Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.118
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorMedviďová-Lukáčová, Mária-
dc.contributor.authorSaibertova, Jitka-
dc.date.accessioned2006-02-14T17:08:09Zde_DE
dc.date.available2006-02-14T17:08:09Zde_DE
dc.date.issued2004-09-
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/120-
dc.description.abstractIn this paper we present recent results for the bicharacteristic based finite volume schemes, the so-called finite volume evolution Galerkin (FVEG) schemes. These methods were proposed to solve multi-dimensional hyperbolic conservation laws. They combine the usually conflicting design objectives of using the conservation form and following the characteristics, or bicharacteristics. This is realized by combining the finite volume formulation with approximate evolution operators, which use bicharacteristics of multi-dimensional hyperbolic system. In this way all of the infinitely many directions of wave propagation are taken into account. The main goal of this paper is to present a self contained overview on the recent results. We study the L1-stability of the finite volume schemes obtained by different approximations of the flux integrals. Several numerical experiments presented in the last section confirm robustness and correct multi-dimensional behaviour of the FVEG methods.en
dc.language.isoende_DE
dc.relation.ispartofseriesPreprints des Institutes für Mathematik;Bericht 79-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectmultidimensional finite volume methodsde_DE
dc.subjectbicharacteristicsde_DE
dc.subjecthyperbolic systemsde_DE
dc.subjectwave equationde_DE
dc.subjectEuler equationsde_DE
dc.titleFinite volume schemes for multi-dimensional hyperbolic systems based on the use of bicharacteristicsde_DE
dc.typePreprintde_DE
dc.date.updated2006-02-17T15:29:56Zde_DE
dc.identifier.urnurn:nbn:de:gbv:830-opus-1767de_DE
dc.identifier.doi10.15480/882.118-
dc.type.dinipreprint-
dc.subject.gndHyperbolisches Systemde
dc.subject.gndGalerkin-Methodede
dc.subject.ddccode510-
dc.subject.msc35L65:Conservation lawsen
dc.subject.msccode35L65-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-opus-1767de_DE
tuhh.publikation.typpreprintde_DE
tuhh.opus.id176de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/120-
tuhh.abstract.englishIn this paper we present recent results for the bicharacteristic based finite volume schemes, the so-called finite volume evolution Galerkin (FVEG) schemes. These methods were proposed to solve multi-dimensional hyperbolic conservation laws. They combine the usually conflicting design objectives of using the conservation form and following the characteristics, or bicharacteristics. This is realized by combining the finite volume formulation with approximate evolution operators, which use bicharacteristics of multi-dimensional hyperbolic system. In this way all of the infinitely many directions of wave propagation are taken into account. The main goal of this paper is to present a self contained overview on the recent results. We study the L1-stability of the finite volume schemes obtained by different approximations of the flux integrals. Several numerical experiments presented in the last section confirm robustness and correct multi-dimensional behaviour of the FVEG methods.de_DE
tuhh.publisher.doi10.1007/s10492-006-0012-z-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.118-
tuhh.type.opusPreprint (Vorabdruck)-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematics E-10en
tuhh.institute.id47de_DE
tuhh.type.id22de_DE
tuhh.gvk.hasppnfalse-
tuhh.series.id20-
tuhh.series.namePreprints des Institutes für Mathematik-
dc.type.driverpreprint-
dc.identifier.oclc930768012-
dc.type.casraiOther-
tuhh.relation.ispartofseriesPreprints des Institutes für Mathematikde_DE
tuhh.relation.ispartofseriesnumber79de_DE
dc.identifier.scopus2-s2.0-84867963045-
datacite.resourceTypeOther-
datacite.resourceTypeGeneralText-
item.seriesrefPreprints des Institutes für Mathematik;79-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairetypePreprint-
item.creatorOrcidMedviďová-Lukáčová, Mária-
item.creatorOrcidSaibertova, Jitka-
item.languageiso639-1en-
item.creatorGNDMedviďová-Lukáčová, Mária-
item.creatorGNDSaibertova, Jitka-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_816b-
item.tuhhseriesidPreprints des Institutes für Mathematik-
item.mappedtypePreprint-
crisitem.author.deptMathematik E-10-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
rep79.pdf638,05 kBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

376
Last Week
1
Last month
8
checked on Dec 5, 2022

Download(s)

95
checked on Dec 5, 2022

SCOPUSTM   
Citations

9
Last Week
0
Last month
0
checked on Jun 30, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.