Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.128
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorMedviďová-Lukáčová, Mária-
dc.contributor.authorWarnecke, Gerald-
dc.contributor.authorZahaykah, Yousef-
dc.date.accessioned2006-02-17T09:17:35Zde_DE
dc.date.available2006-02-17T09:17:35Zde_DE
dc.date.issued2003-06-
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/130-
dc.description.abstractThe subject of the paper is the derivation and analysis of third order finite volume evolution Galerkin schemes for the two-dimensional wave equation system. To achieve this the first order approximate evolution operator is considered. A recovery stage is carried out at each level to generate a piecewise polynomial approximation from the piecewise constants, to feed into the calculation of the fluxes. We estimate the truncation error and give numerical examples to demonstrate the higher order behaviour of the scheme for smooth solutions.en
dc.language.isoende_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjecthyperbolic systemsde_DE
dc.subjectwave equationde_DE
dc.subjectevolution Galerkin schemesde_DE
dc.subjectrecovery stagede_DE
dc.subjectfinite volumede_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleThird order finite volume evolution Galerkin (FVEG) methods for two-dimensional wave equation systemde_DE
dc.typeWorking Paperde_DE
dc.date.updated2006-03-16T11:41:40Zde_DE
dc.identifier.urnurn:nbn:de:gbv:830-opus-1894de_DE
dc.identifier.doi10.15480/882.128-
dc.type.diniworkingPaper-
dc.subject.gndHyperbolisches Systemde
dc.subject.gndGalerkin-Methodede
dc.subject.gndEvolutionsoperatorde
dc.subject.gndWellengleichungde
dc.subject.ddccode510-
dc.subject.msc65L05:Initial value problemsen
dc.subject.msc65M06:Finite difference methodsen
dc.subject.msccode65M06-
dc.subject.msccode65L05-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-opus-1894de_DE
tuhh.publikation.typworkingPaperde_DE
tuhh.opus.id189de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/130-
tuhh.abstract.englishThe subject of the paper is the derivation and analysis of third order finite volume evolution Galerkin schemes for the two-dimensional wave equation system. To achieve this the first order approximate evolution operator is considered. A recovery stage is carried out at each level to generate a piecewise polynomial approximation from the piecewise constants, to feed into the calculation of the fluxes. We estimate the truncation error and give numerical examples to demonstrate the higher order behaviour of the scheme for smooth solutions.de_DE
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.128-
tuhh.type.opusResearchPaper-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematics E-10en
tuhh.institute.id47de_DE
tuhh.type.id17de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverworkingPaper-
dc.identifier.oclc930768290-
dc.type.casraiWorking Paper-
tuhh.relation.ispartofseriesPreprints des Institutes für Mathematikde_DE
tuhh.relation.ispartofseriesnumber62de_DE
datacite.resourceTypeWorking Paper-
datacite.resourceTypeGeneralText-
item.languageiso639-1en-
item.grantfulltextopen-
item.creatorOrcidMedviďová-Lukáčová, Mária-
item.creatorOrcidWarnecke, Gerald-
item.creatorOrcidZahaykah, Yousef-
item.mappedtypeWorking Paper-
item.tuhhseriesidPreprints des Institutes für Mathematik-
item.creatorGNDMedviďová-Lukáčová, Mária-
item.creatorGNDWarnecke, Gerald-
item.creatorGNDZahaykah, Yousef-
item.seriesrefPreprints des Institutes für Mathematik;62-
item.fulltextWith Fulltext-
item.openairetypeWorking Paper-
item.openairecristypehttp://purl.org/coar/resource_type/c_8042-
item.cerifentitytypePublications-
crisitem.author.deptMathematik E-10-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
rep62.pdf1,68 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

318
Last Week
1
Last month
4
checked on Aug 8, 2022

Download(s)

262
checked on Aug 8, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.