Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.4321
DC FieldValueLanguage
dc.contributor.authorGaugler, Lena-
dc.contributor.authorMast, Yannic-
dc.contributor.authorFitschen, Jürgen-
dc.contributor.authorHofmann, Sebastian-
dc.contributor.authorSchlüter, Michael-
dc.contributor.authorTakors, Ralf-
dc.date.accessioned2022-05-02T11:26:36Z-
dc.date.available2022-05-02T11:26:36Z-
dc.date.issued2022-02-18-
dc.identifier.citationEngineering in Life Sciences (2022) (in press ; CC BY 4.0)de_DE
dc.identifier.issn1618-2863de_DE
dc.identifier.urihttp://hdl.handle.net/11420/12415-
dc.description.abstractBiopharmaceutical production processes often use mammalian cells in bioreactors larger than 10,000 L, where gradients of shear stress, substrate, dissolved oxygen and carbon dioxide, and pH are likely to occur. As former tissue cells, producer cell lines such as Chinese hamster ovary (CHO) cells sensitively respond to these mixing heterogeneities, resulting in related scenarios being mimicked in scale-down reactors. However, commonly applied multi-compartment approaches comprising multiple reactors impose a biasing shear stress caused by pumping. The latter can be prevented using the single multi-compartment bioreactor (SMCB) presented here. The exchange area provided by a disc mounted between the upper and lower compartments in a stirred bioreactor was found to be an essential design parameter. Mimicking the mixing power input at a large scale on a small scale allowed the installation of similar mixing times in the SMCB. The particularities of the disc geometry may also be considered, finally leading to a converged decision tree. The work flow identifies a sharply contoured operational field comprising disc designs and power input to install the same mixing times on a large scale in the SMCB without the additional shear stress caused by pumping. The design principle holds true for both nongassed and gassed systems.en
dc.language.isoende_DE
dc.publisherWiley-VCHde_DE
dc.relation.ispartofEngineering in life sciencesde_DE
dc.rightsCC BY 4.0de_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de_DE
dc.subjectcell culturede_DE
dc.subjectcompartment discsde_DE
dc.subjectmixing timesde_DE
dc.subjectmulti-compartment systemde_DE
dc.subjectscale-downde_DE
dc.subject.ddc570: Biowissenschaften, Biologiede_DE
dc.titleScaling-down biopharmaceutical production processes via a single multi-compartment bioreactor (SMCB)de_DE
dc.typeArticlede_DE
dc.identifier.doi10.15480/882.4321-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0182273-
tuhh.oai.showtruede_DE
tuhh.abstract.englishBiopharmaceutical production processes often use mammalian cells in bioreactors larger than 10,000 L, where gradients of shear stress, substrate, dissolved oxygen and carbon dioxide, and pH are likely to occur. As former tissue cells, producer cell lines such as Chinese hamster ovary (CHO) cells sensitively respond to these mixing heterogeneities, resulting in related scenarios being mimicked in scale-down reactors. However, commonly applied multi-compartment approaches comprising multiple reactors impose a biasing shear stress caused by pumping. The latter can be prevented using the single multi-compartment bioreactor (SMCB) presented here. The exchange area provided by a disc mounted between the upper and lower compartments in a stirred bioreactor was found to be an essential design parameter. Mimicking the mixing power input at a large scale on a small scale allowed the installation of similar mixing times in the SMCB. The particularities of the disc geometry may also be considered, finally leading to a converged decision tree. The work flow identifies a sharply contoured operational field comprising disc designs and power input to install the same mixing times on a large scale in the SMCB without the additional shear stress caused by pumping. The design principle holds true for both nongassed and gassed systems.de_DE
tuhh.publisher.doi10.1002/elsc.202100161-
tuhh.publication.instituteMehrphasenströmungen V-5de_DE
tuhh.identifier.doi10.15480/882.4321-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
dc.relation.projectSPP 2170: Teilprojekt Experimentelle Multiskalenanalyse und Simulation von 'lifelines' in Bioreaktoren um deren Einfluss auf die Kultivierung von Chinese Hamster Ovary (CHO) Zellen zu untersuchende_DE
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-85126224151de_DE
local.status.inpresstruede_DE
local.type.versionpublishedVersionde_DE
local.publisher.peerreviewedtruede_DE
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.creatorGNDGaugler, Lena-
item.creatorGNDMast, Yannic-
item.creatorGNDFitschen, Jürgen-
item.creatorGNDHofmann, Sebastian-
item.creatorGNDSchlüter, Michael-
item.creatorGNDTakors, Ralf-
item.creatorOrcidGaugler, Lena-
item.creatorOrcidMast, Yannic-
item.creatorOrcidFitschen, Jürgen-
item.creatorOrcidHofmann, Sebastian-
item.creatorOrcidSchlüter, Michael-
item.creatorOrcidTakors, Ralf-
item.languageiso639-1en-
item.mappedtypeArticle-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderid501100001659-
crisitem.project.funderrorid018mejw64-
crisitem.project.grantnoSCHL 617/19-1-
crisitem.author.deptMehrphasenströmungen V-5-
crisitem.author.deptMehrphasenströmungen V-5-
crisitem.author.deptMehrphasenströmungen V-5-
crisitem.author.orcid0000-0001-6817-9068-
crisitem.author.orcid0000-0002-1418-933X-
crisitem.author.orcid0000-0002-4312-7402-
crisitem.author.orcid0000-0001-5969-2150-
crisitem.author.orcid0000-0001-5837-6906-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
Appears in Collections:Publications with fulltext
Show simple item record

Page view(s)

66
Last Week
1
Last month
checked on Jul 5, 2022

Download(s)

25
checked on Jul 5, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons