Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.1743
DC FieldValueLanguage
dc.contributor.authorFeder, Dag-Frederik-
dc.contributor.authorDhone, Mahesh-
dc.contributor.authorKornev, Nikolai-
dc.contributor.authorAbdel-Maksoud Gomaa, Moustafa-
dc.date.accessioned2018-09-20T07:13:21Z-
dc.date.available2018-09-20T07:13:21Z-
dc.date.issued2018-01-01-
dc.identifier.citationOcean Engineering (147): 659-675 (2018-01-01)de_DE
dc.identifier.issn0029-8018de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/1746-
dc.description.abstractThis paper compares the performance of different grid based and grid free modelling approaches to predict the tip vortex evolution in both near and far wing wake fields. The grid based methods cover different turbulence modelling approaches, adaptive mesh refinement and the adaptive vorticity confinement (VC) method using the OpenFOAM code. Computational vortex method (CVM) coupled with the OpenFOAM simulation of the near field is utilised to properly predict the tip vortex behaviour in the far field. All simulation results are compared to results of the wind tunnel experiments conducted by Devenport et al. (1996). The comparison is based on the analysis of the vortex core parameters: the core size, the peak tangential velocity and the axial velocity deficit. Additionally, the results are compared with another numerical study by Wells (2009, 2010). It turns out that turbulence modelling plays an important role since simple one and two-equation models overpredict the turbulence intensity in the vortex core resulting in its fast decay. The potential of the adaptive VC method depends on the underlying turbulence model. Grid free vortex method shows a good potential to improve the simulation accuracy.en
dc.language.isoende_DE
dc.publisherElsevierde_DE
dc.relation.ispartofOcean engineeringde_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectTip vortexde_DE
dc.subjectGrid free vortex methodde_DE
dc.subjectTurbulence modellingde_DE
dc.subjectAdaptive mesh refinementde_DE
dc.subjectAdaptive vorticity confinementde_DE
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titleComparison of different approaches tracking a wing-tip vortexde_DE
dc.typeArticlede_DE
dc.identifier.urnurn:nbn:de:gbv:830-88222515-
dc.identifier.doi10.15480/882.1743-
dc.type.diniarticle-
dc.subject.ddccode620-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-88222515de_DE
tuhh.oai.showtrue-
dc.identifier.hdl11420/1746-
tuhh.abstract.englishThis paper compares the performance of different grid based and grid free modelling approaches to predict the tip vortex evolution in both near and far wing wake fields. The grid based methods cover different turbulence modelling approaches, adaptive mesh refinement and the adaptive vorticity confinement (VC) method using the OpenFOAM code. Computational vortex method (CVM) coupled with the OpenFOAM simulation of the near field is utilised to properly predict the tip vortex behaviour in the far field. All simulation results are compared to results of the wind tunnel experiments conducted by Devenport et al. (1996). The comparison is based on the analysis of the vortex core parameters: the core size, the peak tangential velocity and the axial velocity deficit. Additionally, the results are compared with another numerical study by Wells (2009, 2010). It turns out that turbulence modelling plays an important role since simple one and two-equation models overpredict the turbulence intensity in the vortex core resulting in its fast decay. The potential of the adaptive VC method depends on the underlying turbulence model. Grid free vortex method shows a good potential to improve the simulation accuracy.de_DE
tuhh.publisher.doi10.1016/j.oceaneng.2017.09.036-
tuhh.publication.instituteFluiddynamik und Schiffstheorie M-8de_DE
tuhh.identifier.doi10.15480/882.1743-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanFluiddynamik und Schiffstheorie M-8de
tuhh.institute.englishFluiddynamik und Schiffstheorie M-8de_DE
tuhh.gvk.hasppnfalse-
tuhh.hasurnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.rights.ccversion4.0de_DE
dc.type.casraiJournal Article-
tuhh.container.volume147de_DE
tuhh.container.startpage659de_DE
tuhh.container.endpage675de_DE
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-85032217692de_DE
local.type.versionpublishedVersionde_DE
item.creatorOrcidFeder, Dag-Frederik-
item.creatorOrcidDhone, Mahesh-
item.creatorOrcidKornev, Nikolai-
item.creatorOrcidAbdel-Maksoud Gomaa, Moustafa-
item.languageiso639-1en-
item.creatorGNDFeder, Dag-Frederik-
item.creatorGNDDhone, Mahesh-
item.creatorGNDKornev, Nikolai-
item.creatorGNDAbdel-Maksoud Gomaa, Moustafa-
item.openairetypeArticle-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.mappedtypeArticle-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptFluiddynamik und Schiffstheorie M-8-
crisitem.author.deptFluiddynamik und Schiffstheorie M-8-
crisitem.author.orcid0000-0001-9777-7112-
crisitem.author.orcid0000-0001-9953-8713-
crisitem.author.orcid0000-0002-2323-1018-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
1-s2.0-S0029801817305553-main.pdfVerlags-PDF4,74 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

280
Last Week
4
Last month
11
checked on Jan 20, 2022

Download(s)

310
checked on Jan 20, 2022

SCOPUSTM   
Citations

8
Last Week
0
Last month
0
checked on Jan 13, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons