Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.1997
DC FieldValueLanguage
dc.contributor.authorRaman, Subrahmanyam-
dc.contributor.authorGurikov, Pavel-
dc.contributor.authorMeissner, Imke-
dc.contributor.authorSmirnova, Irina-
dc.date.accessioned2019-01-31T07:41:52Z-
dc.date.available2019-01-31T07:41:52Z-
dc.date.issued2016-07-04-
dc.identifier.citationJournal of Visualized Experiments 113 (2016): (2016-07-04)de_DE
dc.identifier.issn1940-087Xde_DE
dc.identifier.urihttps://tubdok.tub.tuhh.de/handle/11420/2000-
dc.description.abstractAlthough the first reports on aerogels made by Kistler1 in the 1930s dealt with aerogels from both inorganic oxides (silica and others) and biopolymers (gelatin, agar, cellulose), only recently have biomasses been recognized as an abundant source of chemically diverse macromolecules for functional aerogel materials. Biopolymer aerogels (pectin, alginate, chitosan, cellulose, etc.) exhibit both specific inheritable functions of starting biopolymers and distinctive features of aerogels (80-99% porosity and specific surface up to 800 m2/g). This synergy of properties makes biopolymer aerogels promising candidates for a wide gamut of applications such as thermal insulation, tissue engineering and regenerative medicine, drug delivery systems, functional foods, catalysts, adsorbents and sensors. This work demonstrates the use of pressurized carbon dioxide (5 MPa) for the ionic cross linking of amidated pectin into hydrogels. Initially a biopolymer/salt dispersion is prepared in water. Under pressurized CO2 conditions, the pH of the biopolymer solution is lowered to 3 which releases the crosslinking cations from the salt to bind with the biopolymer yielding hydrogels. Solvent exchange to ethanol and further supercritical CO2 drying (10 - 12 MPa) yield aerogels. Obtained aerogels are ultra-porous with low density (as low as 0.02 g/cm3), high specific surface area (350 - 500 m2/g) and pore volume (3 - 7 cm3/g for pore sizes less than 150 nm).en
dc.language.isoende_DE
dc.publisher[S.l.]de_DE
dc.relation.ispartofJoVEde_DE
dc.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.subjectChemistryde_DE
dc.subjectIssue 113de_DE
dc.subjectBiopolymersde_DE
dc.subjectaerogelsde_DE
dc.subjectsupercritical CO2 dryingde_DE
dc.subjectgreen solventsde_DE
dc.subjectamidated pectinde_DE
dc.subjecthydrogelsde_DE
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titlePreparation of biopolymer aerogels using green solventsde_DE
dc.typeArticlede_DE
dc.identifier.urnurn:nbn:de:gbv:830-882.026215-
dc.identifier.doi10.15480/882.1997-
dc.type.diniarticle-
dc.subject.ddccode620-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.026215-
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/2000-
tuhh.abstract.englishAlthough the first reports on aerogels made by Kistler1 in the 1930s dealt with aerogels from both inorganic oxides (silica and others) and biopolymers (gelatin, agar, cellulose), only recently have biomasses been recognized as an abundant source of chemically diverse macromolecules for functional aerogel materials. Biopolymer aerogels (pectin, alginate, chitosan, cellulose, etc.) exhibit both specific inheritable functions of starting biopolymers and distinctive features of aerogels (80-99% porosity and specific surface up to 800 m2/g). This synergy of properties makes biopolymer aerogels promising candidates for a wide gamut of applications such as thermal insulation, tissue engineering and regenerative medicine, drug delivery systems, functional foods, catalysts, adsorbents and sensors. This work demonstrates the use of pressurized carbon dioxide (5 MPa) for the ionic cross linking of amidated pectin into hydrogels. Initially a biopolymer/salt dispersion is prepared in water. Under pressurized CO2 conditions, the pH of the biopolymer solution is lowered to 3 which releases the crosslinking cations from the salt to bind with the biopolymer yielding hydrogels. Solvent exchange to ethanol and further supercritical CO2 drying (10 - 12 MPa) yield aerogels. Obtained aerogels are ultra-porous with low density (as low as 0.02 g/cm3), high specific surface area (350 - 500 m2/g) and pore volume (3 - 7 cm3/g for pore sizes less than 150 nm).de_DE
tuhh.publisher.doi10.3791/54116-
tuhh.publication.instituteThermische Verfahrenstechnik V-8de_DE
tuhh.identifier.doi10.15480/882.1997-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanThermische Verfahrenstechnik V-8de
tuhh.institute.englishThermische Verfahrenstechnik V-8de_DE
tuhh.gvk.hasppnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.rights.ccby-nc-ndde_DE
dc.rights.ccversion3.0de_DE
dc.type.casraiJournal Article-
tuhh.container.issue113de_DE
tuhh.container.volume2016de_DE
tuhh.container.startpagee54116de_DE
dc.rights.nationallicensefalsede_DE
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextWith Fulltext-
item.creatorOrcidRaman, Subrahmanyam-
item.creatorOrcidGurikov, Pavel-
item.creatorOrcidMeissner, Imke-
item.creatorOrcidSmirnova, Irina-
item.languageiso639-1en-
item.creatorGNDRaman, Subrahmanyam-
item.creatorGNDGurikov, Pavel-
item.creatorGNDMeissner, Imke-
item.creatorGNDSmirnova, Irina-
item.grantfulltextopen-
item.cerifentitytypePublications-
crisitem.author.deptThermische Verfahrenstechnik V-8-
crisitem.author.deptEntwicklung und Modellierung neuartiger nanoporöser Materialien V-EXK2-
crisitem.author.deptThermische Verfahrenstechnik V-8-
crisitem.author.deptThermische Verfahrenstechnik V-8-
crisitem.author.orcid0000-0003-0598-243X-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
Appears in Collections:Publications with fulltext (tub.dok)
Show simple item record

Page view(s)

137
Last Week
3
Last month
26
checked on Nov 21, 2019

Download(s)

111
checked on Nov 21, 2019

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons