Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.1789
DC FieldValueLanguage
dc.contributor.authorLeopold, Christian-
dc.contributor.authorLiebig, Wilfried V.-
dc.contributor.authorWittich, Hans-
dc.contributor.authorFiedler, Bodo-
dc.date.accessioned2018-10-24T07:49:41Z-
dc.date.available2018-10-24T07:49:41Z-
dc.date.issued2016-08-27-
dc.identifier.citationComposites Science and Technology (134): 217-225 (2016)de_DE
dc.identifier.issn1879-1050de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/1792-
dc.description.abstractThe size effect of unmodified and graphene nanoparticle modified matrix fibres is experimentally investigated. Neat matrix fibres show a clear size effect of increasing tensile strength with decreasing volume due to a statistical defect distribution. The nanoparticle modified matrix shows no significant size effect. Nanoparticles act as crack initiators and consume fracture energy. The size of the particles is independent of specimen volume, so that the failure initiating as well as energy absorbing mechanisms are available, independently of the volume. Fractography analysis of SEM images shows different energy dissipation mechanisms such as micro-damage at the graphene particles. Graphene pull-out, layer separation, layer shearing, formation of micro voids as well as crack separation and crack bifurcation are observed that depend on the orientation of the graphite layers to the fracture plane. These mechanisms dissipate energy and so that a graphene nanoparticle modification result in an increased fracture toughness and thus increased strength of an epoxy matrix system if the volume is large enough. The maximum stress in specimen of small volume depends on graphene layer orientation, so that ideally, the covalent bonds of the nanoparticles should be orientated in loading direction.en
dc.language.isoende_DE
dc.publisherElsevierde_DE
dc.relation.ispartofComposites science and technologyde_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.subjectnano particlesde_DE
dc.subjectstress concentrationsde_DE
dc.subjectfractographyde_DE
dc.subjectscanning electron microscopy (SEM)de_DE
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titleSize effect of graphene nanoparticle modified epoxy matrixde_DE
dc.typeArticlede_DE
dc.identifier.urnurn:nbn:de:gbv:830-88223252-
dc.identifier.doi10.15480/882.1789-
dc.type.diniarticle-
dc.subject.ddccode620-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-88223252de_DE
tuhh.oai.showtrue-
dc.identifier.hdl11420/1792-
tuhh.abstract.englishThe size effect of unmodified and graphene nanoparticle modified matrix fibres is experimentally investigated. Neat matrix fibres show a clear size effect of increasing tensile strength with decreasing volume due to a statistical defect distribution. The nanoparticle modified matrix shows no significant size effect. Nanoparticles act as crack initiators and consume fracture energy. The size of the particles is independent of specimen volume, so that the failure initiating as well as energy absorbing mechanisms are available, independently of the volume. Fractography analysis of SEM images shows different energy dissipation mechanisms such as micro-damage at the graphene particles. Graphene pull-out, layer separation, layer shearing, formation of micro voids as well as crack separation and crack bifurcation are observed that depend on the orientation of the graphite layers to the fracture plane. These mechanisms dissipate energy and so that a graphene nanoparticle modification result in an increased fracture toughness and thus increased strength of an epoxy matrix system if the volume is large enough. The maximum stress in specimen of small volume depends on graphene layer orientation, so that ideally, the covalent bonds of the nanoparticles should be orientated in loading direction.de_DE
tuhh.publisher.doi10.1016/j.compscitech.2016.08.022-
tuhh.publication.instituteKunststoffe und Verbundwerkstoffe M-11de_DE
tuhh.identifier.doi10.15480/882.1789-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanKunststoffe und Verbundwerkstoffe M-11de
tuhh.institute.englishKunststoffe und Verbundwerkstoffe M-11de_DE
tuhh.gvk.hasppnfalse-
tuhh.hasurnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.rights.ccby-nc-ndde_DE
dc.rights.ccversion4.0de_DE
dc.type.casraiJournal Article-
tuhh.container.volume134de_DE
tuhh.container.startpage217de_DE
tuhh.container.endpage225de_DE
dc.rights.nationallicensefalsede_DE
item.languageiso639-1other-
item.creatorOrcidLeopold, Christian-
item.creatorOrcidLiebig, Wilfried V.-
item.creatorOrcidWittich, Hans-
item.creatorOrcidFiedler, Bodo-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.creatorGNDLeopold, Christian-
item.creatorGNDLiebig, Wilfried V.-
item.creatorGNDWittich, Hans-
item.creatorGNDFiedler, Bodo-
crisitem.author.deptKunststoffe und Verbundwerkstoffe M-11-
crisitem.author.deptKunststoffe und Verbundwerkstoffe M-11-
crisitem.author.deptKunststoffe und Verbundwerkstoffe M-11-
crisitem.author.orcid0000-0003-4791-2931-
crisitem.author.orcid0000-0003-1855-6237-
crisitem.author.orcid0000-0002-2734-1353-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext (tub.dok)
Files in This Item:
File Description SizeFormat
1-s2.0-S0266353816310685-main.pdfVerlags-PDF1,81 MBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

80
Last Week
1
Last month
4
checked on Sep 20, 2019

Download(s)

74
checked on Sep 20, 2019

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons