Please use this identifier to cite or link to this item:
https://doi.org/10.15480/882.160

DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kostić, Aleksandra | - |
dc.contributor.author | Voß, Heinrich | - |
dc.date.accessioned | 2006-02-27T10:17:53Z | de_DE |
dc.date.available | 2006-02-27T10:17:53Z | de_DE |
dc.date.issued | 2002-03 | - |
dc.identifier.uri | http://tubdok.tub.tuhh.de/handle/11420/162 | - |
dc.description.abstract | In this note we discuss a method of order 1+sqrt(3) for computing the smallest eigenvalue lambda_1 of a symmetric and positive definite Toeplitz matrix. It generalizes and improves a method introduced in cite{MacVos97} which is based on rational Hermitean interpolation of the secular equation. Taking advantage of a further rational approximation of the secular equation which is essentially for free and which yields lower bounds of lambda_1 we obtain an improved stopping criterion. | en |
dc.language.iso | en | de_DE |
dc.rights | info:eu-repo/semantics/openAccess | - |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | eigenvalue problem | de_DE |
dc.subject | Toeplitz matrix | de_DE |
dc.subject | secular equation | de_DE |
dc.subject.ddc | 510: Mathematik | de_DE |
dc.title | A Method of Order 1+SQRT(3) for Computing the Smallest Eigenvalue of a Symmetric Toeplitz Matrix | de_DE |
dc.type | Technical Report | de_DE |
dc.date.updated | 2006-03-01T13:47:11Z | de_DE |
dc.identifier.urn | urn:nbn:de:gbv:830-opus-2223 | de_DE |
dc.identifier.doi | 10.15480/882.160 | - |
dc.type.dini | report | - |
dc.subject.gnd | Eigenwertproblem | de |
dc.subject.gnd | Toeplitz-Matrix | de |
dc.subject.ddccode | 510 | - |
dc.subject.msc | 65F15:Eigenvalues, eigenvectors | en |
dc.subject.msccode | 65F15 | - |
dcterms.DCMIType | Text | - |
tuhh.identifier.urn | urn:nbn:de:gbv:830-opus-2223 | de_DE |
tuhh.publikation.typ | report | de_DE |
tuhh.opus.id | 222 | de_DE |
tuhh.oai.show | true | de_DE |
dc.identifier.hdl | 11420/162 | - |
tuhh.abstract.english | In this note we discuss a method of order 1+sqrt(3) for computing the smallest eigenvalue lambda_1 of a symmetric and positive definite Toeplitz matrix. It generalizes and improves a method introduced in cite{MacVos97} which is based on rational Hermitean interpolation of the secular equation. Taking advantage of a further rational approximation of the secular equation which is essentially for free and which yields lower bounds of lambda_1 we obtain an improved stopping criterion. | de_DE |
tuhh.publication.institute | Mathematik E-10 | de_DE |
tuhh.identifier.doi | 10.15480/882.160 | - |
tuhh.type.opus | Report (Bericht) | - |
tuhh.institute.german | Mathematik E-10 | de |
tuhh.institute.english | Mathematics E-10 | en |
tuhh.institute.id | 47 | de_DE |
tuhh.type.id | 20 | de_DE |
tuhh.gvk.hasppn | false | - |
dc.type.driver | report | - |
dc.identifier.oclc | 930768128 | - |
dc.type.casrai | Report | - |
tuhh.relation.ispartofseries | Preprints des Institutes für Mathematik | de_DE |
tuhh.relation.ispartofseriesnumber | 45 | de_DE |
datacite.resourceType | Report | - |
datacite.resourceTypeGeneral | Text | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18gh | - |
item.creatorGND | Kostić, Aleksandra | - |
item.creatorGND | Voß, Heinrich | - |
item.openairetype | Technical Report | - |
item.tuhhseriesid | Preprints des Institutes für Mathematik | - |
item.fulltext | With Fulltext | - |
item.cerifentitytype | Publications | - |
item.creatorOrcid | Kostić, Aleksandra | - |
item.creatorOrcid | Voß, Heinrich | - |
item.languageiso639-1 | en | - |
item.seriesref | Preprints des Institutes für Mathematik;45 | - |
item.mappedtype | Technical Report | - |
crisitem.author.dept | Mathematik E-10 | - |
crisitem.author.orcid | 0000-0003-2394-375X | - |
crisitem.author.parentorg | Studiendekanat Elektrotechnik, Informatik und Mathematik | - |
Appears in Collections: | Publications with fulltext |
Page view(s)
407
Last Week
1
1
Last month
8
8
checked on Aug 17, 2022
Download(s)
102
checked on Aug 17, 2022
Google ScholarTM
Check
Note about this record
Cite this record
Export
Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.