Please use this identifier to cite or link to this item:
https://doi.org/10.15480/882.4198
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pianoforte, Federico | - |
dc.contributor.author | Schulte, Matthias | - |
dc.date.accessioned | 2022-03-07T06:14:33Z | - |
dc.date.available | 2022-03-07T06:14:33Z | - |
dc.date.issued | 2022-02-07 | - |
dc.identifier.citation | Stochastic Processes and their Applications 147: 388-422 (2022-05-01) | de_DE |
dc.identifier.issn | 0304-4149 | de_DE |
dc.identifier.uri | http://hdl.handle.net/11420/11789 | - |
dc.description.abstract | This article employs the relation between probabilities of two consecutive values of a Poisson random variable to derive conditions for the weak convergence of point processes to a Poisson process. As applications, we consider the starting points of k-runs in a sequence of Bernoulli random variables, point processes constructed using inradii and circumscribed radii of inhomogeneous Poisson–Voronoi tessellations and large nearest neighbor distances in a Boolean model of disks. | en |
dc.language.iso | en | de_DE |
dc.publisher | Elsevier | de_DE |
dc.relation.ispartof | Stochastic processes and their applications | de_DE |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | de_DE |
dc.subject | Boolean model | de_DE |
dc.subject | Extremes | de_DE |
dc.subject | Inhomogeneous Poisson–Voronoi tessellation | de_DE |
dc.subject | Local dependence | de_DE |
dc.subject | Poisson process convergence | de_DE |
dc.subject | Stochastic geometry | de_DE |
dc.subject.ddc | 510: Mathematik | de_DE |
dc.title | Criteria for Poisson process convergence with applications to inhomogeneous Poisson–Voronoi tessellations | de_DE |
dc.type | Article | de_DE |
dc.identifier.doi | 10.15480/882.4198 | - |
dc.type.dini | article | - |
dcterms.DCMIType | Text | - |
tuhh.identifier.urn | urn:nbn:de:gbv:830-882.0173636 | - |
tuhh.oai.show | true | de_DE |
tuhh.abstract.english | This article employs the relation between probabilities of two consecutive values of a Poisson random variable to derive conditions for the weak convergence of point processes to a Poisson process. As applications, we consider the starting points of k-runs in a sequence of Bernoulli random variables, point processes constructed using inradii and circumscribed radii of inhomogeneous Poisson–Voronoi tessellations and large nearest neighbor distances in a Boolean model of disks. | de_DE |
tuhh.publisher.doi | 10.1016/j.spa.2022.01.020 | - |
tuhh.publication.institute | Mathematik E-10 | de_DE |
tuhh.identifier.doi | 10.15480/882.4198 | - |
tuhh.type.opus | (wissenschaftlicher) Artikel | - |
dc.type.driver | article | - |
dc.type.casrai | Journal Article | - |
tuhh.container.volume | 147 | de_DE |
tuhh.container.startpage | 388 | de_DE |
tuhh.container.endpage | 422 | de_DE |
dc.rights.nationallicense | false | de_DE |
dc.identifier.scopus | 2-s2.0-85124655817 | de_DE |
local.status.inpress | false | de_DE |
local.type.version | publishedVersion | de_DE |
datacite.resourceType | Journal Article | - |
datacite.resourceTypeGeneral | Text | - |
item.languageiso639-1 | en | - |
item.creatorGND | Pianoforte, Federico | - |
item.creatorGND | Schulte, Matthias | - |
item.grantfulltext | open | - |
item.fulltext | With Fulltext | - |
item.openairetype | Article | - |
item.creatorOrcid | Pianoforte, Federico | - |
item.creatorOrcid | Schulte, Matthias | - |
item.mappedtype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Mathematik E-10 | - |
crisitem.author.parentorg | Studiendekanat Elektrotechnik, Informatik und Mathematik | - |
Appears in Collections: | Publications with fulltext |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S0304414922000345-main.pdf | Verlags-PDF | 1,71 MB | Adobe PDF | View/Open![]() |
Page view(s)
62
Last Week
0
0
Last month
checked on Aug 17, 2022
Download(s)
22
checked on Aug 17, 2022
Google ScholarTM
Check
Note about this record
Cite this record
Export
This item is licensed under a Creative Commons License