Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.3827
DC FieldValueLanguage
dc.contributor.authorKellner, Leon-
dc.contributor.authorLu, Wenjun-
dc.contributor.authorEhlers, Sören-
dc.contributor.authorHøyland, Knut V.-
dc.date.accessioned2021-10-08T13:55:29Z-
dc.date.available2021-10-08T13:55:29Z-
dc.date.issued2021-07-01-
dc.identifier.citationInternational Journal of Fracture 231 (1): 21-41 (2021-09)de_DE
dc.identifier.issn1573-2673de_DE
dc.identifier.urihttp://hdl.handle.net/11420/10483-
dc.description.abstractThe size of the fully developed process zone (FDPZ) is needed for the arrangement of displacement sensors in fracture experiments and choosing element size in numerical models using the cohesive element method (CEM). However, the FDPZ size is generally not known beforehand. Analytical solutions for the exact FDPZ size only exist for highly idealised bodies, e.g. semi-infinite plates. With respect to fracture testing, the CEM is also a potential tool to extrapolate laboratory test results to full-scale while considering the size effect. A numerical CEM-based model is built to compute the FDPZ size for an edge crack in a finite square plate of different lengths spanning several magnitudes. It is validated against existing analytical solutions. After successful validation, the FDPZ size of finite plates is calculated with the same numerical scheme. The (FDPZ) size for finite plates is influenced by the cracked plate size and physical crack length. Maximum cohesive zone sizes are given for rectangular and linear softening. Further, for this setup, the CEM-based numerical model captures the size effect and can be used to extrapolate small-scale test results to full-scale.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)de_DE
dc.language.isoende_DE
dc.publisherSpringer Science + Business Media B.Vde_DE
dc.relation.ispartofInternational journal of fracturede_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de_DE
dc.subjectCohesive element methodde_DE
dc.subjectCohesive zonede_DE
dc.subjectEdge crackde_DE
dc.subjectLinear softeningde_DE
dc.subjectRectangular softeningde_DE
dc.subjectSize effectde_DE
dc.subject.ddc600: Technikde_DE
dc.titleStudy on the cohesive edge crack in a square plate with the cohesive element methodde_DE
dc.typeArticlede_DE
dc.identifier.doi10.15480/882.3827-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0147193-
tuhh.oai.showtruede_DE
tuhh.abstract.englishThe size of the fully developed process zone (FDPZ) is needed for the arrangement of displacement sensors in fracture experiments and choosing element size in numerical models using the cohesive element method (CEM). However, the FDPZ size is generally not known beforehand. Analytical solutions for the exact FDPZ size only exist for highly idealised bodies, e.g. semi-infinite plates. With respect to fracture testing, the CEM is also a potential tool to extrapolate laboratory test results to full-scale while considering the size effect. A numerical CEM-based model is built to compute the FDPZ size for an edge crack in a finite square plate of different lengths spanning several magnitudes. It is validated against existing analytical solutions. After successful validation, the FDPZ size of finite plates is calculated with the same numerical scheme. The (FDPZ) size for finite plates is influenced by the cracked plate size and physical crack length. Maximum cohesive zone sizes are given for rectangular and linear softening. Further, for this setup, the CEM-based numerical model captures the size effect and can be used to extrapolate small-scale test results to full-scale.de_DE
tuhh.publisher.doi10.1007/s10704-021-00560-9-
tuhh.publication.instituteKonstruktion und Festigkeit von Schiffen M-10de_DE
tuhh.identifier.doi10.15480/882.3827-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue1de_DE
tuhh.container.volume231de_DE
tuhh.container.startpage21de_DE
tuhh.container.endpage41de_DE
dc.relation.projectEntwicklung und Simulation eines Mehrskalen-Materialmodells für das spröde Verhalten von Eis bei Struktur-Interaktionde_DE
dc.relation.projectProjekt DEAL-
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-85114059012de_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
local.funding.infoWenjun Lu was funded by VISTA- a basic research programme in collaboration between The Norwegian Academy of Science and Letters, and Equinor.de_DE
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidKellner, Leon-
item.creatorOrcidLu, Wenjun-
item.creatorOrcidEhlers, Sören-
item.creatorOrcidHøyland, Knut V.-
item.cerifentitytypePublications-
item.mappedtypeArticle-
item.openairetypeArticle-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.creatorGNDKellner, Leon-
item.creatorGNDLu, Wenjun-
item.creatorGNDEhlers, Sören-
item.creatorGNDHøyland, Knut V.-
item.languageiso639-1en-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderid501100001659-
crisitem.project.funderrorid018mejw64-
crisitem.project.grantnoEH 485/11-1-
crisitem.funder.funderid501100001659-
crisitem.funder.funderrorid018mejw64-
crisitem.author.deptKonstruktion und Festigkeit von Schiffen M-10-
crisitem.author.deptKonstruktion und Festigkeit von Schiffen M-10-
crisitem.author.orcid0000-0001-9722-7508-
crisitem.author.orcid0000-0001-5153-7041-
crisitem.author.orcid0000-0001-5698-9354-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
Kellner2021_Article_StudyOnTheCohesiveEdgeCrackInA.pdfVerlagsversion2,34 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

80
Last Week
8
Last month
30
checked on Dec 5, 2021

Download(s)

20
checked on Dec 5, 2021

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons