DC FieldValueLanguage
dc.contributor.authorBechtel, Sebastian-
dc.contributor.authorGabel, Fabian Nuraddin Alexander-
dc.date.accessioned2022-08-08T07:13:34Z-
dc.date.available2022-08-08T07:13:34Z-
dc.date.issued2022-08-
dc.identifier.citationarXiv 2208.02527 (2022-08)de_DE
dc.identifier.urihttp://hdl.handle.net/11420/13412-
dc.description.abstractWe show non-autonomous Lq(Lp) maximal regularity for families of complex second-order systems in divergence form under a mixed Hölder regularity condition in space and time. To be more precise, we let p,q∈(1,∞) and we consider coefficient functions in Cβ+ε with values in Cα+ε subject to the parabolic relation 2β+α=1. To this end, we provide a weak (p,q)-solution theory with uniform constants and establish a priori higher spatial regularity. Furthermore, we show p-bounds for semigroups and square roots generated by complex elliptic systems under a minimal regularity assumption for the coefficients.en
dc.language.isoende_DE
dc.subjectLions problemde_DE
dc.subjectsecond-order elliptic systemsde_DE
dc.subjectcommutator estimatesde_DE
dc.subjectnon-autonomous maximal regularityde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleNon-autonomous Lq(Lp) maximal regularity for complex systems under mixed regularity in space and timede_DE
dc.typePreprintde_DE
dc.type.dinipreprint-
dcterms.DCMITypeText-
tuhh.abstract.englishWe show non-autonomous Lq(Lp) maximal regularity for families of complex second-order systems in divergence form under a mixed Hölder regularity condition in space and time. To be more precise, we let p,q∈(1,∞) and we consider coefficient functions in Cβ+ε with values in Cα+ε subject to the parabolic relation 2β+α=1. To this end, we provide a weak (p,q)-solution theory with uniform constants and establish a priori higher spatial regularity. Furthermore, we show p-bounds for semigroups and square roots generated by complex elliptic systems under a minimal regularity assumption for the coefficients.de_DE
tuhh.publisher.urlhttps://hal.archives-ouvertes.fr/hal-03745208v1-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opusPreprint (Vorabdruck)-
tuhh.gvk.hasppnfalse-
tuhh.hasurnfalse-
dc.type.driverpreprint-
dc.type.casraiOther-
dc.identifier.arxiv2208.02527de_DE
tuhh.container.articlenumberhal-03745208de_DE
local.status.inpressfalsede_DE
local.publisher.peerreviewedfalsede_DE
datacite.resourceTypeGeneralPreprint-
item.cerifentitytypePublications-
item.mappedtypePreprint-
item.openairetypePreprint-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_816b-
item.grantfulltextnone-
item.languageiso639-1en-
item.creatorGNDBechtel, Sebastian-
item.creatorGNDGabel, Fabian Nuraddin Alexander-
item.creatorOrcidBechtel, Sebastian-
item.creatorOrcidGabel, Fabian Nuraddin Alexander-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0002-8053-0284-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

45
checked on Dec 8, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.