Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.1775
DC FieldValueLanguage
dc.contributor.authorBehrndt, Jussi-
dc.contributor.authorFrank, Rupert L.-
dc.contributor.authorKühn, Christian-
dc.contributor.authorLotoreichik, Vladimir-
dc.contributor.authorRohleder, Jonathan-
dc.date.accessioned2018-11-07T09:10:38Z-
dc.date.available2018-11-07T09:10:38Z-
dc.date.issued2016-11-21-
dc.identifier.citationAnnales Henri Poincaré 4 (18): 1305-1347 (2016)de_DE
dc.identifier.issn1424-0661de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/1778-
dc.description.abstractThe main objective of this paper is to systematically develop a spectral and scattering theory for self-adjoint Schrödinger operators with δ-interactions supported on closed curves in R3. We provide bounds for the number of negative eigenvalues depending on the geometry of the curve, prove an isoperimetric inequality for the principal eigenvalue, derive Schatten–von Neumann properties for the resolvent difference with the free Laplacian, and establish an explicit representation for the scattering matrix.en
dc.language.isoende_DE
dc.publisherSpringerde_DE
dc.relation.ispartofAnnales Henri Poincaréde_DE
dc.rightsCC BY 4.0de_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectSchrödinger operatorsde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleSpectral theory for Schrödinger operators with δ-interactions supported on curves in ℝ³de_DE
dc.typeArticlede_DE
dc.identifier.urnurn:nbn:de:gbv:830-88223059-
dc.identifier.doi10.15480/882.1775-
dc.type.diniarticle-
dc.subject.ddccode510-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-88223059de_DE
tuhh.oai.showtrue-
dc.identifier.hdl11420/1778-
tuhh.abstract.englishThe main objective of this paper is to systematically develop a spectral and scattering theory for self-adjoint Schrödinger operators with δ-interactions supported on closed curves in R3. We provide bounds for the number of negative eigenvalues depending on the geometry of the curve, prove an isoperimetric inequality for the principal eigenvalue, derive Schatten–von Neumann properties for the resolvent difference with the free Laplacian, and establish an explicit representation for the scattering matrix.de_DE
tuhh.publisher.doi10.1007/s00023-016-0532-3-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.1775-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematik E-10de_DE
tuhh.gvk.hasppnfalse-
tuhh.hasurnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.rights.ccversion4.0de_DE
dc.type.casraiJournal Article-
tuhh.container.issue4de_DE
tuhh.container.volume18de_DE
tuhh.container.startpage1305de_DE
tuhh.container.endpage1347de_DE
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-84996548653-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidBehrndt, Jussi-
item.creatorOrcidFrank, Rupert L.-
item.creatorOrcidKühn, Christian-
item.creatorOrcidLotoreichik, Vladimir-
item.creatorOrcidRohleder, Jonathan-
item.cerifentitytypePublications-
item.mappedtypeArticle-
item.openairetypeArticle-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.creatorGNDBehrndt, Jussi-
item.creatorGNDFrank, Rupert L.-
item.creatorGNDKühn, Christian-
item.creatorGNDLotoreichik, Vladimir-
item.creatorGNDRohleder, Jonathan-
item.languageiso639-1en-
crisitem.author.deptMathematik E-10-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0002-3442-6777-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
Behrndt2017_Article_SpectralTheoryForSchrödingerOp.pdfVerlags-PDF892,23 kBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

149
Last Week
1
Last month
6
checked on Dec 5, 2021

Download(s)

57
checked on Dec 5, 2021

SCOPUSTM   
Citations

9
Last Week
1
Last month
1
checked on Dec 4, 2021

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons