Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.1576
DC FieldValueLanguage
dc.contributor.authorGreve, Martin-
dc.contributor.authorWöckner-Kluwe, Katja-
dc.contributor.authorAbdel-Maksoud, Moustafa-
dc.contributor.authorRung, Thomas-
dc.date.accessioned2018-03-09T11:15:32Z-
dc.date.available2018-03-09T11:15:32Z-
dc.date.issued2012-
dc.identifier.citationMartin Greve, Katja Wöckner-Kluwe, Moustafa Abdel-Maksoud, and Thomas Rung, “Viscous-Inviscid Coupling Methods for Advanced Marine Propeller Applications,” International Journal of Rotating Machinery, vol. 2012, Article ID 743060, 12 pages, 2012. doi:10.1155/2012/743060de_DE
dc.identifier.issn1542-3034de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/1579-
dc.description.abstractThe paper reports the development of coupling strategies between an inviscid direct panel method and a viscous RANS method and their application to complex propeller ows. The work is motivated by the prohibitive computational cost associated to unsteady viscous flow simulations using geometrically resolved propellers to analyse the dynamics of ships in seaways. The present effort aims to combine the advantages of the two baseline methods in order to reduce the numerical effort without compromising the predictive accuracy. Accordingly, the viscous method is used to calculate the global flow field, while the inviscid method predicts the forces acting on the propeller. The corresponding reaction forces are employed as body forces to mimic the propeller influence on the viscous flow field. Examples included refer to simple verification cases for an isolated propeller blade, open-water validation simulations for a complete propeller, and more challenging investigations of a manoeuvring vessel in seaways. Reported results reveal a fair predictive agreement between the coupled approach and fully viscous simulations and display the efficiency of the coupled approach.-
dc.description.abstractThe paper reports the development of coupling strategies between an inviscid direct panel method and a viscous RANS method and their application to complex propeller ows. The work is motivated by the prohibitive computational cost associated to unsteady viscous flow simulations using geometrically resolved propellers to analyse the dynamics of ships in seaways. The present effort aims to combine the advantages of the two baseline methods in order to reduce the numerical effort without compromising the predictive accuracy. Accordingly, the viscous method is used to calculate the global flow field, while the inviscid method predicts the forces acting on the propeller. The corresponding reaction forces are employed as body forces to mimic the propeller influence on the viscous flow field. Examples included refer to simple verification cases for an isolated propeller blade, open-water validation simulations for a complete propeller, and more challenging investigations of a manoeuvring vessel in seaways. Reported results reveal a fair predictive agreement between the coupled approach and fully viscous simulations and display the efficiency of the coupled approach.en
dc.language.isoende_DE
dc.publisherHindawi Publishing Corporationde_DE
dc.relation.ispartofInternational Journal of Rotating Machineryde_DE
dc.rightsCC BY 3.0de_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titleViscous-Inviscid Coupling Methods for Advanced Marine Propeller Applicationsde_DE
dc.typeArticlede_DE
dc.date.updated2018-02-27T08:15:44Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066en-
dc.rights.holderCopyright © 2012 Martin Greve et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.-
dc.identifier.urnurn:nbn:de:gbv:830-882.04095-
dc.identifier.doi10.15480/882.1576-
dc.type.diniarticle-
dc.subject.ddccode620-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.04095de_DE
tuhh.oai.showtrue-
dc.identifier.hdl11420/1579-
tuhh.abstract.englishThe paper reports the development of coupling strategies between an inviscid direct panel method and a viscous RANS method and their application to complex propeller ows. The work is motivated by the prohibitive computational cost associated to unsteady viscous flow simulations using geometrically resolved propellers to analyse the dynamics of ships in seaways. The present effort aims to combine the advantages of the two baseline methods in order to reduce the numerical effort without compromising the predictive accuracy. Accordingly, the viscous method is used to calculate the global flow field, while the inviscid method predicts the forces acting on the propeller. The corresponding reaction forces are employed as body forces to mimic the propeller influence on the viscous flow field. Examples included refer to simple verification cases for an isolated propeller blade, open-water validation simulations for a complete propeller, and more challenging investigations of a manoeuvring vessel in seaways. Reported results reveal a fair predictive agreement between the coupled approach and fully viscous simulations and display the efficiency of the coupled approach.de_DE
tuhh.publisher.doi10.1155/2012/743060-
tuhh.publication.instituteFluiddynamik und Schiffstheorie M-8de_DE
tuhh.identifier.doi10.15480/882.1576-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanFluiddynamik und Schiffstheorie M-8de
tuhh.institute.englishFluiddynamik und Schiffstheorie M-8de_DE
tuhh.gvk.hasppnfalse-
tuhh.hasurnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.rights.ccversion3.0de_DE
dc.type.casraiJournal Article-
tuhh.container.volumeVolume 2012de_DE
tuhh.container.startpageArticle ID 743060de_DE
tuhh.container.endpage12 pagesde_DE
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-84864950416-
item.creatorOrcidGreve, Martin-
item.creatorOrcidWöckner-Kluwe, Katja-
item.creatorOrcidAbdel-Maksoud, Moustafa-
item.creatorOrcidRung, Thomas-
item.languageiso639-1en-
item.creatorGNDGreve, Martin-
item.creatorGNDWöckner-Kluwe, Katja-
item.creatorGNDAbdel-Maksoud, Moustafa-
item.creatorGNDRung, Thomas-
item.openairetypeArticle-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.mappedtypeArticle-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptFluiddynamik und Schiffstheorie M-8-
crisitem.author.deptFluiddynamik und Schiffstheorie M-8-
crisitem.author.deptFluiddynamik und Schiffstheorie M-8-
crisitem.author.deptFluiddynamik und Schiffstheorie M-8-
crisitem.author.orcid0000-0002-2323-1018-
crisitem.author.orcid0000-0002-3454-1804-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
IJRM.2012.743060.pdf6,57 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

250
Last Week
6
Last month
15
checked on Jan 20, 2022

Download(s)

252
checked on Jan 20, 2022

SCOPUSTM   
Citations

9
Last Week
0
Last month
0
checked on Jan 13, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons