Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.136
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorJarlebring, Elias-
dc.contributor.authorVoß, Heinrich-
dc.date.accessioned2006-02-17T13:30:21Zde_DE
dc.date.available2006-02-17T13:30:21Zde_DE
dc.date.issued2003-11-
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/138-
dc.description.abstractIn recent papers Ruhe [10], [12] suggested a rational Krylov method for nonlinear eigenproblems knitting together a secant method for linearizing the nonlinear problem and the Krylov method for the linearized problem. In this note we point out that the method can be understood as an iterative projection method. Similar to the Arnoldi method presented in [13], [14] the search space is expanded by the direction from residual inverse iteration. Numerical methods demonstrate that the rational Krylov method can be accelerated considerably by replacing an inner iteration by an explicit solver of projected problems.en
dc.language.isoende_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectnonlinear eigenvalue problemde_DE
dc.subjectrational Krylovde_DE
dc.subjectArnoldide_DE
dc.subjectprojection methodde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleRational Krylov for nonlinear eigenproblems, an iterative projection methodde_DE
dc.typeWorking Paperde_DE
dc.date.updated2006-02-27T11:09:59Zde_DE
dc.identifier.urnurn:nbn:de:gbv:830-opus-1972de_DE
dc.identifier.doi10.15480/882.136-
dc.type.diniworkingPaper-
dc.subject.gndNichtlineares Eigenwertproblemde
dc.subject.gndProjektionsverfahrende
dc.subject.gndKrylov-Verfahrende
dc.subject.ddccode510-
dc.subject.msc65F50:Sparse matricesen
dc.subject.msc65F15:Eigenvalues, eigenvectorsen
dc.subject.msccode65F15-
dc.subject.msccode65F50-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-opus-1972de_DE
tuhh.publikation.typworkingPaperde_DE
tuhh.opus.id197de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/138-
tuhh.abstract.englishIn recent papers Ruhe [10], [12] suggested a rational Krylov method for nonlinear eigenproblems knitting together a secant method for linearizing the nonlinear problem and the Krylov method for the linearized problem. In this note we point out that the method can be understood as an iterative projection method. Similar to the Arnoldi method presented in [13], [14] the search space is expanded by the direction from residual inverse iteration. Numerical methods demonstrate that the rational Krylov method can be accelerated considerably by replacing an inner iteration by an explicit solver of projected problems.de_DE
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.136-
tuhh.type.opusResearchPaper-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematics E-10en
tuhh.institute.id47de_DE
tuhh.type.id17de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverworkingPaper-
dc.identifier.oclc930768034-
dc.type.casraiWorking Paper-
tuhh.relation.ispartofseriesPreprints des Institutes für Mathematikde_DE
tuhh.relation.ispartofseriesnumber69de_DE
item.creatorGNDJarlebring, Elias-
item.creatorGNDVoß, Heinrich-
item.cerifentitytypePublications-
item.seriesrefPreprints des Institutes für Mathematik;69-
item.mappedtypeWorking Paper-
item.openairecristypehttp://purl.org/coar/resource_type/c_8042-
item.tuhhseriesidPreprints des Institutes für Mathematik-
item.grantfulltextopen-
item.openairetypeWorking Paper-
item.languageiso639-1en-
item.creatorOrcidJarlebring, Elias-
item.creatorOrcidVoß, Heinrich-
item.fulltextWith Fulltext-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-2394-375X-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
rep69.pdf144,85 kBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

321
Last Week
0
Last month
4
checked on Aug 5, 2021

Download(s)

191
checked on Aug 5, 2021

Google ScholarTM

Check

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.