DC FieldValueLanguage
dc.contributor.authorSteiner, Johannes-
dc.contributor.authorRuprecht, Daniel-
dc.contributor.authorSpeck, Robert-
dc.contributor.authorKrause, Rolf-
dc.date.accessioned2021-10-15T07:43:25Z-
dc.date.available2021-10-15T07:43:25Z-
dc.date.issued2014-10-31-
dc.identifier.citationENUMATH 2013 : Proceedings of ENUMATH 2013, the 10th European Conference on Numerical Mathematics and Advanced Applications, Lausanne, August 2013. - Cham, 2015. - (Lecture Notes in Computational Science and Engineering ; 103). - Pp. 195-202 (2015)de_DE
dc.identifier.isbn978-3-319-10704-2de_DE
dc.identifier.isbn978-3-319-10705-9de_DE
dc.identifier.urihttp://hdl.handle.net/11420/10538-
dc.description.abstractThe paper presents first a linear stability analysis for the time-parallel Parareal method, using an IMEX Euler as coarse and a Runge-Kutta-3 method as fine propagator, confirming that dominant imaginary eigenvalues negatively affect Parareal’s convergence. This suggests that when Parareal is applied to the nonlinear Navier-Stokes equations, problems for small viscosities could arise. Numerical results for a driven cavity benchmark are presented, confirming that Parareal’s convergence can indeed deteriorate as viscosity decreases and the flow becomes increasingly dominated by convection. The effect is found to strongly depend on the spatial resolution.en
dc.language.isoende_DE
dc.publisherSpringerde_DE
dc.subjectReynolds Numberde_DE
dc.subjectLinear Stability Analysisde_DE
dc.subjectStability Domainde_DE
dc.subjectDomain Decomposition Methodde_DE
dc.subjectDrive Cavityde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleConvergence of parareal for the Navier-Stokes equations depending on the Reynolds numberde_DE
dc.typeinProceedingsde_DE
dc.type.dinicontributionToPeriodical-
dcterms.DCMITypeText-
tuhh.abstract.englishThe paper presents first a linear stability analysis for the time-parallel Parareal method, using an IMEX Euler as coarse and a Runge-Kutta-3 method as fine propagator, confirming that dominant imaginary eigenvalues negatively affect Parareal’s convergence. This suggests that when Parareal is applied to the nonlinear Navier-Stokes equations, problems for small viscosities could arise. Numerical results for a driven cavity benchmark are presented, confirming that Parareal’s convergence can indeed deteriorate as viscosity decreases and the flow becomes increasingly dominated by convection. The effect is found to strongly depend on the spatial resolution.de_DE
tuhh.publisher.doi10.1007/978-3-319-10705-9_19-
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.type.drivercontributionToPeriodical-
dc.type.casraiConference Paper-
tuhh.container.startpage195de_DE
tuhh.container.endpage202de_DE
dc.relation.conference10th European Conference on Numerical Mathematics and Advanced Applications, ENUMATH 2013de_DE
tuhh.relation.ispartofseriesLecture notes in computational science and engineeringde_DE
tuhh.relation.ispartofseriesnumber103de_DE
dc.identifier.scopus2-s2.0-84919789607de_DE
local.status.inpressfalsede_DE
local.publisher.peerreviewedtruede_DE
datacite.resourceTypeConference Paper-
datacite.resourceTypeGeneralText-
item.seriesrefLecture notes in computational science and engineering;103-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeinProceedings-
item.creatorOrcidSteiner, Johannes-
item.creatorOrcidRuprecht, Daniel-
item.creatorOrcidSpeck, Robert-
item.creatorOrcidKrause, Rolf-
item.languageiso639-1en-
item.creatorGNDSteiner, Johannes-
item.creatorGNDRuprecht, Daniel-
item.creatorGNDSpeck, Robert-
item.creatorGNDKrause, Rolf-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.tuhhseriesidLecture notes in computational science and engineering-
item.mappedtypeinProceedings-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-1904-2473-
crisitem.author.orcid0000-0002-3879-1210-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

41
Last Week
0
Last month
1
checked on Dec 7, 2022

SCOPUSTM   
Citations

20
Last Week
0
Last month
0
checked on Jun 29, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.