cf. [GNU]) in generating the code.
The BLAS, the building blocks of numerical linear algebra are based on pure floating
point computations without any rounding mode switches. Thus, an occurrence of a
rounding mode switch inside a loop makes the use of BLAS routines impossible.

The next step would be to move the rounding mode switches out of the next
loop, this would result in a rank-one update formula. We will not consider this
approach. Instead we give the algorithm for the computation of an enclosure of the
matrix equation 〈C〉 ← R · 〈A〉 in mid-rad interval arithmetic. The algorithm is
given as Algorithm 6.3.

As this example shows, the mid-rad interval arithmetic approach enables the use
of higher levels, i.e., of BLAS level 3 instead of level 1 or level 2. The occurrence
of rounding mode switches is diminished. Far more interesting is that any level 3
BLAS routines can be used to implement this style of mid-rad interval arithmetic.
The key property is that the error analysis is only based on the number and type of
the atomic operations that are involved, but not on the order in that they appear.
Thus, we might use any vendor-supplied BLAS. The details how to implement such
a fast and portable interval arithmetic can be found in an article by Rump in BIT
(cf. [Rum99]).
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input : [A]=[Ainf,Asup],R

output : [C]=[Cinf,Csup]

for i=1:n

for k=1:n

Cinf(i,:)=0;

Csup(i,:)=0;

if R(i,k)>=0

SetRoundDown

Cinf(i,:)=Cinf(i,:)+R(i,k)*Ainf(k,:);

SetRoundUp

Csup(i,:)=Csup(i,:)+R(i,k)*Asup(k,:);
else

SetRoundDown

Cinf(i,:)=Cinf(i,:)+R(i,k)*Asup(k,:);

SetRoundUp

Csup(i,:)=Csup(i,:)+R(i,k)*Ainf(k,:);
end

end
end

Algorithm 6.2: PROFIL/BIAS-style implementation of [C]← R · [A]

input : 〈A〉=〈Amid,Arad〉,R
output : 〈C〉=〈Cmid,Crad〉
SetRoundDown

Cmid inf=R*Amid;

SetRoundUp

Cmid sup=R*Amid;

Cmid rad=0.5*(Cmid sup-Cmid inf);

Cmid=Cmid inf+Cmid rad;

Crad=(Cmid-Cmid inf)+|R|*Arad;

Algorithm 6.3: Intlab-style implementation of 〈C〉 ← R · 〈A〉

Numerical Result Verification

Interval arithmetic has several applications. The most important seem to be global
optimisation and the verification of results that have been computed by usual float-
ing point algorithms. We only consider the latter. Ideally, the verification phase
should form a second stage of an existing floating point ‘solution’ process and should
at least be comparable with respect to time and storage amount. It turns out to
be a good idea to use every piece of information gained in stage one, the floating
point solution. In case of dense linear systems these restrictions can be met, as is
well known.

Now, we consider some of the aspects of the verification phase. The verification
phase is usually based on some form of fixed point iteration. The idea is to consider
in place of the original system Ax = b a preconditioned system. The preconditioning
is based on the best (floating point) knowledge at hand, i.e., a preconditioner R ≈
A−1 (a floating point inverse) and an approximate solution x̃ (a floating point
solution). The new system takes the form

RAy = R(b−Ax̃), y = x− x̃.

This equation is re-written in a fixed point form (comparable to the key idea behind
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Richardson iteration or many Newton-type iterations),

y = R (b−Ax̃)
︸ ︷︷ ︸

≈0

+(I −RA)
︸ ︷︷ ︸

≈0

y.

Now, using for instance inf-sup interval arithmetic, we set [A] = [A,A] and chose
an initial guess [y] and compute an enclosure [w] of

R (b− [A]x̃) + (I −R · [A]) [y].

Brouwer’s fixed point theorem ensures that when [w] ⊂ [y], a fixed point y ∈ [y]
exists such that

R (b−Ax̃) + (I −RA) y = y.

Furthermore, when [w] is included in the interior of [y], we can not have a ray of
fixed points. Thus, the condition that [w] is in the interior of [y],

R (b− [A]x̃) + (I −R · [A]) [y] ◦⊂ [y], (6.1)

ensures that A and R must be regular, and thus we have computed an enclosure
of the true solution x, x ∈ x̃ + [y]. When the computed interval is not included
in the interior of [y] we set [y] ≡ [w] and start over. To work properly, so-called
epsilon-inflation has to be used to ensure that in case of convergence the inclusion
occurs.

The self-validating algorithm we have just sketched can be modified to fit any
special purposes. One frequent reformulation utilises the perception that the ap-
proximate inverse R need not been given explicitly, but can be represented by any
routine that computes the inverse. This gives rise to variants based on the LU,
Cholesky and other decompositions.

The operation count and storage requirement for these approaches lies between
O(n), O(n2) in special cases (SPD matrices, banded matrices) and O(n3). Opera-
tion counts of oder O(n3) (and mostly also O(n2)) are prohibitive for large, sparse
matrices. Current approaches to self-validating algorithms are based on decompo-
sitions and no longer work when the decomposition no longer can be computed.

We consider one special generalisation of the class of self-validating algorithms.
The approach to this generalisation is based on forcing special structure in the
correction interval [y]. The correction interval [y] is chosen to be symmetric to
the origin and has all entries of one magnitude, [y] = µ[−e, e]. We consider point
problems, i.e., [A] = A. With this special choice of correction intervals, the inclusion
condition (6.1), when considered in original form without the refinement that the
interval vector [w] should be contained in the interior of [y], is equivalent to

|R (b−Ax̃) |+ |I −RA| eµ ≤ eµ.

We can try to compute the preconditioner R such that |I −RA| e < e holds true
and set

µ ≡ max
i

|R (b−Ax̃) |i
(e− |I −RA| e)i

. (6.2)

Then, the true solution x is included in the interval x̃+ µ[−e, e].

A Parameter-Dependent Verification Method

Over the years, a group of researchers around Golub, including Dahlquist, Fischer,
Meurant and Strakoš have utilised the Lanczos algorithm and its connection to
Gauss quadrature to develop algorithms that measure the error of the approximate
solution (cf. [DEG72, DGN79, FG93, GS94a, GS94b, GM94a, GM94b, GM97]).
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Frommer and Weinberg have used this idea to implement a self-validating algorithm
(cf. [FW98]). The method is not restricted to SPD A. When A is non-SPD, an
augmented system is used.

In their original paper, Golub and Dahlquist used the representation of the
symmetric Lanczos algorithm as Gaussian quadrature to derive error bounds (using
Gaussian quadrature with prescribed nodes, i.e., Gauss-Jordan and Gauss-Legendre
quadrature) and error estimators (simply Gaussian quadrature) by invoking Lanczos
on the residual. The error can be estimated quite satisfactorily, and if the smallest
singular value σmin is known (or a lower bound), the method can be implemented
using interval arithmetic to deliver bounds that are better than the simple bound

‖x− x̃‖ = ‖A−1r‖ ≤ ‖A−1‖‖r‖ = ‖r‖
|σmin|

.

Due to the forward instability of the Lanczos algorithm and interval arithmetic
related problems (namely the wrapping effect) the bounds returned can not gain
very much. They are frequently better by a factor of size approximately 10. A field
of application lies in Tikhonov regularisation, since the smallest singular value of the
regularised problem is well-known. This verification step based on the knowledge of
the smallest singular value is implemented in Facius’ software package (cf. [Fac00]).

A Parameter-Free Verification Method

In his 1998 thesis (cf. [Sin98]) Sinn gave an example of how to use the quantities
computed in the floating point run of a Krylov subspace method in a self-validating
algorithm. His approach was based on an approximate inverse implicitly defined
by the recurrence polynomial. The approach was stated only for symmetric short-
term recurrences based on Orthores, i.e., for CR-Ores. We give a sketch of the
algorithmic details along with some generalisations. The method can be applied
also with the aid of unsymmetric short-term recurrences, i.e., with Biores.

Sinn used the fact that in infinite precision the residuals converge to zero,
rk = ρk(A)r0 → 0. Under mild circumstances that mainly pose some additional
constraints on the starting vector of the recurrence (the first residual) the sequence
of polynomials also converges to zero, ρk(A) → 0. The residual polynomials are
polynomials with constant term equal to one, thus we can write them in the form

ρk(A) = I − ιk−1(A)A→ 0, which implies ιk−1(A)→ A−1.

They key idea behind Sinn’s approach is that in case the residual polynomials ρk+1
satisfy a three-term recurrence,

βkρk+1(A) = (A− αkI) ρk(A)− γk−1ρk−1(A)

also the polynomials ιk satisfy some sort of three-term recurrence, this time an
inhomogeneous three-term recurrence with additional terms given by the identity
matrix I and multiples of A−1,

βkιk(A) = (A− αkI) ιk−1(A)− γk−1ιk−2(A)− I + (αk + βk + γk−1)A
−1.

This follows by replacing every ρj(A) by I − ιj−1(A)A, sorting the resulting terms
and multiplication by A−1 from the right.

When the three-term is of Orthores type, the recurrence coefficients sum to zero,
i.e., they satisfy

αk + βk + γk−1 = 0.

This removes the term involving the unknown A−1 and makes the three-term re-
currence computable. We are left with the ‘simpler’ recurrence

βkιk(A) = (A− αkI) ιk−1(A)− γk−1ιk−2(A)− I
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for the approximate inverse R ≡ ιm(A) for some (heuristically) chosen m. These
approximate inverses can not be computed explicitely since in general they will be
full matrices and we can usually not afford to store all n2 entries.

The key is that when we use verification routines based on equation (6.2) or
similar, we only need the rows eTi R of the approximate inverse. For the numerator
of the fraction in equation (6.2) this is obvious, the denominator can be bounded
using

(|I −RA|e)i = eTi |I −RA|e = |eTi − (eTi R)A|e.
The remaining task is to compute the rows of the approximate inverse R ≡ ιm(A) for
some chosen m. When A is symmetric, the jth row eTj Rk ≡ eTj ιk(A) is equal to the
transposed jth column Rkej ≡ ιk(A)ej , since polynomials in symmetric (Hermitian)
A are again symmetric (Hermitian). Thus, the recurrence for the columns of R (the
transposed rows) is given by

βk(ιk(A)ej) = (A− αkI) (ιk−1(A)ej)− γk−1(ιk−2(A)ej)− ej .

Sinn only considered symmetric A and gave a fairly good way of choosing m ≤ k
with the knowledge available after the residual rk is small enough. Since A is
symmetric, short-term recurrences are the natural choice amongst the available
Krylov subspace methods to compute approximate solutions.

When A is not symmetric, we still can use a three-term recurrence, i.e., Biores.
The problem is that the rows of the inverse are no longer the transposed columns.
The solution to this problem lies in the evaluation of the recurrence with the trans-
pose of A. This is based on the observation

ρk(A) = 1− ιk−1(A)A → 0
⇔ ρk(A

T ) = 1− ιk−1(AT )AT → 0.

The resulting evaluation of the columns of the approximate inverse RT ≡ ιm(AT )
of AT for some m is given by

βk(ιk(A
T )ej) =

(
AT − αkI

)
(ιk−1(A

T )ej)− γk−1(ιk−2(AT )ej)− ej .

Numerical experiments show that even though the unsymmetric variant is less well
justified, the method behaves comparable to the symmetric variant.

In general, the algorithm proceeds as follows. First, compute recurrence coef-
ficients and an approximate solution xk with a small residual (for example 10−10)
using any floating point short-term Orthores variant. Then, verify the residual
using interval arithmetic. Chose the appropriate m for the trial approximate in-
verse using some heuristic such that the residuals eTj − eTj RA will be moderately
small, for instance less than 0.9 in maximum norm. Usually, this implies m ¿ k.
Compute the rows of the approximate inverse one after the other using the same
storage space. The overall cost will be O(mnp), where p ≥ n denotes the numbers
of non-zeros of sparse A, i.e., when m is moderate, the cost is dominated by O(n2)
which makes the method costly compared to the floating point cost of computing
an approximate solution.

The methods can, in principle, be extended to long-term recurrences. This seems
worthless, since the resulting operation count will be even higher and such compa-
rable to self-validating methods based on direct approaches. Short-term methods
can be transformed to the Orthores form by a scaling under some circumstances.
A possible diagonal scaling matrix D = diag(y) can be computed as the (unique)
solution of the system yTTm = em, where Tm is the tridiagonal matrix from the
underlying Hessenberg decomposition. When the elements in y are sufficiently fast
away from zero, the recurrence coefficients necessary for the computation of the
approximate inverse can be computed using y and Tm with negligible extra cost.
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Extensions that seem a little more promising are considered in part in Sinn’s the-
sis. The main idea is to use approximate inverses defined implicitly as polynomials
in A. We state three alternate approaches from Sinn’s thesis.

The first approach is based on the Ritz values θj . We can explicitly represent
the polynomial ιk−1(z) in terms of Ritz values, since we know by definition that

ιk−1(z) =
1− ρk(z)

z
.

Again by definition, the polynomial ιk−1(z) has maximal degree k− 1 and we know
that the evaluation at the k Ritz values θj , j ∈ k gives

ιk−1(θj) =
1− ρk(θj)

θj
=

1

θj
≡ ζj .

These data pairs define a unique interpolation polynomial of maximal degree k− 1,

L [1/z] (ζ) =
k∑

j=1

∏

i6=j(ζ − θi)
∏

i6=j(θj − θi)
ζj .

This polynomial thus must be the polynomial ιk−1 itself. The approximate inverse
can now be computed using divided differences (the Newton form of the interpola-
tion polynomial) in a stable manner. This might be based on Leja points or similar.
This corresponds to a different evaluation of the polynomials ιk−1 which might be
more stable.

The second approach is based on the computation of the desired rows of the
approximate inverse by the approximate solution of the n systems AT rj = ej to
sufficient accuracy (residual norm less than 0.9) using any Krylov method available.
This is an obvious choice but slightly more costly than the three-term recurrence
approach for ιk−1, since we throw away the recurrence coefficients computed in
previous runs.

The third approach is based on Chebyshev acceleration. The three-term recur-
rence for the residual polynomials using Chebyshev points on a prescribed region in
the complex plane (here an interval on the real axis) is transformed to an inhomo-
geneous three-term recurrence for the approximate inverse polynomial like before.
The choice of the region might be based again on previously computed Ritz values.
More general, any polynomial acceleration method can be used and transformed to
a recurrence for approximate inverses.

All three approaches might be optimised with respect to storage and comput-
ing time, since we have to solve (to comparable low accuracy) many systems of
equations. This brings in, naturally, block Krylov subspace methods.



242 CHAPTER 6. KRYLOV METHODS: MISCELLANEA



Chapter 7

Conclusion and Outview

In this thesis we have tried to gather existing knowledge related to the error analysis
of (finite precision) Krylov subspace methods. In the presentation, we have tried to
treat the methods such that the common characteristics become obvious. We have
mainly focussed on an approach that rests upon eigenvalues and eigenvectors of the
matrix A and the condensed Krylov subspace representation Ck.

The approach is partially along the lines of Paige’s analysis of the symmetric
Lanczos method. Paige considered only the eigenvalues and eigenvectors of the
computed condensed matrices, which, of course, is justified because of the removal
of the matrix A from the error relations. One of the main points in Paige’s analysis
lies in the relation

(

ŷ
(k)
j

)H

qk+1 =

(

ŷ
(k)
j

)H

Ay
(k)
j −

(

ŷ
(k)
j

)H

y
(k)
j θ

(k)
j +

(

ŷ
(k)
j

)H

Fksj

βks
(k)
kj

=
ε
(k)
jj

βks
(k)
kj

,

which clearly reveals that the loss of orthogonality is in direction of (left) Ritz
vectors of converging (right) Ritz pairs. This is Theorem 4.18, page 154. The nice

thing about this equation is that we can bound the quantities ε
(k)
jj , at least in the

symmetric case.
Our new analysis focused on the similar relation

v̂Hi qk+1 =

(

λi − θ(k)j

)

v̂Hi y
(k)
j

ck+1,ks
(k)
kj

+
v̂Hi Fks

(k)
j

ck+1,ks
(k)
kj

.

that holds in general for all Krylov subspace methods. This relation clearly reveals
that a deviation occurs in direction of (left) eigenvectors of converging (right)
Ritz pairs. This is Theorem 4.32, page 172. This time, the numerator can not
be bounded this nicely. Nevertheless, the gain lies in the new point of view that
compares fixed (unknown) quantities with the computed ones.

Paige used and refined the eigenvector – eigenvalue relations obtained by Thomp-
son and McEnteggert. We gave new, comparable results on general eigenvector –
eigenvalue relations which turn out to be particularly useful in case of Hessenberg
matrices. We showed how the new relation can be re-written using these relations
and the theory of polynomial interpolation. We gave some numerical experiments
explaining in detail the occurrence of multiple Ritz values and the delay in the
convergence.

We have not investigated and used similar relations based on singular values and
singular vectors of the matrices Ck and, more interesting, Ck. An analysis of this
type may be more insightful when we want to discuss the aspects of Krylov methods
of OR and MR-type for the approximation of the solution of a linear system.
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We have enlightened several aspects of Krylov subspace methods that usually
are only presented with some kind of mystique. The general approach based on
the presentation of the floating point algorithm as perturbed Krylov/Hessenberg
decomposition without referring to extensive error analysis shows:

• All main aspects and the characteristic behaviour can be understood in full
generality without the necessity to discuss

– implementational details,

– algorithmic variants,

– different kinds of error models.

• The necessity to distinguish between long-term, short-term and product-type
Krylov subspace methods and to group the error analysis accordingly.

• The differences in the error analysis between three-term and coupled two-term
methods lies in the relative form of the error matrix of the Hessenberg decom-
position in case of coupled recurrences.

• Krylov methods, especially short-term Krylov methods, can not be treated
with the aid of forward, backward and mixed error analysis of classical type.
New terminology and a new notion of stability have to be coined.

• Every Krylov subspace method has the same limitations, namely that the
method will

– return backward stable eigenpairs or approximate solutions only as long
as the error term in the scaled Hessenberg decomposition describing the
recurrence is moderate,

– compute multiple eigenpairs when the method is based on short-term re-
currences and orthogonality is not forced by (full or partial) re-orthogonalisation.

These comments summarise the limitations of finite precision Krylov methods.
There is room left for improvement of results. We mention the Lanczos-type product
methods that have no (refined, appropriate) error analysis up to now. Little room
is left in case of basic methods, here mostly in case of the non-symmetric Lanczos
method. The main work lies in determining the ‘best’ variant with respect to
stability. Plenty of room is left for improvement with respect to new methods
closing the gap between short-term and long-term methods, i.e., methods based on
truncation, restart and look-ahead, and their error analysis.

The new point of view that ‘sees’ finite precision Krylov methods as perturbed
matrix equations, has resulted in a new point of view concerning the stability.
We interprete one finite precision Krylov method as an overlap of several Krylov
subspace methods with a wrong normalisation. This becomes apparent when we
take a closer look at the construction of the basis vectors, in terms of the actual
Ritz values this construction is described in Theorem 4.37, page 176:

qk+1 =
χCk(A)

∏k
p=1 cp+1,p

q +

k∑

l=1

[

χCl+1:k
(A)

∏k
p=l+1 cp+1,p

fl
cl+1,l

]

,

and in terms of the actual OR residuals this construction is described in Corol-
lary 4.48, page 194:

qk+1 =
χCk(0)

∏k
p=1 cp+1,p

(
rk
‖r0‖

)

+

k∑

l=1

[

χCl+1:k
(0)

∏k
p=l+1 cp+1,p

fl
cl+1,l

]

.

We have re-written the results slightly to reveal the influences of the errors on the
recurrence. In the new point of view, in every step, a new method with starting vec-
tor is invoked. The overlay of all methods with starting vectors q (wanted part) and
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fl/cl+1,l, l ∈ k (unwanted part) is normalised with erroneous normalising constant
ck+1,k.

We have refrained to use the results obtained to derive bounds on the deviation
in terms of bounds on the convergence. This, in contrast to the before mentioned,
has to be based on the characteristics of the machine, the actual method and the
algorithmic implementation. Concerning bounds, the results might differ greatly
between two implementations of one method. This becomes obvious when consid-
ering the MGS and Householder variants of the GMRES (Arnoldi) method. The
new results on the deviation can be used to devise new, more appropriate stopping
criteria and to develop new semi-orthogonalisation methods.
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[BP92] Å. Björck and C. C. Paige. Loss and recapture of orthogonality in the
modified Gram-Schmidt algorithm. SIAM Journal on Matrix Analysis
and Applications, 13(1):176–190, January 1992. CODEN SJMAEL.
ISSN 0895-4798 (print), 1095-7162 (electronic).

[BS97] Z. Bai and G. W. Stewart. Algorithm 776: SRRIT: a Fortran subrou-
tine to calculate the dominant invariant subspace of a nonsymmetric
matrix. ACM Transactions on Mathematical Software, 23(4):494–513,

247



248 BIBLIOGRAPHY

December 1997. CODEN ACMSCU. ISSN 0098-3500. URL http://

doi.acm.org/10.1145/279232.279234.

[CC00] F. Chaitin-Chatelin. Comprende les mèthodes de Krylov en précision
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An algorithmically oriented introduction). 2., überarb. Aufl. de Gruyter
Lehrbuch. Berlin: Walter de Gruyter,. xv, 371 S., 1993.

[Dhi97] Inderjit Singh Dhillon. A New O(n2) Algorithm for the Symmetric
Tridiagonal Eigenvalue/Eigenvector Problem. PhD thesis, Graduate
Division of the University of California, Berkeley, 1997.



250 BIBLIOGRAPHY

[Don] Jack Dongarra. Freely available software for linear algebra on the
web. URL http://www.netlib.org/utk/people/JackDongarra/la-

sw.html.

[DS93] I. S. Duff and J. A. Scott. Computing selected eigenvalues of sparse
unsymmetric matrices using subspace iteration. ACM Transactions
on Mathematical Software, 19(2):137–159, June 1993. CODEN ACM-
SCU. ISSN 0098-3500. URL http://doi.acm.org/10.1145/152613.

152614. See [DS95].

[DS95] Iain S. Duff and Jennifer A. Scott. Corrigendum: Computing selected
eigenvalues of sparse unsymmetric matrices using subspace iteration.
ACM Transactions on Mathematical Software, 21(4):490, December
1995. CODEN ACMSCU. ISSN 0098-3500. URL http://doi.acm.

org/10.1145/212066.215254. See [DS93].

[EE99] Michael Eiermann and Oliver G. Ernst. Geometric aspects in the theory
of Krylov subspace methods. Internal publication ano394, Laboratoire
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burger Beiträge zur Angewandten Mathematik, Reihe B, Bericht 27,
Universität Hamburg, September 1993.
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