Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.4528
DC FieldValueLanguage
dc.contributor.authorShojai, Sulaiman-
dc.contributor.authorSchaumann, Peter-
dc.contributor.authorBraun, Moritz-
dc.contributor.authorEhlers, Sören-
dc.date.accessioned2022-08-02T04:51:15Z-
dc.date.available2022-08-02T04:51:15Z-
dc.date.issued2022-07-12-
dc.identifier.citationInternational Journal of Fatigue 164: 107128 (2022-11-01)de_DE
dc.identifier.issn0142-1123de_DE
dc.identifier.urihttp://hdl.handle.net/11420/13354-
dc.description.abstractSupport structures for offshore wind turbines and the corresponding transformer platforms are highly susceptible to corrosion. In particular, the phenomenon of pitting is crucial, as it leads to local stress concentrations and thus affects the fatigue life of structures. Despite corrosion protection systems, corrosion cannot be completely avoided, which can lead to pitting corrosion on the steel surface. This leads to fatigue life reduction, since the structures are exposed to high dynamic loads. Local stress concentrations can be considered in local concepts but so far, corrosion effects in local concepts are insufficiently defined. Hence, this paper aims to investigate the impact of pitting corrosion and the corresponding stress concentration on the fatigue life endurance of structural steel, used for offshore wind support structures. For this purpose, a total of 36 pre-corroded specimens with pitting were tested against fatigue failure and monitored with Digital Image Correlation. In addition, the specimens were scanned with a high-resolution 3D scanner and converted to numerical models by reverse engineering, to determine the stress concentrations on the surface. In most cases the hotspots from the numerical model coincide with the crack location detected with Digital Image Correlation. The notch effect has a significant impact on the crack location and crack path.en
dc.language.isoende_DE
dc.publisherElsevierde_DE
dc.relation.ispartofInternational journal of fatiguede_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de_DE
dc.subject3D-Surface scande_DE
dc.subjectCorrosion fatiguede_DE
dc.subjectOffshore-windde_DE
dc.subjectPitting corrosionde_DE
dc.subjectReverse engineeringde_DE
dc.subjectStress concentrationsde_DE
dc.subject.ddc600: Technikde_DE
dc.titleInfluence of pitting corrosion on the fatigue strength of offshore steel structures based on 3D surface scansde_DE
dc.typeArticlede_DE
dc.identifier.doi10.15480/882.4528-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0193593-
tuhh.oai.showtruede_DE
tuhh.abstract.englishSupport structures for offshore wind turbines and the corresponding transformer platforms are highly susceptible to corrosion. In particular, the phenomenon of pitting is crucial, as it leads to local stress concentrations and thus affects the fatigue life of structures. Despite corrosion protection systems, corrosion cannot be completely avoided, which can lead to pitting corrosion on the steel surface. This leads to fatigue life reduction, since the structures are exposed to high dynamic loads. Local stress concentrations can be considered in local concepts but so far, corrosion effects in local concepts are insufficiently defined. Hence, this paper aims to investigate the impact of pitting corrosion and the corresponding stress concentration on the fatigue life endurance of structural steel, used for offshore wind support structures. For this purpose, a total of 36 pre-corroded specimens with pitting were tested against fatigue failure and monitored with Digital Image Correlation. In addition, the specimens were scanned with a high-resolution 3D scanner and converted to numerical models by reverse engineering, to determine the stress concentrations on the surface. In most cases the hotspots from the numerical model coincide with the crack location detected with Digital Image Correlation. The notch effect has a significant impact on the crack location and crack path.de_DE
tuhh.publisher.doi10.1016/j.ijfatigue.2022.107128-
tuhh.publication.instituteKonstruktion und Festigkeit von Schiffen M-10de_DE
tuhh.identifier.doi10.15480/882.4528-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.volume164de_DE
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-85134428847de_DE
tuhh.container.articlenumber107128de_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
local.funding.infoThe project ISyMOO is funded by the Federal Ministry of Economic Affairs and Climate Action (BMWK) through the 6th National Energy Research Program under the funding number 0324254A.de_DE
datacite.resourceTypeArticle-
datacite.resourceTypeGeneralJournalArticle-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorGNDShojai, Sulaiman-
item.creatorGNDSchaumann, Peter-
item.creatorGNDBraun, Moritz-
item.creatorGNDEhlers, Sören-
item.openairetypeArticle-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.creatorOrcidShojai, Sulaiman-
item.creatorOrcidSchaumann, Peter-
item.creatorOrcidBraun, Moritz-
item.creatorOrcidEhlers, Sören-
item.languageiso639-1en-
item.mappedtypeArticle-
crisitem.author.deptKonstruktion und Festigkeit von Schiffen M-10-
crisitem.author.deptKonstruktion und Festigkeit von Schiffen M-10-
crisitem.author.orcid0000-0001-8543-960X-
crisitem.author.orcid0000-0001-9266-1698-
crisitem.author.orcid0000-0001-5698-9354-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
1-s2.0-S014211232200384X-main.pdfVerlags-PDF30,31 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

32
checked on Aug 11, 2022

Download(s)

15
checked on Aug 11, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons