Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.4182
Publisher DOI: 10.1007/978-3-030-89397-2_16
Title: Non-autonomous evolutionary equations
Language: English
Authors: Seifert, Christian  
Trostorff, Sascha 
Waurick, Marcus 
Issue Date: 28-Sep-2021
Publisher: Springer
Source: Operator Theory: Advances and Applications 287: 259-273 (2022-01-01)
Abstract (english): 
Previously, we focussed on evolutionary equations of the form (∂t,νM(∂t,ν)+A¯)U=F. $$\displaystyle \left (\overline {\partial _{t,\nu }M(\partial _{t,\nu })+A}\right )U=F. $$ In this chapter, where we turn back to well-posedness issues, we replace the material law operator M(∂t,ν), which is invariant under translations in time, by an operator of the form ℳ+∂t,ν−1N, $$\displaystyle \mathcal {M}+\partial _{t,\nu }^{-1}\mathcal {N}, $$ where both ℳ and N are bounded linear operators in L2,ν(ℝ; H). Thus, it is the aim in the following to provide criteria on ℳ and N under which the operator ∂t,νℳ+N+A $$\displaystyle \partial _{t,\nu }\mathcal {M}+\mathcal {N}+A $$ is closable with continuous invertible closure in L2,ν(ℝ; H). In passing, we shall also replace the skew-selfadjointness of A by a suitable real part condition. Under additional conditions on ℳ and N, we will also see that the solution operator is causal. Finally, we will put the autonomous version of Picard’s theorem into perspective of the non-autonomous variant developed here.
URI: http://hdl.handle.net/11420/11756
DOI: 10.15480/882.4182
ISBN: 978-3-030-89397-2
978-3-030-89396-5
Institute: Mathematik E-10 
Document Type: Chapter (Book)
License: CC BY 4.0 (Attribution) CC BY 4.0 (Attribution)
Part of Series: Operator theory 
Volume number: 287
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
Seifert2022_Chapter_Non-AutonomousEvolutionaryEqua.pdfVerlags-PDF291,4 kBAdobe PDFView/Open
Thumbnail
Show full item record

Page view(s)

40
Last Week
0
Last month
checked on Jun 27, 2022

Download(s)

10
checked on Jun 27, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons