Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.1961
DC FieldValueLanguage
dc.contributor.authorXu, Guoqiang-
dc.contributor.authorZhang, Haochun-
dc.contributor.authorZhang, Xiu-
dc.contributor.authorJin, Yan-
dc.date.accessioned2019-01-16T10:38:57Z-
dc.date.available2019-01-16T10:38:57Z-
dc.date.issued2017-10-13-
dc.identifier.citationEntropy 10 (19): 538 (2017-10-01)de_DE
dc.identifier.issn1099-4300de_DE
dc.identifier.urihttps://tubdok.tub.tuhh.de/handle/11420/1964-
dc.description.abstractActive control of heat flux can be realized with transformation optics (TO) thermal metamaterials. Recently, a new class of metamaterial tunable cells has been proposed, aiming to significantly reduce the difficulty of fabrication and to flexibly switch functions by employing several cells assembled on related positions following the TO design. However, owing to the integration and rotation of materials in tunable cells, they might lead to extra thermal losses as compared with the previous continuum design. This paper focuses on investigating the thermodynamic properties of tunable cells under related design parameters. The universal expression for the local entropy generation rate in such metamaterial systems is obtained considering the influence of rotation. A series of contrast schemes are established to describe the thermodynamic process and thermal energy distributions from the viewpoint of entropy analysis. Moreover, effects of design parameters on thermal dissipations and system irreversibility are investigated. In conclusion, more thermal dissipations and stronger thermodynamic processes occur in a system with larger conductivity ratios and rotation angles. This paper presents a detailed description of the thermodynamic properties of metamaterial tunable cells and provides reference for selecting appropriate design parameters on related positions to fabricate more efficient and energy-economical switchable TO devices.en
dc.language.isoende_DE
dc.publisherMDPIde_DE
dc.relation.ispartofEntropyde_DE
dc.rightsCC BY 4.0de_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.subjectthermodynamic propertiesde_DE
dc.subjectentropy generationde_DE
dc.subjecttunable cellde_DE
dc.subjectmatamaterialde_DE
dc.subject.ddc530: Physikde_DE
dc.titleInvestigating the thermodynamic performances of TO-based metamaterial tunable cells with an entropy generation approachde_DE
dc.typeArticlede_DE
dc.identifier.urnurn:nbn:de:gbv:830-882.025491-
dc.identifier.doi10.15480/882.1961-
dc.type.diniarticle-
dc.subject.ddccode530-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.025491-
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/1964-
tuhh.abstract.englishActive control of heat flux can be realized with transformation optics (TO) thermal metamaterials. Recently, a new class of metamaterial tunable cells has been proposed, aiming to significantly reduce the difficulty of fabrication and to flexibly switch functions by employing several cells assembled on related positions following the TO design. However, owing to the integration and rotation of materials in tunable cells, they might lead to extra thermal losses as compared with the previous continuum design. This paper focuses on investigating the thermodynamic properties of tunable cells under related design parameters. The universal expression for the local entropy generation rate in such metamaterial systems is obtained considering the influence of rotation. A series of contrast schemes are established to describe the thermodynamic process and thermal energy distributions from the viewpoint of entropy analysis. Moreover, effects of design parameters on thermal dissipations and system irreversibility are investigated. In conclusion, more thermal dissipations and stronger thermodynamic processes occur in a system with larger conductivity ratios and rotation angles. This paper presents a detailed description of the thermodynamic properties of metamaterial tunable cells and provides reference for selecting appropriate design parameters on related positions to fabricate more efficient and energy-economical switchable TO devices.de_DE
tuhh.publisher.doi10.3390/e19100538-
tuhh.publication.instituteTechnische Thermodynamik M-21de_DE
tuhh.identifier.doi10.15480/882.1961-
tuhh.type.opus(wissenschaftlicher) Artikelde
tuhh.institute.germanInstitue of thermo-fluid dynamicsde
tuhh.institute.englishTechnische Thermodynamik M-21de_DE
tuhh.gvk.hasppnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.rights.ccversion4.0de_DE
dc.type.casraiJournal Articleen
tuhh.container.issue10de_DE
tuhh.container.volume19de_DE
tuhh.container.startpage538de_DE
dc.rights.nationallicensefalsede_DE
item.fulltextWith Fulltext-
item.creatorOrcidXu, Guoqiang-
item.creatorOrcidZhang, Haochun-
item.creatorOrcidZhang, Xiu-
item.creatorOrcidJin, Yan-
item.creatorGNDXu, Guoqiang-
item.creatorGNDZhang, Haochun-
item.creatorGNDZhang, Xiu-
item.creatorGNDJin, Yan-
item.grantfulltextopen-
crisitem.author.orcid0000-0002-2297-6827-
Appears in Collections:Publications (tub.dok)
Files in This Item:
File Description SizeFormat
entropy-19-00538.pdfVerlags-PDF2,55 MBAdobe PDFView/Open
Show simple item record

Page view(s)

52
Last Week
0
Last month
6
checked on Apr 23, 2019

Download(s)

20
checked on Apr 23, 2019

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons