Please use this identifier to cite or link to this item:
https://doi.org/10.15480/882.4172
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Seifert, Christian | - |
dc.contributor.author | Trostorff, Sascha | - |
dc.contributor.author | Waurick, Marcus | - |
dc.date.accessioned | 2022-02-22T12:59:36Z | - |
dc.date.available | 2022-02-22T12:59:36Z | - |
dc.date.issued | 2021-09-28 | - |
dc.identifier.citation | Operator Theory: Advances and Applications 287: 31-49 (2022-01-01) | de_DE |
dc.identifier.isbn | 978-3-030-89397-2 | de_DE |
dc.identifier.isbn | 978-3-030-89396-5 | de_DE |
dc.identifier.uri | http://hdl.handle.net/11420/11745 | - |
dc.description.abstract | It is the aim of this chapter to define a derivative operator on a suitable L2-space, which will be used as the derivative with respect to the temporal variable in our applications. As we want to deal with Hilbert space-valued functions, we start by introducing the concept of Bochner–Lebesgue spaces, which generalises the classical scalar-valued Lp-spaces to the Banach space-valued case. | en |
dc.language.iso | en | de_DE |
dc.publisher | Springer | de_DE |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | de_DE |
dc.subject.ddc | 600: Technik | de_DE |
dc.title | The time derivative | de_DE |
dc.type | inBook | de_DE |
dc.identifier.doi | 10.15480/882.4172 | - |
dc.type.dini | bookPart | - |
dcterms.DCMIType | Text | - |
tuhh.identifier.urn | urn:nbn:de:gbv:830-882.0173011 | - |
tuhh.oai.show | true | de_DE |
tuhh.abstract.english | It is the aim of this chapter to define a derivative operator on a suitable L2-space, which will be used as the derivative with respect to the temporal variable in our applications. As we want to deal with Hilbert space-valued functions, we start by introducing the concept of Bochner–Lebesgue spaces, which generalises the classical scalar-valued Lp-spaces to the Banach space-valued case. | de_DE |
tuhh.publisher.doi | 10.1007/978-3-030-89397-2_3 | - |
tuhh.publication.institute | Mathematik E-10 | de_DE |
tuhh.identifier.doi | 10.15480/882.4172 | - |
tuhh.type.opus | InBuch (Kapitel / Teil einer Monographie) | - |
dc.type.driver | bookPart | - |
dc.type.casrai | Book Chapter | - |
tuhh.container.startpage | 31 | de_DE |
tuhh.container.endpage | 49 | de_DE |
dc.rights.nationallicense | false | de_DE |
tuhh.relation.ispartofseries | Operator theory | de_DE |
tuhh.relation.ispartofseriesnumber | 287 | de_DE |
dc.identifier.scopus | 2-s2.0-85124420747 | de_DE |
local.status.inpress | false | de_DE |
local.type.version | publishedVersion | de_DE |
datacite.resourceType | Book Chapter | - |
datacite.resourceTypeGeneral | Text | - |
item.languageiso639-1 | en | - |
item.grantfulltext | open | - |
item.creatorOrcid | Seifert, Christian | - |
item.creatorOrcid | Trostorff, Sascha | - |
item.creatorOrcid | Waurick, Marcus | - |
item.mappedtype | inBook | - |
item.tuhhseriesid | Operator theory | - |
item.creatorGND | Seifert, Christian | - |
item.creatorGND | Trostorff, Sascha | - |
item.creatorGND | Waurick, Marcus | - |
item.seriesref | Operator theory;287 | - |
item.fulltext | With Fulltext | - |
item.openairetype | inBook | - |
item.openairecristype | http://purl.org/coar/resource_type/c_3248 | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Mathematik E-10 | - |
crisitem.author.dept | Mathematik E-10 | - |
crisitem.author.orcid | 0000-0001-9182-8687 | - |
crisitem.author.orcid | 0000-0003-4498-3574 | - |
crisitem.author.parentorg | Studiendekanat Elektrotechnik, Informatik und Mathematik | - |
crisitem.author.parentorg | Studiendekanat Elektrotechnik, Informatik und Mathematik | - |
Appears in Collections: | Publications with fulltext |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Seifert2022_Chapter_TheTimeDerivative.pdf | Verlags-PDF | 322,2 kB | Adobe PDF | View/Open![]() |
Page view(s)
46
Last Week
0
0
Last month
checked on Aug 8, 2022
Download(s)
11
checked on Aug 8, 2022
Google ScholarTM
Check
Note about this record
Cite this record
Export
This item is licensed under a Creative Commons License