Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.110
Fulltext available
DC FieldValueLanguage
dc.contributor.authorMedviďová-Lukáčová, Mária-
dc.date.accessioned2006-02-09T11:52:32Zde_DE
dc.date.available2006-02-09T11:52:32Zde_DE
dc.date.issued2004-11-
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/112-
dc.description.abstractThe aim of the paper is numerical modeling of the shallow water equation with source terms by genuinely multdimensional finite volume evolution Galerkin schemes. The shallow water system, or its one-dimensional analogy the Saint-Venant equation, is used extensively for numerical simulation of natural rivers. Mathematically the shallow water system belongs to the class of balance laws. A special treatment of the source terms describing the bottom topography as well as frictions effects is necessary in order to reflect their balance with the gradients of fluxes. We present behaviour of our new well-balance FVEG scheme for several benchmark test problems and compare our results with those obtained by the finite element scheme of Teschke et al. used for practical river simulations.en
dc.language.isoende_DE
dc.relation.ispartofseriesPreprints des Institutes für Mathematik;Bericht 84-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.subjectshallow water equations, finite volume evolution Galerkin method, river simulations, well-balanced scheme, hyperbolic balance lawsde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleNumerical modeling of shallow flows including bottom topography and friction effectsde_DE
dc.typePreprintde_DE
dc.date.updated2006-02-09T11:52:34Zde_DE
dc.identifier.urnurn:nbn:de:gbv:830-opus-1682de_DE
dc.identifier.doi10.15480/882.110-
dc.type.dinipreprint-
dc.subject.gndFinite-Volumen-Methodede
dc.subject.gndGalerkin-Methodede
dc.subject.gndErhaltungssatzde
dc.subject.ddccode510-
dc.subject.msc65L05:Initial value problemsen
dc.subject.msc65M06:Finite difference methodsen
dc.subject.msccode65L05-
dc.subject.msccode65M06-
dcterms.DCMITypeTextde_DE
tuhh.identifier.urnurn:nbn:de:gbv:830-opus-1682de_DE
tuhh.publikation.typpreprintde_DE
tuhh.opus.id168de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/112-
tuhh.abstract.englishThe aim of the paper is numerical modeling of the shallow water equation with source terms by genuinely multdimensional finite volume evolution Galerkin schemes. The shallow water system, or its one-dimensional analogy the Saint-Venant equation, is used extensively for numerical simulation of natural rivers. Mathematically the shallow water system belongs to the class of balance laws. A special treatment of the source terms describing the bottom topography as well as frictions effects is necessary in order to reflect their balance with the gradients of fluxes. We present behaviour of our new well-balance FVEG scheme for several benchmark test problems and compare our results with those obtained by the finite element scheme of Teschke et al. used for practical river simulations.de_DE
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.110-
tuhh.type.opusPreprint (Vorabdruck)de
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematics E-10en
tuhh.institute.id47de_DE
tuhh.type.id22de_DE
tuhh.gvk.hasppnfalse-
tuhh.series.id20-
tuhh.series.namePreprints des Institutes für Mathematik-
dc.type.driverpreprint-
dc.identifier.oclc930768059-
dc.type.casraiOtheren
tuhh.relation.ispartofseriesPreprints des Institutes für Mathematikde_DE
tuhh.relation.ispartofseriesnumber84de_DE
item.fulltextWith Fulltext-
item.creatorOrcidMedviďová-Lukáčová, Mária-
item.grantfulltextopen-
item.languageiso639-1other-
item.creatorGNDMedviďová-Lukáčová, Mária-
item.tuhhseriesidPreprints des Institutes für Mathematik-
crisitem.author.deptMathematik E-10-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications (tub.dok)
Files in This Item:
File Description SizeFormat
rep84.pdf683,14 kBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

146
Last Week
0
Last month
0
checked on Jun 25, 2019

Download(s)

64
checked on Jun 25, 2019

Google ScholarTM

Check

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.