Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.1856
DC FieldValueLanguage
dc.contributor.authorIwankiewicz, Radosław-
dc.date.accessioned2018-11-20T06:40:36Z-
dc.date.available2018-11-20T06:40:36Z-
dc.date.issued2016-06-02-
dc.identifier.citationJournal of Physics: Conference Series 1 (721): 012010- (2016-06-02)de_DE
dc.identifier.issn1742-6596de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/1859-
dc.description.abstractMethods for determination of the response of mechanical dynamic systems to Poisson and non-Poisson impulse process stochastic excitations are presented. Stochastic differential and integro-differential equations of motion are introduced. For systems driven by Poisson impulse process the tools of the theory of non-diffusive Markov processes are used. These are: the generalized Itô's differential rule which allows to derive the differential equations for response moments and the forward integro-differential Chapman-Kolmogorov equation from which the equation governing the probability density of the response is obtained. The relation of Poisson impulse process problems to the theory of diffusive Markov processes is given. For systems driven by a class of non-Poisson (Erlang renewal) impulse processes an exact conversion of the original non-Markov problem into a Markov one is based on the appended Markov chain corresponding to the introduced auxiliary pure jump stochastic process. The derivation of the set of integro-differential equations for response probability density and also a moment equations technique are based on the forward integro-differential Chapman-Kolmogorov equation. An illustrating numerical example is also included.en
dc.language.isoende_DE
dc.publisherIOPde_DE
dc.relation.ispartofJournal of physics. Conference Seriesde_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.subject.ddc600: Technikde_DE
dc.titleDynamic response of mechanical systems to impulse process stochastic excitations: markov approachde_DE
dc.typeArticlede_DE
dc.identifier.urnurn:nbn:de:gbv:830-882.023624-
dc.identifier.doi10.15480/882.1856-
dc.type.diniarticle-
dc.subject.ddccode600-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.023624de_DE
tuhh.oai.showtrue-
dc.identifier.hdl11420/1859-
tuhh.abstract.englishMethods for determination of the response of mechanical dynamic systems to Poisson and non-Poisson impulse process stochastic excitations are presented. Stochastic differential and integro-differential equations of motion are introduced. For systems driven by Poisson impulse process the tools of the theory of non-diffusive Markov processes are used. These are: the generalized Itô's differential rule which allows to derive the differential equations for response moments and the forward integro-differential Chapman-Kolmogorov equation from which the equation governing the probability density of the response is obtained. The relation of Poisson impulse process problems to the theory of diffusive Markov processes is given. For systems driven by a class of non-Poisson (Erlang renewal) impulse processes an exact conversion of the original non-Markov problem into a Markov one is based on the appended Markov chain corresponding to the introduced auxiliary pure jump stochastic process. The derivation of the set of integro-differential equations for response probability density and also a moment equations technique are based on the forward integro-differential Chapman-Kolmogorov equation. An illustrating numerical example is also included.de_DE
tuhh.publisher.doi10.1088/1742-6596/721/1/012010-
tuhh.publication.instituteMechanik und Meerestechnik M-13de_DE
tuhh.identifier.doi10.15480/882.1856-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanMechanik und Meerestechnik M-13de
tuhh.institute.englishMechanik und Meerestechnik M-13de_DE
tuhh.gvk.hasppnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.rights.ccversion3.0de_DE
dc.type.casraiJournal Article-
tuhh.container.issue1de_DE
tuhh.container.volume721de_DE
tuhh.container.startpageArt.-Nr. 012010de_DE
dc.relation.conference5th Symposium on the Mechanics of Slender Structures (MoSS2015)de_DE
dc.rights.nationallicensefalsede_DE
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.grantfulltextopen-
item.creatorOrcidIwankiewicz, Radosław-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorGNDIwankiewicz, Radosław-
item.cerifentitytypePublications-
crisitem.author.deptMechanik und Meerestechnik M-13-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
Iwankiewicz_2016_J._Phys.__Conf._Ser._721_012010.pdfVerlags-PDF1,23 MBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

131
Last Week
1
Last month
2
checked on Oct 20, 2020

Download(s)

165
checked on Oct 20, 2020

Google ScholarTM

Check

Note about this record

Export

This item is licensed under a Creative Commons License Creative Commons