Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.4172
DC FieldValueLanguage
dc.contributor.authorSeifert, Christian-
dc.contributor.authorTrostorff, Sascha-
dc.contributor.authorWaurick, Marcus-
dc.date.accessioned2022-02-22T12:59:36Z-
dc.date.available2022-02-22T12:59:36Z-
dc.date.issued2021-09-28-
dc.identifier.citationOperator Theory: Advances and Applications 287: 31-49 (2022-01-01)de_DE
dc.identifier.isbn978-3-030-89397-2de_DE
dc.identifier.isbn978-3-030-89396-5de_DE
dc.identifier.urihttp://hdl.handle.net/11420/11745-
dc.description.abstractIt is the aim of this chapter to define a derivative operator on a suitable L2-space, which will be used as the derivative with respect to the temporal variable in our applications. As we want to deal with Hilbert space-valued functions, we start by introducing the concept of Bochner–Lebesgue spaces, which generalises the classical scalar-valued Lp-spaces to the Banach space-valued case.en
dc.language.isoende_DE
dc.publisherSpringerde_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de_DE
dc.subject.ddc600: Technikde_DE
dc.titleThe time derivativede_DE
dc.typeinBookde_DE
dc.identifier.doi10.15480/882.4172-
dc.type.dinibookPart-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0173011-
tuhh.oai.showtruede_DE
tuhh.abstract.englishIt is the aim of this chapter to define a derivative operator on a suitable L2-space, which will be used as the derivative with respect to the temporal variable in our applications. As we want to deal with Hilbert space-valued functions, we start by introducing the concept of Bochner–Lebesgue spaces, which generalises the classical scalar-valued Lp-spaces to the Banach space-valued case.de_DE
tuhh.publisher.doi10.1007/978-3-030-89397-2_3-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.4172-
tuhh.type.opusInBuch (Kapitel / Teil einer Monographie)-
dc.type.driverbookPart-
dc.type.casraiBook Chapter-
tuhh.container.startpage31de_DE
tuhh.container.endpage49de_DE
dc.rights.nationallicensefalsede_DE
tuhh.relation.ispartofseriesOperator theoryde_DE
tuhh.relation.ispartofseriesnumber287de_DE
dc.identifier.scopus2-s2.0-85124420747de_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
datacite.resourceTypeBook Chapter-
datacite.resourceTypeGeneralText-
item.languageiso639-1en-
item.grantfulltextopen-
item.creatorOrcidSeifert, Christian-
item.creatorOrcidTrostorff, Sascha-
item.creatorOrcidWaurick, Marcus-
item.mappedtypeinBook-
item.tuhhseriesidOperator theory-
item.creatorGNDSeifert, Christian-
item.creatorGNDTrostorff, Sascha-
item.creatorGNDWaurick, Marcus-
item.seriesrefOperator theory;287-
item.fulltextWith Fulltext-
item.openairetypeinBook-
item.openairecristypehttp://purl.org/coar/resource_type/c_3248-
item.cerifentitytypePublications-
crisitem.author.deptMathematik E-10-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0001-9182-8687-
crisitem.author.orcid0000-0003-4498-3574-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
Seifert2022_Chapter_TheTimeDerivative.pdfVerlags-PDF322,2 kBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

46
Last Week
0
Last month
checked on Aug 8, 2022

Download(s)

11
checked on Aug 8, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons