Please use this identifier to cite or link to this item:
https://doi.org/10.15480/882.120

DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kröger, Tim | - |
dc.contributor.author | Medviďová-Lukáčová, Mária | - |
dc.date.accessioned | 2006-02-14T17:19:53Z | de_DE |
dc.date.available | 2006-02-14T17:19:53Z | de_DE |
dc.date.issued | 2004-04 | - |
dc.identifier.citation | Preprint. Published in: Journal of Computational PhysicsVolume 206, Issue 1, 10 June 2005, Pages 122-149 | de_DE |
dc.identifier.uri | http://tubdok.tub.tuhh.de/handle/11420/122 | - |
dc.description.abstract | In this paper we propose a new finite volume evolution Galerkin(FVEG) scheme for the shallow water magnetohydrodynamic (SMHD)equations. We apply the exact evolution operator already used in our earlier publications to the SMHD system. Then, we approximate the evolution operator in a general way which does not exploit any particular property of the SMHD equations and should thus be applicable to arbitrary systems of hyperbolic conservation laws in two space dimensions. In particular, we investigate more deeply the approximation of the spatial derivatives which appear in the evolution operator. The divergence free condition is satisfied discretely, i.e. at each vertex. First numerical results confirm reliability of the numerical scheme. | en |
dc.language.iso | en | de_DE |
dc.relation.ispartofseries | Preprints des Institutes für Mathematik;Bericht 75 | - |
dc.rights | info:eu-repo/semantics/openAccess | - |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | genuinely multidimensional schemes | de_DE |
dc.subject | hyperbolic systems | de_DE |
dc.subject | shallow water magnetohydrodynamic equation | de_DE |
dc.subject | finite volume methods | de_DE |
dc.subject.ddc | 510: Mathematik | de_DE |
dc.title | An evolution Galerkin scheme for the shallow water magnetohydrodynamic (SMHD) equations in two space dimensions | de_DE |
dc.type | Preprint | de_DE |
dc.date.updated | 2006-02-17T15:32:09Z | de_DE |
dc.identifier.urn | urn:nbn:de:gbv:830-opus-1787 | de_DE |
dc.identifier.doi | 10.15480/882.120 | - |
dc.type.dini | preprint | - |
dc.subject.gnd | Evolutionsoperator | de |
dc.subject.gnd | Galerkin-Methode | de |
dc.subject.gnd | Erhaltungssatz | de |
dc.subject.gnd | Magnetohydrodynamische Gleichung | de |
dc.subject.ddccode | 510 | - |
dc.subject.msc | 35L45:Initial value problems for hyperbolic systems of first-order PDE | en |
dc.subject.msc | 35L67:Shocks and singularities | en |
dc.subject.msc | 65M25:Method of characteristics | en |
dc.subject.msc | 76W05:Magnetohydrodynamics and electrohydrodynamics | en |
dc.subject.msc | 35L65:Conservation laws | en |
dc.subject.msc | 65M06:Finite difference methods | en |
dc.subject.msccode | 35L67 | - |
dc.subject.msccode | 35L45 | - |
dc.subject.msccode | 65M06 | - |
dc.subject.msccode | 35L65 | - |
dc.subject.msccode | 76W05 | - |
dc.subject.msccode | 65M25 | - |
dcterms.DCMIType | Text | - |
tuhh.identifier.urn | urn:nbn:de:gbv:830-opus-1787 | de_DE |
tuhh.publikation.typ | preprint | de_DE |
tuhh.opus.id | 178 | de_DE |
tuhh.oai.show | true | de_DE |
dc.identifier.hdl | 11420/122 | - |
tuhh.abstract.english | In this paper we propose a new finite volume evolution Galerkin(FVEG) scheme for the shallow water magnetohydrodynamic (SMHD)equations. We apply the exact evolution operator already used in our earlier publications to the SMHD system. Then, we approximate the evolution operator in a general way which does not exploit any particular property of the SMHD equations and should thus be applicable to arbitrary systems of hyperbolic conservation laws in two space dimensions. In particular, we investigate more deeply the approximation of the spatial derivatives which appear in the evolution operator. The divergence free condition is satisfied discretely, i.e. at each vertex. First numerical results confirm reliability of the numerical scheme. | de_DE |
tuhh.publisher.doi | 10.1016/j.jcp.2004.11.031 | - |
tuhh.publication.institute | Mathematik E-10 | de_DE |
tuhh.identifier.doi | 10.15480/882.120 | - |
tuhh.type.opus | Preprint (Vorabdruck) | - |
tuhh.institute.german | Mathematik E-10 | de |
tuhh.institute.english | Mathematics E-10 | en |
tuhh.institute.id | 47 | de_DE |
tuhh.type.id | 22 | de_DE |
tuhh.gvk.hasppn | false | - |
tuhh.series.id | 20 | - |
tuhh.series.name | Preprints des Institutes für Mathematik | - |
dc.type.driver | preprint | - |
dc.identifier.oclc | 930767999 | - |
dc.type.casrai | Other | - |
tuhh.relation.ispartofseries | Preprints des Institutes für Mathematik | de_DE |
tuhh.relation.ispartofseriesnumber | 75 | de_DE |
dc.identifier.scopus | 2-s2.0-33846179075 | - |
datacite.resourceType | Other | - |
datacite.resourceTypeGeneral | Text | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_816b | - |
item.creatorGND | Kröger, Tim | - |
item.creatorGND | Medviďová-Lukáčová, Mária | - |
item.openairetype | Preprint | - |
item.tuhhseriesid | Preprints des Institutes für Mathematik | - |
item.fulltext | With Fulltext | - |
item.cerifentitytype | Publications | - |
item.creatorOrcid | Kröger, Tim | - |
item.creatorOrcid | Medviďová-Lukáčová, Mária | - |
item.languageiso639-1 | en | - |
item.seriesref | Preprints des Institutes für Mathematik;75 | - |
item.mappedtype | Preprint | - |
crisitem.author.dept | Mathematik E-10 | - |
crisitem.author.parentorg | Studiendekanat Elektrotechnik, Informatik und Mathematik | - |
Appears in Collections: | Publications with fulltext |
Page view(s)
399
Last Week
0
0
Last month
6
6
checked on Aug 15, 2022
Download(s)
149
checked on Aug 15, 2022
SCOPUSTM
Citations
20
Last Week
0
0
Last month
0
0
checked on Jun 30, 2022
Google ScholarTM
Check
Note about this record
Cite this record
Export
Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.