Please use this identifier to cite or link to this item:
https://doi.org/10.15480/882.4173
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Seifert, Christian | - |
dc.contributor.author | Trostorff, Sascha | - |
dc.contributor.author | Waurick, Marcus | - |
dc.date.accessioned | 2022-02-22T13:05:34Z | - |
dc.date.available | 2022-02-22T13:05:34Z | - |
dc.date.issued | 2021-09-28 | - |
dc.identifier.citation | Operator Theory: Advances and Applications 287: 51-66 (2022-01-01) | de_DE |
dc.identifier.isbn | 978-3-030-89397-2 | de_DE |
dc.identifier.isbn | 978-3-030-89396-5 | de_DE |
dc.identifier.uri | http://hdl.handle.net/11420/11746 | - |
dc.description.abstract | In this chapter, we discuss a first application of the time derivative operator constructed in the previous chapter. More precisely, we analyse well-posedness of ordinary differential equations and will at the same time provide a Hilbert space proof of the classical Picard–Lindelöf theorem (There are different notions for this theorem. It is also called existence and uniqueness theorem for initial value problems for ordinary differential equations as well as Cauchy–Lipschitz theorem). We shall furthermore see that the abstract theory developed here also allows for more general differential equations to be considered. In particular, we will have a look at so-called delay differential equations with finite or infinite delay; neutral differential equations are considered in the exercises section. | en |
dc.language.iso | en | de_DE |
dc.publisher | Springer | de_DE |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | de_DE |
dc.subject.ddc | 510: Mathematik | de_DE |
dc.title | Ordinary differential equations | de_DE |
dc.type | inBook | de_DE |
dc.identifier.doi | 10.15480/882.4173 | - |
dc.type.dini | bookPart | - |
dcterms.DCMIType | Text | - |
tuhh.identifier.urn | urn:nbn:de:gbv:830-882.0173029 | - |
tuhh.oai.show | true | de_DE |
tuhh.abstract.english | In this chapter, we discuss a first application of the time derivative operator constructed in the previous chapter. More precisely, we analyse well-posedness of ordinary differential equations and will at the same time provide a Hilbert space proof of the classical Picard–Lindelöf theorem (There are different notions for this theorem. It is also called existence and uniqueness theorem for initial value problems for ordinary differential equations as well as Cauchy–Lipschitz theorem). We shall furthermore see that the abstract theory developed here also allows for more general differential equations to be considered. In particular, we will have a look at so-called delay differential equations with finite or infinite delay; neutral differential equations are considered in the exercises section. | de_DE |
tuhh.publisher.doi | 10.1007/978-3-030-89397-2_4 | - |
tuhh.publication.institute | Mathematik E-10 | de_DE |
tuhh.identifier.doi | 10.15480/882.4173 | - |
tuhh.type.opus | InBuch (Kapitel / Teil einer Monographie) | - |
dc.type.driver | bookPart | - |
dc.type.casrai | Book Chapter | - |
tuhh.container.startpage | 51 | de_DE |
tuhh.container.endpage | 66 | de_DE |
dc.rights.nationallicense | false | de_DE |
tuhh.relation.ispartofseries | Operator theory | de_DE |
tuhh.relation.ispartofseriesnumber | 287 | de_DE |
dc.identifier.scopus | 2-s2.0-85124378837 | de_DE |
local.status.inpress | false | de_DE |
local.type.version | publishedVersion | de_DE |
datacite.resourceType | Book Chapter | - |
datacite.resourceTypeGeneral | Text | - |
item.languageiso639-1 | en | - |
item.grantfulltext | open | - |
item.creatorOrcid | Seifert, Christian | - |
item.creatorOrcid | Trostorff, Sascha | - |
item.creatorOrcid | Waurick, Marcus | - |
item.mappedtype | inBook | - |
item.tuhhseriesid | Operator theory | - |
item.creatorGND | Seifert, Christian | - |
item.creatorGND | Trostorff, Sascha | - |
item.creatorGND | Waurick, Marcus | - |
item.seriesref | Operator theory;287 | - |
item.fulltext | With Fulltext | - |
item.openairetype | inBook | - |
item.openairecristype | http://purl.org/coar/resource_type/c_3248 | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Mathematik E-10 | - |
crisitem.author.dept | Mathematik E-10 | - |
crisitem.author.orcid | 0000-0001-9182-8687 | - |
crisitem.author.orcid | 0000-0003-4498-3574 | - |
crisitem.author.parentorg | Studiendekanat Elektrotechnik, Informatik und Mathematik | - |
crisitem.author.parentorg | Studiendekanat Elektrotechnik, Informatik und Mathematik | - |
Appears in Collections: | Publications with fulltext |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Seifert2022_Chapter_OrdinaryDifferentialEquations.pdf | Verlags-PDF | 302,32 kB | Adobe PDF | View/Open![]() |
Page view(s)
46
Last Week
0
0
Last month
checked on Aug 8, 2022
Download(s)
13
checked on Aug 8, 2022
Google ScholarTM
Check
Note about this record
Cite this record
Export
This item is licensed under a Creative Commons License