DC FieldValueLanguage
dc.contributor.authorPogorzelski, Felix-
dc.contributor.authorSchwarzenberger, Fabian-
dc.contributor.authorSeifert, Christian-
dc.date.accessioned2021-12-07T07:48:35Z-
dc.date.available2021-12-07T07:48:35Z-
dc.date.issued2013-04-19-
dc.identifier.citationLetters in Mathematical Physics 103 (9): 1009-1028 (2013)de_DE
dc.identifier.issn1573-0530de_DE
dc.identifier.urihttp://hdl.handle.net/11420/11155-
dc.description.abstractGiven an arbitrary, finitely generated, amenable group we consider ergodic Schrödinger operators on a metric Cayley graph with random potentials and random boundary conditions. We show that the normalised eigenvalue counting functions of finite volume parts converge uniformly. The integrated density of states (IDS) as the limit can be expressed by a Pastur-Shubin formula. The spectrum supports the corresponding measure and discontinuities correspond to the existence of compactly supported eigenfunctions. In this context, the present work generalises the hitherto known uniform IDS approximation results for operators on the d-dimensional metric lattice to a very large class of geometries. © 2013 Springer Science+Business Media Dordrecht.en
dc.language.isoende_DE
dc.publisherSpringer Science + Business Media B.V.de_DE
dc.relation.ispartofLetters in mathematical physicsde_DE
dc.subjectintegrated density of statesde_DE
dc.subjectmetric graphde_DE
dc.subjectquantum graphde_DE
dc.subjectrandom Schrödinger operatorde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleUniform existence of the integrated density of states on metric Cayley graphsde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishGiven an arbitrary, finitely generated, amenable group we consider ergodic Schrödinger operators on a metric Cayley graph with random potentials and random boundary conditions. We show that the normalised eigenvalue counting functions of finite volume parts converge uniformly. The integrated density of states (IDS) as the limit can be expressed by a Pastur-Shubin formula. The spectrum supports the corresponding measure and discontinuities correspond to the existence of compactly supported eigenfunctions. In this context, the present work generalises the hitherto known uniform IDS approximation results for operators on the d-dimensional metric lattice to a very large class of geometries. © 2013 Springer Science+Business Media Dordrecht.de_DE
tuhh.publisher.doi10.1007/s11005-013-0626-5-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue9de_DE
tuhh.container.volume103de_DE
tuhh.container.startpage1009de_DE
tuhh.container.endpage1028de_DE
dc.identifier.scopus2-s2.0-84880513431de_DE
local.status.inpressfalsede_DE
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorGNDPogorzelski, Felix-
item.creatorGNDSchwarzenberger, Fabian-
item.creatorGNDSeifert, Christian-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.creatorOrcidPogorzelski, Felix-
item.creatorOrcidSchwarzenberger, Fabian-
item.creatorOrcidSeifert, Christian-
item.languageiso639-1en-
item.mappedtypeArticle-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0001-9182-8687-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

26
Last Week
0
Last month
checked on Aug 17, 2022

SCOPUSTM   
Citations

1
Last Week
0
Last month
checked on Jun 30, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.