Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.160
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorKostić, Aleksandra-
dc.contributor.authorVoß, Heinrich-
dc.date.accessioned2006-02-27T10:17:53Zde_DE
dc.date.available2006-02-27T10:17:53Zde_DE
dc.date.issued2002-03-
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/162-
dc.description.abstractIn this note we discuss a method of order 1+sqrt(3) for computing the smallest eigenvalue lambda_1 of a symmetric and positive definite Toeplitz matrix. It generalizes and improves a method introduced in cite{MacVos97} which is based on rational Hermitean interpolation of the secular equation. Taking advantage of a further rational approximation of the secular equation which is essentially for free and which yields lower bounds of lambda_1 we obtain an improved stopping criterion.en
dc.language.isoende_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjecteigenvalue problemde_DE
dc.subjectToeplitz matrixde_DE
dc.subjectsecular equationde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleA Method of Order 1+SQRT(3) for Computing the Smallest Eigenvalue of a Symmetric Toeplitz Matrixde_DE
dc.typeTechnical Reportde_DE
dc.date.updated2006-03-01T13:47:11Zde_DE
dc.identifier.urnurn:nbn:de:gbv:830-opus-2223de_DE
dc.identifier.doi10.15480/882.160-
dc.type.dinireport-
dc.subject.gndEigenwertproblemde
dc.subject.gndToeplitz-Matrixde
dc.subject.ddccode510-
dc.subject.msc65F15:Eigenvalues, eigenvectorsen
dc.subject.msccode65F15-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-opus-2223de_DE
tuhh.publikation.typreportde_DE
tuhh.opus.id222de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/162-
tuhh.abstract.englishIn this note we discuss a method of order 1+sqrt(3) for computing the smallest eigenvalue lambda_1 of a symmetric and positive definite Toeplitz matrix. It generalizes and improves a method introduced in cite{MacVos97} which is based on rational Hermitean interpolation of the secular equation. Taking advantage of a further rational approximation of the secular equation which is essentially for free and which yields lower bounds of lambda_1 we obtain an improved stopping criterion.de_DE
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.160-
tuhh.type.opusReport (Bericht)-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematics E-10en
tuhh.institute.id47de_DE
tuhh.type.id20de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverreport-
dc.identifier.oclc930768128-
dc.type.casraiReport-
tuhh.relation.ispartofseriesPreprints des Institutes für Mathematikde_DE
tuhh.relation.ispartofseriesnumber45de_DE
datacite.resourceTypeReport-
datacite.resourceTypeGeneralText-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18gh-
item.creatorGNDKostić, Aleksandra-
item.creatorGNDVoß, Heinrich-
item.openairetypeTechnical Report-
item.tuhhseriesidPreprints des Institutes für Mathematik-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.creatorOrcidKostić, Aleksandra-
item.creatorOrcidVoß, Heinrich-
item.languageiso639-1en-
item.seriesrefPreprints des Institutes für Mathematik;45-
item.mappedtypeTechnical Report-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-2394-375X-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
rep45.pdf148,11 kBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

407
Last Week
1
Last month
8
checked on Aug 17, 2022

Download(s)

102
checked on Aug 17, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.