Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.168
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorVoß, Heinrich-
dc.date.accessioned2006-03-02T11:33:47Zde_DE
dc.date.available2006-03-02T11:33:47Zde_DE
dc.date.issued2000-07-
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/170-
dc.description.abstractIn this note we study a variant of the inverted Lanczos method which computes eigenvalue approximates of a symmetric matrix A from the projection to a Krylov space of A method at least as long as reorthogonalization is not required. The method is applied to the problem of determining the smallest eigenvalue of a symmetric Toeplitz matrix. It is accelerated taking advantage of symmetry properties of the corresponding eigenvector.en
dc.language.isoende_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjecteigenvalue problemde_DE
dc.subjectLanczos methodde_DE
dc.subjectToeplitz matrixde_DE
dc.subjectsymmetry propertiesde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleA variant of the inverted Lanczos methodde_DE
dc.typeWorking Paperde_DE
dc.date.updated2006-03-02T11:33:49Zde_DE
dc.identifier.urnurn:nbn:de:gbv:830-opus-2329de_DE
dc.identifier.doi10.15480/882.168-
dc.type.diniworkingPaper-
dc.subject.gndEigenwertproblemde
dc.subject.gndToeplitz-Matrixde
dc.subject.ddccode510-
dc.subject.msc65F15:Eigenvalues, eigenvectorsen
dc.subject.msccode65F15-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-opus-2329de_DE
tuhh.publikation.typworkingPaperde_DE
tuhh.opus.id232de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/170-
tuhh.abstract.englishIn this note we study a variant of the inverted Lanczos method which computes eigenvalue approximates of a symmetric matrix A from the projection to a Krylov space of A method at least as long as reorthogonalization is not required. The method is applied to the problem of determining the smallest eigenvalue of a symmetric Toeplitz matrix. It is accelerated taking advantage of symmetry properties of the corresponding eigenvector.de_DE
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.168-
tuhh.type.opusResearchPaper-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematics E-10en
tuhh.institute.id47de_DE
tuhh.type.id17de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverworkingPaper-
dc.identifier.oclc930768090-
dc.type.casraiWorking Paper-
tuhh.relation.ispartofseriesPreprints des Institutes für Mathematikde_DE
tuhh.relation.ispartofseriesnumber37de_DE
datacite.resourceTypeWorking Paper-
datacite.resourceTypeGeneralText-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_8042-
item.creatorGNDVoß, Heinrich-
item.openairetypeWorking Paper-
item.tuhhseriesidPreprints des Institutes für Mathematik-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.creatorOrcidVoß, Heinrich-
item.languageiso639-1en-
item.seriesrefPreprints des Institutes für Mathematik;37-
item.mappedtypeWorking Paper-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-2394-375X-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
rep37.pdf181,97 kBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

309
Last Week
0
Last month
4
checked on Aug 15, 2022

Download(s)

107
checked on Aug 15, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.