Name
BIT
 
JCR Abbreviation
BIT
 
Alternative title(s)
BIT numerical mathematics
 
ISSN
1572-9125
0006-3835
 
Publisher
Springer Science + Business Media B.V
 
ZDB-ID
 
Type
Journal
 

Articles in this Journal

Results 1-17 of 17

Issue DateVolume numberTitleAuthor(s)
1Mar-2021Verified inclusions for a nearest matrix of specified rank deficiency via a generalization of Wedin’s sin (θ) theoremLange, Marko ; Rump, Siegfried M.  
23-May-2017Error estimates for the summation of real numbers with application to floating-point summationLange, Marko ; Rump, Siegfried M.  
330-Sep-2015A multi-level spectral deferred correction methodSpeck, Robert ; Ruprecht, Daniel  ; Emmett, Matthew ; Minion, Michael ; Bolten, Matthias ; Krause, Rolf 
425-Jul-2015Simple floating-point filters for the two-dimensional orientation problemOzaki, Katsuhisa ; Bünger, Florian ; Ogita, Takeshi ; Oishi, Shin’ichi ; Rump, Siegfried M.  
524-Mar-2015Improved error bounds for floating-point products and Horner’s schemeRump, Siegfried M.  ; Bünger, Florian ; Jeannerod, Claude Pierre 
617-Mar-2015On the definition of unit roundoffRump, Siegfried M.  ; Lange, Marko 
79-May-2012Interval arithmetic over finitely many endpointsRump, Siegfried M.  
810-Jun-2011Error estimation of floating-point summation and dot productRump, Siegfried M.  
911-Nov-2010Verified bounds for singular values, in particular for the spectral norm of a matrix and its inverseRump, Siegfried M.  
1024-Feb-2009Computing predecessor and successor in rounding to nearestRump, Siegfried M.  ; Zimmermann, Paul ; Boldo, Sylvie ; Melquiond, Guillaume 
113-May-2006Verification of positive definitenessRump, Siegfried M.  
12Dec-2003On eigenvector boundsRump, Siegfried M.  ; Zemke, Jens-Peter M.  
131-Sep-2002Simultaneous point estimates for Newton's methodBatra, Prashant  
142001Rigorous and portable standard functionsRump, Siegfried M.  
15Jun-2000Convex-concave extensionsJansson, Christian 
16Sep-1999Fast and parallel interval arithmeticRump, Siegfried M.  
17Mar-1999Ill-conditionedness need not be componentwise near to ill-posedness for least squares problemsRump, Siegfried M.