Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.4954
DC FieldValueLanguage
dc.contributor.authorTóth, Balázs-
dc.contributor.authorDüster, Alexander-
dc.date.accessioned2022-11-29T08:15:06Z-
dc.date.available2022-11-29T08:15:06Z-
dc.date.issued2022-11-14-
dc.identifier.citationComputational Mechanics 71 (3): 433-452 (2023)de_DE
dc.identifier.issn1432-0924de_DE
dc.identifier.urihttp://hdl.handle.net/11420/14188-
dc.description.abstractIn this research work, the radial basis function finite difference method (RBF-FD) is further developed to solve one- and two-dimensional boundary value problems in linear elasticity. The related differentiation weights are generated by using the extended version of the RBF utilizing a polynomial basis. The type of the RBF is restricted to polyharmonic splines (PHS), i.e., a combination of the odd m-order PHS ϕ(r) = rm with additional polynomials up to degree p will serve as the basis. Furthermore, a new residual-based adaptive point-cloud refinement algorithm will be presented and its numerical performance will be demonstrated. The computational efficiency of the PHS RBF-FD approach is tested by means of the relative errors measured in ℓ2-norm on several representative benchmark problems with smooth and non-smooth solutions, using h-adaptive, uniform, and quasi-uniform point-cloud refinement.en
dc.description.sponsorshipDeutscher Akademischer Austauschdienst (DAAD)de_DE
dc.description.sponsorshipHungarian National Research, Development and Innovation Office (NKFIH)de_DE
dc.language.isoende_DE
dc.publisherSpringerde_DE
dc.relation.ispartofComputational Mechanicsde_DE
dc.rightsCC BY 4.0de_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de_DE
dc.subjectAdaptivityde_DE
dc.subjectFinite differencesde_DE
dc.subjectLinear elasticityde_DE
dc.subjectPolyharmonic splinesde_DE
dc.subjectPolynomialsde_DE
dc.subjectRadial basis functionsde_DE
dc.subject.ddc530: Physikde_DE
dc.subject.ddc600: Technikde_DE
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titleh-Adaptive radial basis function finite difference method for linear elasticity problemsde_DE
dc.typeArticlede_DE
dc.identifier.doi10.15480/882.4954-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0203924-
tuhh.oai.showtruede_DE
tuhh.abstract.englishIn this research work, the radial basis function finite difference method (RBF-FD) is further developed to solve one- and two-dimensional boundary value problems in linear elasticity. The related differentiation weights are generated by using the extended version of the RBF utilizing a polynomial basis. The type of the RBF is restricted to polyharmonic splines (PHS), i.e., a combination of the odd m-order PHS ϕ(r) = rm with additional polynomials up to degree p will serve as the basis. Furthermore, a new residual-based adaptive point-cloud refinement algorithm will be presented and its numerical performance will be demonstrated. The computational efficiency of the PHS RBF-FD approach is tested by means of the relative errors measured in ℓ2-norm on several representative benchmark problems with smooth and non-smooth solutions, using h-adaptive, uniform, and quasi-uniform point-cloud refinement.de_DE
tuhh.publisher.doi10.1007/s00466-022-02249-9-
tuhh.publication.instituteKonstruktion und Festigkeit von Schiffen M-10de_DE
tuhh.identifier.doi10.15480/882.4954-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue3de_DE
tuhh.container.volume71de_DE
tuhh.container.startpage433de_DE
tuhh.container.endpage452de_DE
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-85141994603de_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
datacite.resourceTypeArticle-
datacite.resourceTypeGeneralJournalArticle-
item.mappedtypeArticle-
item.fulltextWith Fulltext-
item.creatorGNDTóth, Balázs-
item.creatorGNDDüster, Alexander-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.languageiso639-1en-
item.creatorOrcidTóth, Balázs-
item.creatorOrcidDüster, Alexander-
item.openairetypeArticle-
crisitem.funder.funderid501100001655-
crisitem.funder.funderrorid039djdh30-
crisitem.author.deptKonstruktion und Festigkeit von Schiffen M-10-
crisitem.author.orcid0000-0002-5419-2234-
crisitem.author.orcid0000-0002-2162-3675-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
s00466-022-02249-9-1.pdfVerlagsversion3,37 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

35
checked on Mar 21, 2023

Download(s)

9
checked on Mar 21, 2023

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons