Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.1035
DC FieldValueLanguage
dc.contributor.authorMgbemere, Henry Ekene-
dc.contributor.authorFernando, Rodrigo P.-
dc.contributor.authorHinterstein, Manuel-
dc.contributor.authorSchneider, Gerold A.-
dc.contributor.otherDeutsche Forschungsgemeinschaft-
dc.date.accessioned2011-12-23T08:45:11Zde_DE
dc.date.available2011-12-23T08:45:11Zde_DE
dc.date.issued2011-
dc.identifier.citationZ. Kristallogr. 226 (2011) 138-144de_DE
dc.identifier.issn0044-2968de_DE
dc.identifier.other680593187de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/1037-
dc.description.abstractTemperature-dependent synchrotron powder diffraction measurements have been performed on leadfree ferroelectric (K0.37Na0.52Li0.03)(Nb0.87Ta0.1Sb0.03)O3 ceramics. The measurement was performed from 20 °C to 400 °C with 20 °C steps. The diffraction patterns showed the existence of two phases from 20 °C to 180 °C while the ferroelectric to paraelectric phase transition occurred between 340 °C and 360 °C. Rietveld refinement using the Fullprof software was employed and the two-phase region was refined using a combination of the orthorhombic phase with space group Amm2 (38) and the tetragonal phase with space group P4mm (99) from 20 °C to 180 °C. The tetragonal phase was used for the refinement up to 340 °C while the cubic phase was refined with space group Pm-3m (221). Good refinement structure parameters were obtained for all temperatures with the average G.O.F being approximately 4.0. Information about the cell parameters and weight fraction of the phases were obtained as a function of temperatureen
dc.language.isoende_DE
dc.relation.ispartofZeitschrift für Kristallographie Crystalline Materialsde
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://doku.b.tu-harburg.de/doku/lic_ohne_pod.phpde
dc.subjectSynchrotronde_DE
dc.subjectblei-frei keramik, (KxNa1-x)NbO3de_DE
dc.subjectSynchrotron XRDde_DE
dc.subjectRietveld refinementde_DE
dc.subjectLead-free ferroelectric ceramicsde_DE
dc.subjectPotassium sodium niobatede_DE
dc.titleTemperature-dependent synchrotron powder diffraction phase studies of (K0.37Na0.52Li0.03)(Nb0.87Ta0.1Sb0.03)O3 ferroelectric ceramicsde_DE
dc.typeArticlede_DE
dc.date.updated2011-12-23T11:27:42Zde_DE
dc.identifier.urnurn:nbn:de:gbv:830-tubdok-11304de_DE
dc.identifier.doi10.15480/882.1035-
dc.type.diniarticle-
dc.subject.bcl51.30:Werkstoffprüfung, Werkstoffuntersuchungde
dc.subject.bcl51.60:Keramische Werkstoffe, Hartstoffede
dc.subject.gndElektrokeramikde
dc.subject.gndKeramik <Technik>de
dc.subject.bclcode51.60-
dc.subject.bclcode51.30-
dc.subject.ddccode530-
dcterms.DCMITypeTextde_DE
tuhh.identifier.urnurn:nbn:de:gbv:830-tubdok-11304de_DE
tuhh.publikation.typworkingPaperde_DE
tuhh.publikation.sourceZ. Kristallogr. 226 (2011) 138-144de_DE
tuhh.opus.id1130de_DE
tuhh.gvk.ppn680593187de_DE
tuhh.oai.showtruede_DE
tuhh.pod.allowedfalsede_DE
dc.identifier.hdl11420/1037-
tuhh.abstract.englishTemperature-dependent synchrotron powder diffraction measurements have been performed on leadfree ferroelectric (K0.37Na0.52Li0.03)(Nb0.87Ta0.1Sb0.03)O3 ceramics. The measurement was performed from 20 °C to 400 °C with 20 °C steps. The diffraction patterns showed the existence of two phases from 20 °C to 180 °C while the ferroelectric to paraelectric phase transition occurred between 340 °C and 360 °C. Rietveld refinement using the Fullprof software was employed and the two-phase region was refined using a combination of the orthorhombic phase with space group Amm2 (38) and the tetragonal phase with space group P4mm (99) from 20 °C to 180 °C. The tetragonal phase was used for the refinement up to 340 °C while the cubic phase was refined with space group Pm-3m (221). Good refinement structure parameters were obtained for all temperatures with the average G.O.F being approximately 4.0. Information about the cell parameters and weight fraction of the phases were obtained as a function of temperaturede_DE
tuhh.relation.ispartofZeitschrift für Kristallographie Crystalline Materialsde_DE
tuhh.publisher.doi10.1524/zkri.2011.1298-
tuhh.publication.instituteKeramische Hochleistungswerkstoffe M-9de_DE
tuhh.identifier.doi10.15480/882.1035-
tuhh.type.opus(wissenschaftlicher) Artikelde
tuhh.contributor.originatorKeramische Hochleistungswerkstoffe M-9de
tuhh.institute.germanKeramische Hochleistungswerkstoffe M-9de
tuhh.institute.englishAdvanced Ceramics M-9en
tuhh.institute.id56de_DE
tuhh.type.id17de_DE
tuhh.gvk.hasppntrue-
dc.type.driverarticle-
dc.identifier.oclc930768261-
dc.type.casraiJournal Articleen
tuhh.container.issue2de_DE
tuhh.container.volume226de_DE
tuhh.container.startpage138de_DE
tuhh.container.endpage144de_DE
item.fulltextWith Fulltext-
item.creatorOrcidMgbemere, Henry Ekene-
item.creatorOrcidFernando, Rodrigo P.-
item.creatorOrcidHinterstein, Manuel-
item.creatorOrcidSchneider, Gerold A.-
item.creatorGNDMgbemere, Henry Ekene-
item.creatorGNDFernando, Rodrigo P.-
item.creatorGNDHinterstein, Manuel-
item.creatorGNDSchneider, Gerold A.-
item.grantfulltextopen-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.orcid0000-0001-5780-6249-
Appears in Collections:Publications (tub.dok)
Files in This Item:
File Description SizeFormat
zkri.2011.1298.u_1.7.pdf904,71 kBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

447
Last Week
58
Last month
6
checked on Apr 23, 2019

Download(s)

132
checked on Apr 23, 2019

Google ScholarTM

Check

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.