Publisher DOI: 10.1007/s10035-009-0161-3
Title: Energy absorption during compression and impact of dry elastic-plastic spherical granules
Language: English
Authors: Antonyuk, Sergiy 
Heinrich, Stefan 
Tomas, Jürgen 
Deen, Niels G. 
van Buijtenen, Maureen S. 
Kuipers, Hans 
Keywords: Contact model; Elastic-plastic behaviour; Energy absorption; Granules; Restitution coefficient
Issue Date: Feb-2010
Source: Granular Matter 12 (1): 15-47 (2010-02)
Abstract (english): 
The discrete modelling and understanding of the particle dynamics in fluidized bed apparatuses, mixers, mills and others are based on the knowledge about the physical properties of particles and their mechanical behaviour during slow, fast and repeated stressing. In this paper model parameters (modulus of elasticity, stiffness, yield pressure, restitution coefficient and strength) of spherical granules (γ-Al 2O 3, zeolites 4A and 13X, sodium benzoate) with different mechanical behaviour have been measured by single particle compression and impact tests. Starting with the elastic compression behaviour of granules as described by Hertz theory, a new contact model was developed to describe the force-displacement behaviour of elastic-plastic granules. The aim of this work is to understand the energy absorption during compression (slow stressing velocity of 0.02 mm/s) and impact (the impact velocity of 0.5-4.5 m/s) of granules. For all examined granules the estimated energy absorption during the impact is found to be far lower than that during compression. Moreover, the measured restitution coefficient is independent of the impact velocity in the examined range and independent of the load intensity by compression (i.e. maximum compressive load). In the case of repeated loading with a constant load amplitude, the granules show cyclic hardening with increasing restitution coefficient up to a certain saturation in the plastic deformation. A model was proposed to describe the increase of the contact stiffness with the number of cycles. When the load amplitude is subsequently increased, further plastic deformation takes place and the restitution coefficient strongly decreases.
ISSN: 1434-5021
Journal: Granular matter 
Institute: Feststoffverfahrenstechnik und Partikeltechnologie V-3 
Document Type: Article
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

checked on Jan 29, 2023

Google ScholarTM


Add Files to Item

Note about this record

Cite this record


Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.