Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.3952
Fulltext available Open Access
Title: New combinatorial proofs for enumeration problems and random anchored structures
Language: English
Authors: Haupt, Alexander  
Keywords: combinatorial proofs; bijective proofs; selbergs integral formula; domino towers; rook paths; anchored random structures
Issue Date: 2021
Examination Date: 21-Sep-2021
Source: Technische Universität Hamburg (2021)
Abstract (german): 
Wir finden einen kombinatorischen Beweis der Selbergschen Integralformel, welches eine Frage von Stanley beantwortet. Dann zählen wir S-omino-Türme bijektiv ab. Auch berechnen wir die erzeugende Funktion von reihenkonvexen k-omino-Türmen. Anschließend zählen wir Rundwege auf einem Schachbrett, die ein Turm ablaufen kann, bijektiv ab. Zuletzt beschäftigen wir uns mit einer probabilistischen Version eines kombinatorischen Problems von Freedman.
Abstract (english): 
This thesis is divided into four parts. We present a combinatorial proof of Selberg's integral formula, which answers a question posed by Stanley. In the second part we enumerate S-omino towers bijectively. We also calculate the generating function of row-convex k-omino towers. In the third part we enumerate walks a rook can move along on a chess board. Finally, we study a new probabilistic version of a combinatorial problem posed by Freedman.
URI: http://hdl.handle.net/11420/11138
DOI: 10.15480/882.3952
Institute: Mathematik E-10 
Document Type: Thesis
Thesis Type: Doctoral Thesis
Advisor: Taraz, Anusch 
Referee: Srivastav, Anand 
License: In Copyright In Copyright
Appears in Collections:Publications with fulltext

Show full item record

Page view(s)

98
Last Week
1
Last month
checked on Jul 5, 2022

Download(s)

64
checked on Jul 5, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.