Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.1758
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorRege, Ameya-
dc.contributor.authorPreibisch, Imke-
dc.contributor.authorSchestakow, Maria-
dc.contributor.authorGanesan, Kathirvel-
dc.contributor.authorGurikov, Pavel-
dc.contributor.authorMilow, Barbara-
dc.contributor.authorSmirnova, Irina-
dc.contributor.authorItskov, Mikhail-
dc.date.accessioned2018-10-05T08:08:26Z-
dc.date.available2018-10-05T08:08:26Z-
dc.date.issued2018-09-09-
dc.identifier.citationMaterials 11 (9): 1670 (2018)de_DE
dc.identifier.issn1996-1944de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/1761-
dc.description.abstractIn the past decade, biopolymer aerogels have gained significant research attention due to their typical properties, such as low density and thermal insulation, which are reinforced with excellent biocompatibility, biodegradability, and ease of functionalization. Mechanical properties of these aerogels play an important role in several applications and should be evaluated based on synthesis parameters. To this end, preparation and characterization of polysaccharide-based aerogels, such as pectin, cellulose and k-carrageenan, is first discussed. An interrelationship between their synthesis parameters and morphological entities is established. Such aerogels are usually characterized by a cellular morphology, and under compression undergo large deformations. Therefore, a nonlinear constitutive model is proposed based on large deflections in microcell walls of the aerogel network. Different sizes of the microcells within the network are identified via nitrogen desorption isotherms. Damage is initiated upon pore collapse, which is shown to result from the failure of the microcell wall fibrils. Finally, the model predictions are validated against experimental data of pectin, cellulose, and k-carrageenan aerogels. Given the micromechanical nature of the model, a clear correlation—qualitative and quantitative—between synthesis parameters and the model parameters is also substantiated. The proposed model is shown to be useful in tailoring the mechanical properties of biopolymer aerogels subject to changes in synthesis parameters.en
dc.language.isoende_DE
dc.publisherMultidisciplinary Digital Publishing Institutede_DE
dc.relation.ispartofMaterialsde_DE
dc.rightsCC BY 4.0de_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectaerogelde_DE
dc.subjectpolysaccharidede_DE
dc.subjectpectinde_DE
dc.subjectcellulosede_DE
dc.subjectk-carrageenande_DE
dc.subjectmicromechanicalde_DE
dc.subjectpredictive modelde_DE
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titleCorrelating Synthesis Parameters to Morphological Entities: Predictive Modeling of Biopolymer Aerogelsde_DE
dc.typeArticlede_DE
dc.date.updated2018-09-21T07:11:45Z-
dc.identifier.urnurn:nbn:de:gbv:830-882.05864-
dc.identifier.doi10.15480/882.1758-
dc.type.diniarticle-
dc.subject.ddccode620-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.05864de_DE
tuhh.oai.showtrue-
dc.identifier.hdl11420/1761-
tuhh.abstract.englishIn the past decade, biopolymer aerogels have gained significant research attention due to their typical properties, such as low density and thermal insulation, which are reinforced with excellent biocompatibility, biodegradability, and ease of functionalization. Mechanical properties of these aerogels play an important role in several applications and should be evaluated based on synthesis parameters. To this end, preparation and characterization of polysaccharide-based aerogels, such as pectin, cellulose and k-carrageenan, is first discussed. An interrelationship between their synthesis parameters and morphological entities is established. Such aerogels are usually characterized by a cellular morphology, and under compression undergo large deformations. Therefore, a nonlinear constitutive model is proposed based on large deflections in microcell walls of the aerogel network. Different sizes of the microcells within the network are identified via nitrogen desorption isotherms. Damage is initiated upon pore collapse, which is shown to result from the failure of the microcell wall fibrils. Finally, the model predictions are validated against experimental data of pectin, cellulose, and k-carrageenan aerogels. Given the micromechanical nature of the model, a clear correlation—qualitative and quantitative—between synthesis parameters and the model parameters is also substantiated. The proposed model is shown to be useful in tailoring the mechanical properties of biopolymer aerogels subject to changes in synthesis parameters.de_DE
tuhh.publisher.doi10.3390/ma11091670-
tuhh.publication.instituteThermische Verfahrenstechnik V-8de_DE
tuhh.identifier.doi10.15480/882.1758-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanThermische Verfahrenstechnik V-8de
tuhh.institute.englishThermische Verfahrenstechnik V-8de_DE
tuhh.gvk.hasppnfalse-
tuhh.hasurnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.volume11.2018de_DE
tuhh.container.startpageArticelnr. 1670de_DE
dc.rights.nationallicensefalsede_DE
item.creatorGNDRege, Ameya-
item.creatorGNDPreibisch, Imke-
item.creatorGNDSchestakow, Maria-
item.creatorGNDGanesan, Kathirvel-
item.creatorGNDGurikov, Pavel-
item.creatorGNDMilow, Barbara-
item.creatorGNDSmirnova, Irina-
item.creatorGNDItskov, Mikhail-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextopen-
item.creatorOrcidRege, Ameya-
item.creatorOrcidPreibisch, Imke-
item.creatorOrcidSchestakow, Maria-
item.creatorOrcidGanesan, Kathirvel-
item.creatorOrcidGurikov, Pavel-
item.creatorOrcidMilow, Barbara-
item.creatorOrcidSmirnova, Irina-
item.creatorOrcidItskov, Mikhail-
crisitem.author.deptThermische Verfahrenstechnik V-8-
crisitem.author.deptEntwicklung und Modellierung neuartiger nanoporöser Materialien V-EXK2-
crisitem.author.deptThermische Verfahrenstechnik V-8-
crisitem.author.orcid0000-0001-9564-5482-
crisitem.author.orcid0000-0002-9392-8371-
crisitem.author.orcid0000-0002-4876-5366-
crisitem.author.orcid0000-0003-0598-243X-
crisitem.author.orcid0000-0002-6350-7728-
crisitem.author.orcid0000-0003-4503-4039-
crisitem.author.orcid0000-0002-2146-0589-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
materials-11-01670-v2.pdf15,78 MBAdobe PDFThumbnail
View/Open
Show simple item record

Google ScholarTM

Check

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.