Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.4159
DC FieldValueLanguage
dc.contributor.authorDepta, Philipp Nicolas-
dc.contributor.authorGurikov, Pavel-
dc.contributor.authorSchroeter, Baldur-
dc.contributor.authorForgács, Attila-
dc.contributor.authorKalmár, József-
dc.contributor.authorPaul, Geo-
dc.contributor.authorMarchese, Leonardo-
dc.contributor.authorHeinrich, Stefan-
dc.contributor.authorDosta, Maksym-
dc.date.accessioned2022-01-17T11:52:15Z-
dc.date.available2022-01-17T11:52:15Z-
dc.date.issued2022-01-10-
dc.identifier.citationJournal of Chemical Information and Modeling 62 (1): 49-70 (2022-01-10)de_DE
dc.identifier.issn1549-9596de_DE
dc.identifier.urihttp://hdl.handle.net/11420/11501-
dc.description.abstractThe gelation of biopolymers is of great interest in the material science community and has gained increasing relevance in the past few decades, especially in the context of aerogels lightweight open nanoporous materials. Understanding the underlying gel structure and influence of process parameters is of great importance to predict material properties such as mechanical strength. In order to improve understanding of the gelation mechanism in aqueous solution, this work presents a novel approach based on the discrete element method for the mesoscale for modeling gelation of hydrogels, similarly to an extremely coarse-grained molecular dynamics (MD) approach. For this, polymer chains are abstracted as dimer units connected by flexible bonds and interactions between units and with the environment, that is, diffusion in implicit water, are described. The model is based on Langevin dynamics and includes an implicit probabilistic ion model to capture the effects of ion availability during ion-mediated gelation. The model components are fully derived and parameterized using literature data and theoretical considerations based on a simplified representation of atomistic processes. The presented model enables investigations of the higher-scale network formation during gelation on the micrometer and millisecond scale, which are beyond classical modeling approaches such as MD. As a model system, calcium-mediated alginate gelation is investigated including the influence of ion concentration, polymer composition, polymer concentration, and molecular weight. The model is verified against numerous literature data as well as own experimental results for the corresponding Ca-alginate hydrogels using nitrogen porosimetry, NMR cryoporometry, and small-angle neutron scattering. The model reproduces both bundle size and pore size distribution in a reasonable agreement with the experiments. Overall, the modeling approach paves the way to physically motivated design of alginate gels.en
dc.language.isoende_DE
dc.publisherAmerican Chemical Societyde_DE
dc.relation.ispartofJournal of chemical information and modelingde_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de_DE
dc.subjectMultiscale modelingde_DE
dc.subjectGelationde_DE
dc.subjectAlginatede_DE
dc.subjectLangevin dynamicsde_DE
dc.subject.ddc540: Chemiede_DE
dc.titleDEM-based approach for the modeling of gelation and its application to alginatede_DE
dc.typeArticlede_DE
dc.identifier.doi10.15480/882.4159-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0169824-
tuhh.oai.showtruede_DE
tuhh.abstract.englishThe gelation of biopolymers is of great interest in the material science community and has gained increasing relevance in the past few decades, especially in the context of aerogels lightweight open nanoporous materials. Understanding the underlying gel structure and influence of process parameters is of great importance to predict material properties such as mechanical strength. In order to improve understanding of the gelation mechanism in aqueous solution, this work presents a novel approach based on the discrete element method for the mesoscale for modeling gelation of hydrogels, similarly to an extremely coarse-grained molecular dynamics (MD) approach. For this, polymer chains are abstracted as dimer units connected by flexible bonds and interactions between units and with the environment, that is, diffusion in implicit water, are described. The model is based on Langevin dynamics and includes an implicit probabilistic ion model to capture the effects of ion availability during ion-mediated gelation. The model components are fully derived and parameterized using literature data and theoretical considerations based on a simplified representation of atomistic processes. The presented model enables investigations of the higher-scale network formation during gelation on the micrometer and millisecond scale, which are beyond classical modeling approaches such as MD. As a model system, calcium-mediated alginate gelation is investigated including the influence of ion concentration, polymer composition, polymer concentration, and molecular weight. The model is verified against numerous literature data as well as own experimental results for the corresponding Ca-alginate hydrogels using nitrogen porosimetry, NMR cryoporometry, and small-angle neutron scattering. The model reproduces both bundle size and pore size distribution in a reasonable agreement with the experiments. Overall, the modeling approach paves the way to physically motivated design of alginate gels.de_DE
tuhh.publisher.doi10.1021/acs.jcim.1c01076-
tuhh.publication.instituteFeststoffverfahrenstechnik und Partikeltechnologie V-3de_DE
tuhh.publication.instituteEntwicklung und Modellierung Neuartiger Nanoporöser Materialien V-EXK2de_DE
tuhh.publication.instituteThermische Verfahrenstechnik V-8de_DE
tuhh.publication.instituteMehrskalensimulation von Feststoffsystemen V-EXK1 (H)de_DE
tuhh.identifier.doi10.15480/882.4159-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue1de_DE
tuhh.container.volume62de_DE
tuhh.container.startpage49de_DE
tuhh.container.endpage70de_DE
dc.relation.projectTeilprojekt von SPP 1934: Multiskalige modellgestützte Untersuchungen funktionaler Enzym- und Proteinagglomerate für biotechnologische Anwendung - Teil 2: Von der Struktur zur Funktionde_DE
dc.relation.projectStofftransportprozesse bei der Herstellung von biopolymerbasierten Aerogelen: in situ Charakterisierung und Modellierungde_DE
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-85122308498de_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
local.funding.infoThe NMR measurements have been financially supported by the National Research, Development and Innovation Office, Hungarian Science Foundation (OTKA: FK_17-124 571).de_DE
local.publisher.peerreviewedtruede_DE
datacite.resourceTypeArticle-
datacite.resourceTypeGeneralJournalArticle-
item.mappedtypeArticle-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.creatorOrcidDepta, Philipp Nicolas-
item.creatorOrcidGurikov, Pavel-
item.creatorOrcidSchroeter, Baldur-
item.creatorOrcidForgács, Attila-
item.creatorOrcidKalmár, József-
item.creatorOrcidPaul, Geo-
item.creatorOrcidMarchese, Leonardo-
item.creatorOrcidHeinrich, Stefan-
item.creatorOrcidDosta, Maksym-
item.creatorGNDDepta, Philipp Nicolas-
item.creatorGNDGurikov, Pavel-
item.creatorGNDSchroeter, Baldur-
item.creatorGNDForgács, Attila-
item.creatorGNDKalmár, József-
item.creatorGNDPaul, Geo-
item.creatorGNDMarchese, Leonardo-
item.creatorGNDHeinrich, Stefan-
item.creatorGNDDosta, Maksym-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderid501100001659-
crisitem.project.funderid501100001659-
crisitem.project.funderrorid018mejw64-
crisitem.project.funderrorid018mejw64-
crisitem.project.grantnoHE 4526/19-2-
crisitem.project.grantnoGU 1842/3-1-
crisitem.author.deptFeststoffverfahrenstechnik und Partikeltechnologie V-3-
crisitem.author.deptEntwicklung und Modellierung Neuartiger Nanoporöser Materialien V-EXK2-
crisitem.author.deptThermische Verfahrenstechnik V-8-
crisitem.author.deptFeststoffverfahrenstechnik und Partikeltechnologie V-3-
crisitem.author.deptMehrskalensimulation von Feststoffsystemen V-EXK1 (H)-
crisitem.author.orcid0000-0003-0579-5220-
crisitem.author.orcid0000-0003-0598-243X-
crisitem.author.orcid0000-0002-2577-055X-
crisitem.author.orcid0000-0002-2422-6106-
crisitem.author.orcid0000-0002-0944-0016-
crisitem.author.orcid0000-0001-9191-1237-
crisitem.author.orcid0000-0002-7901-1698-
crisitem.author.orcid0000-0002-7578-8408-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik (V)-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik (V)-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik (V)-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik (V)-
crisitem.author.parentorgEhemalige Institute der TU Hamburg-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
acs.jcim.1c01076.pdfVerlags-PDF10,28 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

134
Last Week
0
Last month
checked on Feb 5, 2023

Download(s)

142
checked on Feb 5, 2023

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons