DC FieldValueLanguage
dc.contributor.authorKreienbuehl, Andreas-
dc.contributor.authorBenedusi, Pietro-
dc.contributor.authorRuprecht, Daniel-
dc.contributor.authorKrause, Rolf-
dc.date.accessioned2021-10-14T09:51:56Z-
dc.date.available2021-10-14T09:51:56Z-
dc.date.issued2017-05-08-
dc.identifier.citationCommunications in Applied Mathematics and Computational Science 12 (1): 109-128 (2017-05-08)de_DE
dc.identifier.issn1559-3940de_DE
dc.identifier.urihttp://hdl.handle.net/11420/10519-
dc.description.abstractThis article demonstrates the applicability of the parallel-in-time method Parareal to the numerical solution of the Einstein gravity equations for the spherical collapse of a massless scalar field. To account for the shrinking of the spatial domain in time, a tailored load balancing scheme is proposed and compared to load balancing based on number of time steps alone. The performance of Parareal is studied for both the sub-critical and black hole case; our experiments show that Parareal generates substantial speedup and, in the super-critical regime, can reproduce Choptuik's black hole mass scaling law.en
dc.language.isoende_DE
dc.relation.ispartofCommunications in applied mathematics and computational sciencede_DE
dc.subjectChoptuik scalingde_DE
dc.subjectEinstein-klein-gordon gravitational collapsede_DE
dc.subjectLoad balancingde_DE
dc.subjectPararealde_DE
dc.subjectSpatial coarseningde_DE
dc.subjectSpeedupde_DE
dc.subjectGeneral Relativity and Quantum Cosmologyde_DE
dc.subjectGeneral Relativity and Quantum Cosmologyde_DE
dc.subjectComputer Science - Computational Engineering; Finance; and Sciencede_DE
dc.subjectComputer Science - Distributed; Parallel; and Cluster Computingde_DE
dc.subjectComputer Science - Performancede_DE
dc.titleTime parallel gravitational collapse simulationde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishThis article demonstrates the applicability of the parallel-in-time method Parareal to the numerical solution of the Einstein gravity equations for the spherical collapse of a massless scalar field. To account for the shrinking of the spatial domain in time, a tailored load balancing scheme is proposed and compared to load balancing based on number of time steps alone. The performance of Parareal is studied for both the sub-critical and black hole case; our experiments show that Parareal generates substantial speedup and, in the super-critical regime, can reproduce Choptuik's black hole mass scaling law.de_DE
tuhh.publisher.doi10.2140/camcos.2017.12.109-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue1de_DE
tuhh.container.volume12de_DE
tuhh.container.startpage109de_DE
tuhh.container.endpage128de_DE
dc.identifier.arxiv1509.01572v3de_DE
dc.identifier.scopus2-s2.0-85020484511de_DE
local.publisher.peerreviewedtruede_DE
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidKreienbuehl, Andreas-
item.creatorOrcidBenedusi, Pietro-
item.creatorOrcidRuprecht, Daniel-
item.creatorOrcidKrause, Rolf-
item.cerifentitytypePublications-
item.mappedtypeArticle-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.creatorGNDKreienbuehl, Andreas-
item.creatorGNDBenedusi, Pietro-
item.creatorGNDRuprecht, Daniel-
item.creatorGNDKrause, Rolf-
item.languageiso639-1en-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-1904-2473-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

14
Last Week
0
Last month
2
checked on Dec 5, 2021

SCOPUSTM   
Citations

2
Last Week
0
Last month
checked on Nov 30, 2021

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.