Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.1642
DC FieldValueLanguage
dc.contributor.authorGor, Gennady Y.-
dc.contributor.authorHuber, Patrick-
dc.contributor.authorBernstein, Noam-
dc.date.accessioned2018-05-17T09:28:58Z-
dc.date.available2018-05-17T09:28:58Z-
dc.date.issued2017-02-24-
dc.identifier.citationApplied Physics Reviews (4): art. no. 011303 (2017)de_DE
dc.identifier.issn1931-9401de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/1645-
dc.description.abstractWhen a solid surface accommodates guest molecules, they induce noticeable stresses to the surface and cause its strain. Nanoporous materials have high surface area and, therefore, are very sensitive to this effect called adsorption-induced deformation. In recent years, there has been significant progress in both experimental and theoretical studies of this phenomenon, driven by the development of new materials as well as advanced experimental and modeling techniques. Also, adsorptioninduced deformation has been found to manifest in numerous natural and engineering processes, e.g., drying of concrete, water-actuated movement of non-living plant tissues, change of permeation of zeolite membranes, swelling of coal and shale, etc. In this review, we summarize the most recent experimental and theoretical findings on adsorption-induced deformation and present the state-of-the-art picture of thermodynamic and mechanical aspects of this phenomenon. We also reflect on the existing challenges related both to the fundamental understanding of this phenomenon and to selected applications, e.g., in sensing and actuation, and in natural gas recovery and geological CO2 sequestration.en
dc.language.isoende_DE
dc.publisherAmerican Institute of Physicsde_DE
dc.relation.ispartofApplied Physics Reviewsde_DE
dc.rightsCC BY 4.0de_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de_DE
dc.subjectsiliconde_DE
dc.subjectstrain measurementde_DE
dc.subjectporous materialsde_DE
dc.subjectelastic modulide_DE
dc.subjectcarbon dioxidede_DE
dc.subjectzeolitesde_DE
dc.subjectsilicade_DE
dc.subjectstress strain relationsde_DE
dc.subjectadsorptionde_DE
dc.subject.ddc530: Physikde_DE
dc.subject.ddc540: Chemiede_DE
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titleAdsorption-induced deformation of nanoporous materials : a reviewde_DE
dc.typeArticlede_DE
dc.identifier.urnurn:nbn:de:gbv:830-88220699-
dc.identifier.doi10.15480/882.1642-
dc.type.diniarticle-
dc.subject.ddccode530-
dc.subject.ddccode540-
dc.subject.ddccode620-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-88220699de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/1645-
tuhh.abstract.englishWhen a solid surface accommodates guest molecules, they induce noticeable stresses to the surface and cause its strain. Nanoporous materials have high surface area and, therefore, are very sensitive to this effect called adsorption-induced deformation. In recent years, there has been significant progress in both experimental and theoretical studies of this phenomenon, driven by the development of new materials as well as advanced experimental and modeling techniques. Also, adsorptioninduced deformation has been found to manifest in numerous natural and engineering processes, e.g., drying of concrete, water-actuated movement of non-living plant tissues, change of permeation of zeolite membranes, swelling of coal and shale, etc. In this review, we summarize the most recent experimental and theoretical findings on adsorption-induced deformation and present the state-of-the-art picture of thermodynamic and mechanical aspects of this phenomenon. We also reflect on the existing challenges related both to the fundamental understanding of this phenomenon and to selected applications, e.g., in sensing and actuation, and in natural gas recovery and geological CO2 sequestration.de_DE
tuhh.publisher.doi10.1063/1.4975001-
tuhh.publication.instituteWerkstoffphysik und -technologie M-22de_DE
tuhh.identifier.doi10.15480/882.1642-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanWerkstoffphysik und -technologie M-22de
tuhh.institute.englishWerkstoffphysik und -technologie M-22de_DE
tuhh.gvk.hasppnfalse-
tuhh.hasurnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.rights.ccversion4.0de_DE
dc.type.casraiJournal Article-
tuhh.container.issue4de_DE
tuhh.container.startpage011303-1de_DE
tuhh.container.endpage011303-24de_DE
dc.relation.projectSFB 986: Teilprojekt B2 - Feste und leichte Hybridwerkstoffe auf Basis nanoporöser Metallede_DE
dc.relation.projectSFB 986, Teilproject B7 - Polymere in grenzflächenbestimmten Geometrien: Struktur, Dynamik und Funktion an planaren und in porösen Hybridsystemende_DE
dc.rights.nationallicensefalsede_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
item.creatorOrcidGor, Gennady Y.-
item.creatorOrcidHuber, Patrick-
item.creatorOrcidBernstein, Noam-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextWith Fulltext-
item.creatorGNDGor, Gennady Y.-
item.creatorGNDHuber, Patrick-
item.creatorGNDBernstein, Noam-
item.mappedtypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextopen-
item.cerifentitytypePublications-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderid501100001659-
crisitem.project.funderid501100001659-
crisitem.project.funderrorid018mejw64-
crisitem.project.funderrorid018mejw64-
crisitem.project.grantno192346071-
crisitem.project.grantno192346071-
crisitem.author.deptMaterial- und Röntgenphysik M-2-
crisitem.author.orcid0000-0001-7455-1778-
crisitem.author.orcid0000-0002-2126-9100-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
1.4975001.pdfVelags-PDF4,06 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

352
Last Week
2
Last month
7
checked on Jun 14, 2021

Download(s)

370
checked on Jun 14, 2021

SCOPUSTM   
Citations

99
Last Week
3
Last month
checked on Jun 13, 2021

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons